DETC2006-99016

CABLE-SUSPENDED ROBOTIC CONTOUR CRAFTING SYSTEM

Paul Bosscher ${ }^{1}$, Robert L. Williams II ${ }^{1}$, L. Sebastian Bryson ${ }^{2}$, Daniel Castro-Lacouture ${ }^{2}$
Department of Mechanical Engineering ${ }^{1}$ Department of Civil Engineering ${ }^{2}$
Ohio University
Athens, Ohio 45701
Email: bosscher@ohio.edu, williar4@ohio.edu, bryson@ohio.edu, castro-@@ohio.edu

Abstract

This paper introduces a new concept for a contour crafting construction system. Contour crafting is a relatively new layered fabrication technology that enables automated construction of whole structures. The system proposed here consists of a mobile contour crafting platform driven by a translational cable-suspended robot. The platform includes an extrusion system for laying beads of concrete as well as computer-controlled trowels for forming the beads as they are laid. This system is fully automated and can be used to construct concrete structures rapidly and economically. The novel attributes of this system enable significant improvements over other proposed contour crafting systems, including easier portability, lower cost, and the potential to build much larger structures. This paper presents the kinematics and statics of the proposed system, and uses the reachable workspace of the robot as well as the corresponding cable tensions to approximate the maximum size structure that can be built using this manipulator.

KEYWORDS

Contour crafting, concrete extrusion, cable-suspended robot, workspace, C^{4} robot, translation-only robot

1 INTRODUCTION

Contour crafting (CC) is a layered fabrication technology that has been proposed by Khoshnevis [1], [2] for automated construction of civil structures. The aim of this technology is to improve the speed, safety, quality and cost of building construction.

Similar to other layered fabrication technologies such as rapid prototyping, stereolithography and solid free-form fabrication, CC uses a computer controlled process to fabricate structures by depositing layers of material, building the structure from the ground up, one layer at a time. However,

Figure 1. CONSTRUCTION OF A BUILDING USING CONTOUR CRAFTING AND A GANTRY SYSTEM (FIGURE FROM [1]).

unlike existing layered fabrication processes, CC is designed for construction of very large scale structures, on the scale of single-family homes up to housing complexes and office buildings. Figure 1 shows a schematic (from [1]) showing a building being constructed using CC.

The CC process involves depositing strips/beads of material (typically a thick concrete/paste type material) using an extrusion process. A nozzle (shown in yellow in Figure 1) extrudes the material in the desired locations. In the original formulation of this system the $x-y-z$ position of the nozzle is controlled by a Cartesian gantry manipulator. This paper will present an alternative manipulator for performing this task.

Figure 2. PROTOTYPE OF CONTOUR CRAFTING SYSTEM (FIGURE FROM [1]).

As the nozzle moves along the walls of the structure the construction material is extruded and troweled using a set of actuated, computer controlled trowels. The use of computercontrolled trowels allows smooth and accurate surfaces to be produced. Figure 2 shows a closeup of the extrusion/troweling tool in a small-scale prototype CC system developed by Koshnevis (from [1]).

Because of the highly automated nature of CC, it has the potential to significantly increase the speed and decrease the cost of concrete structure construction. This technique also greatly increases design flexibility, as architects would be able to design structures with complex geometries that would be difficult to construct using current concrete construction techniques. In addition to automated deposition of concretelike materials, the system could be modified to allow automated addition of reinforcement materials, plumbing and electrical wiring as the structure is being built (see [1] for more details).

2 MOTIVATION AND OUTLINE

The CC process relies on manipulating the extrusion/troweling nozzle through a very large workspace. Since this manipulation primarily requires only Cartesian motion, a gantry system has been proposed in [1] for performing this motion. However, in [1] it is recognized that building very large structures with a gantry robot requires an extremely large gantry robot, which may be impractical to build. Indeed, such a manipulator would be relatively large and heavy, with massive actuators. It would be impractical to transport and deploy at a construction site. In this paper an alternative manipulator is presented for performing Cartesian manipulation of a CC platform.

The outline of this paper is as follows. First the use of cable robots for CC is motivated in Section 3. In Section 4 a cable robot concept, termed the C^{4} Robot, is presented for performing CC tasks. The operation of the system is then described in Section 5, followed by a discussion of the robot kinematics and statics in Sections 6 and 7. The workspace of the manipulator is studied in Section 8, including an examination of the cable tensions throughout the workspace. Finally Section 9 presents some conclusions and future work.

Figure 3. EXAMPLE CABLE ROBOT

Figure 4. FALCON-7 (FIGURES FROM [3])

3 CABLE ROBOTS

Cable-driven robots (or cable-suspended robots or tendondriven robots), referred to here as cable robots, are a type of robotic manipulator that has recently attracted interest for large workspace manipulation tasks. Cable robots are relatively simple in form, with multiple cables attached to a mobile platform or end-effector as illustrated in Figure 3. The endeffector is manipulated by motors that can extend or retract the cables. In addition to large workspaces, cable robots are relatively inexpensive and are easy to transport, disassemble and reassemble. Cable robots have been used for a variety of applications, including material handling [3],[4],[5], haptics [7],[8], and many others.

Based on the degree to which the cables determine the pose (position and orientation) of the manipulator, cable robots can be put into one of two categories: fully-constrained and underconstrained. In the fully-constrained case the pose of the end-effector can be completely determined given the current lengths of the cables. Figure 4 shows an example of a fullyconstrained cable robot, the FALCON-7 [3], a small-scale seven-cable high-speed manipulator able to achieve accelerations up to 43 g . Fully constrained cable robots have been designed for applications that require high precision, high speed/acceleration or high stiffness. Underconstrained cable robots have been proposed by the second author and NIST for contour crafting type construction [6]. However, because of the need for large workspace manipulation that has both precise motion and high stiffness, we propose the use of a fullyconstrained cable robot for contour crafting.

Several other fully-constrained cable robots exist ([8], [9], [10]). However, these manipulators are only practical for smallworkspace applications because the required geometry of the cables and end-effector for these manipulators are often
impractical for large workspaces. For example, implementing the FALCON-7 in Figure 4 on a large scale would require a very large and cumbersome end-effector rod. In addition, fully constrained cable robots often have cable interference issues, particularly with the cables colliding with nearby objects. The manipulator presented here is designed to be practical for large workspace manipulation while avoiding collisions between itself and the structures being built.

4 CONTOUR CRAFTING CARTESIAN CABLE ROBOT

To perform the task of translation-only manipulation of an extrusion/construction end-effector through large workspaces for CC tasks, we are proposing the Contour Crafting Cartesian Cable Robot, abbreviated as the C^{4} robot. The C^{4} robot, shown in Figure 5, consists of a rigid frame and an end-effector suspended from twelve cables, grouped into four upper cables and eight lower cables. The eight lower cables are additionally divided into four pairs of parallel cables. The arrangement of the cables is derived from a previous cable robot developed by the first two authors [12] for translation-only motion.

The cables are routed through pulleys that are mounted to a large cube-shaped frame to motors that actuate the lengths of the cables, which can be located at the base of the frame. The frame consists of truss-like members that can be easily transported and assembled at the construction site. The frame must be large enough to completely enclose the structure that is being built. The pulleys for the lower cables are mounted on horizontal crossbars, oriented at an angle of 45° with respect to the adjacent horizontal frame members, where the width of each crossbar is equal to the width of the corresponding side of the end-effector.

The end-effector includes all of the extrusion and troweling tools for performing CC. The concrete is pumped from an external storage tank to the end-effector via a flexible suspended hose, as shown in Figure 6.

The function of the upper cables is essentially to support the weight of the end-effector, while the lower cables provide the required translation-only motion. For each pair of cables, the two cables are controlled such that they have the same length (this can be easily accomplished by reeling in each pair of cables with a single motor). As a result, a parallelogram is formed by each pair of cables and the corresponding crossbar and the edge of the end-effector that the two cables connect to. By maintaining this parallelism, translation-only motion can be guaranteed. This not only simplifies control of the manipulator, it also drastically reduces the complexity of the forward kinematics solution. Note that only three sets of the parallel cables are necessary to guarantee translation-only motion (much like the three sets of parallel links in the well-known Delta robot [11]), however the addition of the fourth set increases the workspace of the manipulator.

Because the robot is fully-constrained, it has high stiffness and can exert arbitrary forces and moments. Most fullyconstrained cable robots have problems with cables interfering with each other and with surrounding objects. While the

Figure 5. THE CONTOUR CRAFTING CARTESIAN CABLE ROBOT (\mathbf{C}^{4} ROBOT)

Figure 6. C^{4} ROBOT BUILDING A STRUCTURE (CONCRETE HOSE AND STORAGE TANK SHOWN)
arrangement of the cables prevents interference between cables, it does not prevent interference with the building being constructed. In order to solve this problem, the horizontal crossbars on the frame are actuated vertically. Each crossbar can be independently linearly actuated along the vertical edge of the frame. This enables the manipulator to continuously reconfigure itself in order to avoid collisions between the lower cables and the building. Figure 7 shows a close-up of the actuation of one of the crossbars. The actuation of the crossbars can be accomplished a number of ways, including via hydraulic pistons, gear/chain drives or cable drives. The actuation mechanism must also be properly shrouded in order to prevent jamming due to construction debris. The configuration of the cables allows for easy translation-only motion as well as easy forward and inverse position kinematics.

Figure 7. CROSSBAR IN LOWERED (LEFT) AND RAISED (RIGHT) CONFIGURATIONS.

The eight lower cables are grouped into pairs of parallel cables. Pure translational motion is accomplished by keeping the lengths of any two paired cables the same. In addition to simplifying the kinematic equations, this simplifies control of the manipulator.

5 SYSTEM OPERATION

Using this system to construct buildings will be accomplished as follows. The system is transported to the site with all elements of the system stowed. The system will actually be quite compact when stowed because the cables can be reeled in and the frame members will likely be constructed using trusses that can be easily assembled and disassembled. Once at the construction site, the frame is assembled, the cables are strung through the pulleys and are connected to the endeffector. The most critical step in the deployment of the system is properly leveling and anchoring the frame. It may be possible to add additional adjustable supports to the bottom of the frame that would allow it to be leveled.

When the system has been anchored, the robot must be calibrated. Due to space limitations a complete calibration routine cannot be discussed here. The construction material (concrete or a similar material) must be prepared and then pumped into the end-effector (as shown in Figure 6). Assuming a proper foundation/footing for the structure is in place, the construction of the building can now begin. With the vertically-actuated crossbars all set to their lowest height, the end-effector is controlled to move along the desired trajectory for extruding the first layer of the structure's walls. The position of the end-effector is controlled by actuation of the 12 cables, where the length of any two paired parallel cables is kept the same. As the building is constructed a layer at a time, the height of the building will increase, making collisions between the lower cables and the building more likely. Thus after several layers have been completed each of the four actuated crossbars is raised (typically the same distance for each crossbar), allowing the robot to maintain full constraint of the end-effector while preventing any collisions between cables and the building (see Figure 8). The entire structure is

Figure 8. C^{4} ROBOT BUILDING A STRUCTURE WITH CROSSBARS RAISED.
constructed in a layered fashion, with the crossbars being raised periodically to avoid collisions. The end-effector will also place structural elements such as header beams for overhangs such as windows or doorframes. This can be accomplished by mounting a serial robot arm to the end-effector, similar to what is proposed in [1] (see [1] for full details on this process).

Once the structure is completed, the C^{4} robot system can be moved to a different work site to build another structure. If the next structure is to be nearby, it is not necessary to disassemble the construction system. Instead, one of the horizontal bottom members of the frame can be removed and the system can be moved (e.g. by the addition of wheels to the frame) away from the first structure and to the site of the second structure. Once all construction at the site is completed, the system can again be easily disassembled and stowed in a compact travel configuration.

$6 \quad C^{4}$ ROBOT KINEMATICS

In this section we present some basic kinematic equations for control of the robot. The kinematic parameters of the robot are shown in Figure 9. The frame is assumed to be a rectangular parallelepiped with sides of fixed length $d_{\mathrm{x}}, \mathrm{d}_{\mathrm{Y}}, \mathrm{d}_{\mathrm{Z}}$. The base coordinate frame $\{B\}$ is attached as shown, fixed to the floor in the center of the $X Y$ plane. The end-effector is constructed of a rectangular parallelepiped with fixed side lengths $p_{\mathrm{X}}, p_{\mathrm{Y}}, p_{\mathrm{Z}}$. Though this robot provides translationalonly motion, the end-effector is rotated at assembly relative to the base frame. The nozzle frame $\{N\}$ is attached to the end of the extrusion nozzle; though $\{N\}$ translates relative to $\{B\}$, their orientation is constrained to be always the same. An additional frame $\{P\}$ is also parallel to $\{N\}$, but located at the geometric center of the end-effector rectangular parallelepiped (not shown in Figure 9).

Figure 9. KINEMATIC PARAMETERS OF C ${ }^{4}$ ROBOT.
Due to the arrangement of the lower cables (the pairs of cables are parallel and the horizontal crossbar for each pair is parallel to the corresponding side of the end-effector), the orientation of the end-effector does not change. This has been proven, but the proof is not included here due to length limitations. The proof is similar to that of the translation-only end-effector of the Delta robot [11]. The four pairs of lower cables of lengths have lengths $L_{1}, L_{2}, L_{3}, L_{4}$, where for pair i each of the cables have length L_{i}. As shown in Figure 9, the horizontal end-effector dimensions are p_{X} and p_{Y}, which are the same as the corresponding crossbar lengths. These are actuated to different heights along the vertical sides of the frame to variable heights $h_{1}, h_{2}, h_{3}, h_{4}$. These heights can allow the cables to be free from interference with the house under construction. When viewed from above (as shown in Figure 10) the crossbars and the end-effector are rotated 45° from the horizontal members of the frame. This angle was chosen to ensure workspace symmetry.

There are also four upper cables meeting in a point at the top center of the end-effector, with variable lengths L_{5}, L_{6}, L_{7}, L_{8}. These cables are routed through fixed pulleys located at the upper vertices of the frame as shown in Figures 5, 6 and 8.

6.1 Inverse Position Kinematics

For parallel robots such as this 12-cable-driven robot, the inverse position kinematics is generally straight-forward. The solution simply amounts to forming the known vectors between cable connection points and calculating their Euclidian norms to determine the associated required cable lengths. Due to space limitations and the simple nature of these equations they will not be detailed here.

6.2 Virtual Cable Concept

The forward kinematic equations will be described next. However, we will first discuss the concept of virtual cables,

Figure 10. OVERHEAD VIEW OF ${ }^{4}$ ROBOT WITH
LOWER CABLES AND VIRTUAL CABLES SHOWN.
which will simplify the derivation of the forward kinematic equations.

We can simplify the kinematics problems by using a single control point P located at the origin of $\{P\}$, the geometric center of the end-effector rectangular parallelepiped. For the lower four parallel cable pairs we introduce four virtual cables, in place of the eight real drive cables as follows. From cable attachment points $P_{i b}$ on the end-effector, draw vectors \mathbf{p}_{i} to P, $i=1,2,3,4$ (see Figure 10). Since the platform orientation is not changing, the orientations of all \mathbf{p}_{i} are constant. Now, from cable base points $b_{i a}$ on the vertically-translating cable base supports, attach these same vectors \mathbf{p}_{i} to form virtual cable pulley points $b_{i v}$, as shown in Figure 10. Connect a single virtual control cable between the two tips of these two vectors $\mathbf{p}_{i}, i=1,2,3,4$. Then the length of these virtual cables is also L_{i}, $i=1,2,3,4$, due to the parallelism. So the real kinematics problems may be significantly simplified without loss of generality by controlling the four virtual cables L_{i} to translate P. Note that Figure 10 shows the top view for clarity; all vectors shown are 3D, so their true lengths are not shown but rather the $X Y$ planar projections of their true lengths.

6.3 Forward Position Kinematics

The forward position kinematics problem is stated: given the twelve cable lengths L_{i}, calculate the desired contourcrafting nozzle position ${ }^{B} \mathbf{P}_{N}=\left\{\begin{array}{lll}x_{N} & y_{N} & z_{N}\end{array}\right\}^{T}$. In general, forward position kinematics for parallel (and cable-suspended) robots is very challenging, with multiple solutions. However, due to the virtual cable simplification discussed above, the current forward position kinematics solution is straight-forward and may be solved in closed-form. The end-effector rectangular parallelepiped center P is simply the intersection of three given spheres. Using the lower virtual cables, we can
choose any three of the four virtual cables $i=1,2,3,4$. Choosing the first three, the forward position kinematics solution for P is found from the intersection of the following three spheres, where each sphere is referred to as (vector center c, scalar radius r):

$$
\begin{equation*}
{ }^{B} \mathbf{P}_{P} \rightarrow\left(\mathbf{b}_{1 v}, L_{1}\right),\left(\mathbf{b}_{2 v}, L_{2}\right),\left(\mathbf{b}_{3 v}, L_{3}\right) \tag{1}
\end{equation*}
$$

where points $\mathbf{b}_{i v}$ are the virtual cable pulley points as shown in Figure 10. A closed-form three spheres' intersection algorithm is presented in [13]. There are two solutions, from which the correct one may easily be selected by computer (the upper solution rather than the lower one, for the lower parallel cable pairs). There is the possibility of imaginary solutions only if the input data to the forward position problem is not consistent (i.e. sensing or modeling errors). There is an algorithmic singularity which may be avoided by proper choice of coordinate frames. Thus the forward position solution can be found by using only three virtual cables out of the 12 active cables. This is possible due to the translation-only motion of the robot. After forward position kinematics solution is found, the inverse position kinematics solution may be used to verify that the remaining cable lengths (unused in the forward position kinematics solution) are correct.

There are many alternatives for solving the forward position kinematics solution of the 12-cable robot. For example, instead of intersecting spheres from 3 of the 4 lower virtual cables we can intersect 3 of the 4 upper real cables to find point P_{T} (on top of the end-effector). After we have point P from forward position kinematics with the lower virtual cables (or point P_{T}, when using the upper cables) we can easily calculate the nozzle position.

In practice it may be possible to develop a forward position kinematics solution using all 8 cable lengths simultaneously (4 upper real and 4 lower virtual) to reduce errors in the case of real-world sensing of the cable lengths.

$7 \quad C^{4}$ ROBOT STATICS

This section presents statics modeling for the 12-cable robot. For static equilibrium the sum of external forces and moments exerted on the end-effector by the cables must equal the resultant external wrench exerted on the environment. Because of the analogous relationship between cable robots and parallel robots, the well-known Jacobian relationship can be used to express the static equations. Let \mathbf{F}_{R} and \mathbf{M}_{R} be the resultant force and moment, respectively, applied by the endeffector to its surroundings (due to interaction forces and moments in the contour crafting process), expressed at point P in frame $\{P\}$. Position vector ${ }^{P} \mathbf{P}_{C G}$ gives the location of the $C G$ relative to P. In practice ${ }^{P} \mathbf{P}_{C G}$ can be non-zero and even changing during the process as material is pumped in and extruded out. Let $\hat{\mathbf{L}}_{i}$ be the unit vector along cable i, directed away from the end-effector. Let \mathbf{p}_{i} be the position vector from the origin of $\{P\}$ to the point of connection of the $i^{\text {th }}$ cable to the end-effector. Then the wrench \mathbf{W}_{R} applied by the end-
effector on its surroundings is related to the vector of cable tensions $\mathbf{t}=\left(\begin{array}{llllll}t_{1 a} & t_{1 b} & t_{2 a} & t_{2 b} & \cdots & t_{4 b}\end{array} t_{5} t_{6} t_{7} t_{8}\right)^{T}$ according to:

$$
\mathbf{A t}+\left\{\begin{array}{c}
m \mathbf{g} \tag{2}\\
{ }^{P} \mathbf{P}_{C G} \times m \mathbf{g}
\end{array}\right\}=\mathbf{W}_{R}=\left\{\begin{array}{c}
\mathbf{F}_{R} \\
\mathbf{M}_{R}
\end{array}\right\}
$$

where the statics Jacobian \mathbf{A} (expressed in $\{B\}$ coordinates) is:

$$
\mathbf{A}=\left[\begin{array}{cccccc}
\hat{\mathbf{L}}_{1 a} & \hat{\mathbf{L}}_{1 b} & \hat{\mathbf{L}}_{2 a} & \cdots & \hat{\mathbf{L}}_{7} & \hat{\mathbf{L}}_{8} \tag{3}\\
\mathbf{p}_{1 a} \times \hat{\mathbf{L}}_{1 a} & \mathbf{p}_{1 b} \times \hat{\mathbf{L}}_{1 b} & \mathbf{p}_{2 a} \times \hat{\mathbf{L}}_{2 a} & \cdots & \mathbf{p}_{7} \times \hat{\mathbf{L}}_{7} & \mathbf{p}_{8} \times \hat{\mathbf{L}}_{8}
\end{array}\right]
$$

The gravity vector is $\mathbf{g}=\left\{\begin{array}{lll}0 & 0 & -g\end{array}\right\}^{T}$ and the end-effector mass is m. The forward statics solution is (2). The inverse statics problem is more useful, calculating the required cable tensions \mathbf{t} given the wrench \mathbf{W}_{R}. The statics equations (2) can be inverted in an attempt to support the end-effector weight while maintaining all cable tensions positive. This is presented in the next subsection.

7.1 Maintaining Positive Cable Tensions

For cable robots with actuation redundancy, (2) is underconstrained which means that there are infinite solutions to the cable tension vector \mathbf{t} to exert the required Cartesian wrench \mathbf{W}_{R}. To invert (2) we adapt the well-known particular and homogeneous solution from resolved-rate control of kinematically-redundant serial manipulators:

$$
\begin{equation*}
\mathbf{t}=\mathbf{A}^{+} \mathbf{W}_{R}+\left(\mathbf{I}-\mathbf{A}^{+} \mathbf{A}\right) \mathbf{z} \tag{4}
\end{equation*}
$$

where for the 12 -cable robot \mathbf{I} is the 12×12 identity matrix, \mathbf{z} is an arbitrary 12 -vector, and $\mathbf{A}^{+}=\mathbf{A}^{\mathrm{T}}\left(\mathbf{A} \mathbf{A}^{\mathrm{T}}\right)^{-1}$ is the 12×6 underconstrained Moore-Penrose pseudoinverse of \mathbf{A}. The first term of (4) is the particular solution $\mathbf{t}_{p}=\mathbf{A}^{+} \mathbf{W}_{R}$ to achieve the desired wrench, and the second term is the homogeneous solution $\mathbf{t}_{h}=\left(\mathbf{I}-\mathbf{A}^{+} \mathbf{A}\right) \mathbf{z}$ that projects \mathbf{z} into the null space of \mathbf{A}. So in principle the second term of (4) may be used to increase cable tensions until all are positive, while not changing the required Cartesian wrench.

To implement (4) we use MATLAB function lsqnonneg, which solves the least-squares problem for (2) subject to all non-negative cable tensions.

$8 \quad C^{4}$ ROBOT WORKSPACE

One of the key characteristics of this robot is its workspace. Specifically, we desire for the manipulator to reach and be able to perform $C C$ tasks at any $x-y-z$ position encompassed by the frame of the robot. Formally, we will define the workspace of the C^{4} robot as the set of all $x-y-z$ positions that the point P can attain (in $\{B\}$) while maintaining full constraint of the end-effector and being able to exert a specified set of forces and moments on its surroundings with all non-negative cable tensions and without any of the cables
exceeding their upper tension limits. This has also been termed the "wrench-feasible workspace" of a cable robot [14].

In order to investigate the workspace of this robot, an example geometry was chosen and the workspace generated numerically using MATLAB. While this geometry is not necessarily exactly what will be used in practice, it is sufficiently "generic" that the resulting trends are expected to generalize. This example geometry consists of a 1 m cube endeffector manipulated within a 50 m cube frame. Due to the end-effector dimensions, each of the horizontal crossbars is 1 m wide. The end-effector has a mass of 1000 N and the maximum allowable tension in a cable is 10 kN . The space within the robot's frame is discretized into 2 m cubes. In addition to supporting the weight of the end-effector, at each position the robot is required to exert a force of $\pm 450 N$ in the x, y and z directions and a moment of $\pm 200 \mathrm{~N} \cdot \mathrm{~m}$ about the x, y and z axes. For each of these loading conditions the tensions in the cables are determined. Recall that the statics equations of the manipulator are underdetermined, thus the cable tensions cannot be determined uniquely. To resolve this we use MATLAB function lsqnonneg, which solves the least-squares problem for (2) subject to all non-negative cable tensions. The maximum single cable tension is determined for each individual loading condition, and then the overall maximum tension (the maximum single cable tension considering all of the loading conditions) is determined for the pose.

Figures 11-17 show the results of this simulation. Figure 11 shows the workspace of the C^{4} robot with the horizontal crossbars all set to a height of 0 m . Every position that is reachable with acceptable cable tensions $\left(0 \leq t_{\mathrm{i}} \leq 10 \mathrm{kN}\right)$ is represented by a colored box, with the color of the box representing the overall maximum tension for the pose. The color key for Figures 11-17 is given in Figure 11. The robot's frame is represented by the green cube surrounding the workspace and the locations of the twelve pulleys (one for each of the twelve cables) are represented by blue circles. In Figure 11 we can see that the workspace of the robot is quite large, filling a large majority of the volume within the frame. Due to the symmetry of the robot geometry the workspace is also symmetric.

The workspace of Figure 11 is sliced along the $x=0$ plane and the $y=0$ plane, resulting in a quarter section of the workspace shown in Figure 12. This section reveals that the interior of the workspace has generally low tensions in the cables, which is desirable. Because the manipulator will operate low in this workspace (i.e. once the structure under construction is built up a few meters, the crossbars will be raised to avoid interference) we are particularly interested in the structure of the workspace near its bottom. Accordingly, consider Figure 13, which is the workspace of Figure 11 sliced along the $z=3 \mathrm{~m}$ plane. Again we can see that the interior of the workspace has generally low tensions, with higher tensions only occurring near the edges of the workspace. This plot indicates that a robot of this geometry could safely construct a structure with a foundation that is contained within a roughly $44 \times 44 \mathrm{~m}$ area.

Figure 11. WORKSPACE OF C ${ }^{4}$ ROBOT WITH 1 m CUBE END-EFFECTOR, COLORS INDICATE OVERALL MAXIMUM CABLE TENSION.

Figure 12. QUARTER SECTION OF WORKSPACE OF FIGURE 11.

Figure 13. SECTION OF WORKSPACE OF FIGURE 11 BELOW Z $=3 \mathrm{~m}$.

Figure 14. WORKSPACE OF C ${ }^{4}$ ROBOT WITH CROSSBARS MOVED TO $Z=25 \mathrm{~m}$.

Figure 15. SECTION OF WORKSPACE OF FIGURE 14 BELOW Z = 28 m .

As the construction of the building continues, the crossbars will need to be raised in order to avoid interference of the cables with the building under construction. The crossbars need only be raised a few meters at a time. As a representative example the workspace of the robot is shown in Figure 14 with the horizontal crossbars all set to a height of 25 m . Again the workspace is fairly large, filling the majority of the space from $\mathrm{z}=25$ to 50 m in the frame. More importantly, the workspace is wide in the vicinity of $\mathrm{z}=25 \mathrm{~m}$, where the end-effector will be operating during this stage of construction. This can be seen in Figure 15, where the workspace of Figure 14 is sliced along the $\mathrm{z}=28 \mathrm{~m}$ plane. Again we can see that the interior of the workspace has generally low tensions, with higher tensions only occurring near the edges of the workspace. In addition, the usable area of this portion of the workspace is still approximately $44 \times 44 \mathrm{~m}$.

Lastly, we consider the workspace of the robot with the crossbars raised to 40 m , which is near the maximum expected height for the crossbars. The resulting workspace of the robot

Figure 16. WORKSPACE OF C ${ }^{4}$ ROBOT WITH CROSSBARS MOVED TO Z $=40 \mathrm{~m}$.

Figure 17. SECTION OF WORKSPACE OF FIGURE 16 BELOW Z $=43 \mathrm{~m}$.
is shown in Figure 16. The workspace is not particularly large, however the workspace is very wide in the vicinity of $z=40 \mathrm{~m}$, where the end-effector will be operating during this stage of construction. This can be seen in Figure 17, where the workspace of Figure 16 is sliced along the $\mathrm{z}=43 \mathrm{~m}$ plane. The interior of this section has larger tensions than those seen in Figure 13 and Figure 15, but none higher than $4 k N$. Given the usable area of this portion of the workspace, it appears that the maximum size building that can be constructed with this robot using our example geometry is approximately $44 \times 44 \times 40 \mathrm{~m}$, which is very effective considering the 50 m cube frame.

9 CONCLUSIONS AND FUTURE WORK

This paper has presented a new cable robot, the C^{4} robot, designed for use in a contour crafting system. It combines several novel features, including a geometry that permits easy translation-only motion and highly simplified kinematic equations, and the use of actuated cable mounts that allow online reconfiguration of the cable robot to eliminate cable interference while maintaining full constraint of the end-
effector. This system provides the ability to contour craft large structures while still being less expensive and more portable than current concepts for contour crafting systems.

The forward and inverse position kinematics solutions were discussed, which incorporated the concept of virtual cables in order to simplify the forward position kinematics. The static equations were presented, including a discussion of how the redundancy of the manipulator can be used to maintain non-negative tensions in all cables. Lastly, the manipulator's workspace was investigated for an example geometry, including calculation of the maximum cable tension for a variety of loading conditions. The workspace was determined to be very large, with low maximum cable tensions for nearly all positions. Based on this workspace analysis, it was concluded that the frame of the robot only needs to be slightly larger than the building being constructed.

Future plans for manipulator development include constructing a scale prototype (with a 1 m cube frame), detailed mechanical design of the system components, and development of calibration routines. Additional work is also underway on improved construction materials and extrusion/troweling tooling.

ACKNOWLEDGEMENTS

Special thanks to Ohio University undergraduate student Michael Carlson for his work running workspace simulations of this manipulator.

REFERENCES

[1] Khoshnevis, B., 2004. "Automated Construction by Contour Crafting - Related Robotics and Information Technologies". Journal of Automation in Construction - Special Issue: The best of ISARC 2002, 13(1), January, pp. 5-19.
[2] Khoshnevis, B., Russel, R., Kwon, H, and Bukkapatnam, S., "Crafting Large Prototypes," IEEE Robotics \& Automation Magazine, pp. 33-42, September 2001.
[3] Kawamura, S., Choe, W., Tanaka, S., and Pandian, S., "Development of an ultrahigh speed robot FALCON using wire drive system," in Proceedings of the 1993 IEEE/ICRA

International Conference on Robotics and Automation, vol. 1, (Nagoya, Japan), pp. 215-220, May 1995.
[4] Albus, J., Bostelman, R., and Dagalakis, N., 1992. "The NIST RoboCrane". Journal of National Institute of Standards and Technology, 97(3), May-June.
[5] Gorman, J. J., Jablokow, K. W., and Cannon, D. J., 2001. "The cable array robot: Theory and experiment". In Proceedings of the 2001 IEEE International Conference on Robotics and Automation, pp. 2804-2810.
[6] Williams II, R. L., Albus, J. and Bostelman, R., 2004. "SelfContained Automated Construction Deposition System". Automation in Construction, Vol. 13, pp. $393-407$.
[7] Bonivento, C., Eusebi, A., Melchiorri, C., Montanari, M., and Vassura, G., 1997. "WireMan: A portable wire manipulator for touch-rendering of bas-relief virtual surfaces". In Proceedings of the 1997 International Conference on Advanced Robotics (ICAR 97), pp. 13-18.
[8] Williams II, R. L., 1998. "Cable-suspended haptic interface". International Journal of Virtual Reality, 3(3), pp. 13-21.
[9] Maeda, K., Tadokoro, S., Takamori, T., Hiller, M., and Verhoeven, R., "On design of a redundant wire-driven parallel robot WARP manipulator," in Proceedings of the 1999 IEEE International Conference on Robotics and Automation, (Detroit, Michigan), pp. 895-900, May 1999.
[10] Tadokoro, S., Murao, Y., Hiller, M., Murata, R., Kohkawa, H., and Matsushima, T., "A motion base with 6-DOF by parallel cable drive architecture," IEEE/ASME Transactions on Mechatronics, vol. 7, pp. 115-123, June 2002.
[11] Clavel, R., 1988. "Delta: a fast robot with parallel geometry". In Proceedings of the 18th International Symposium on Industrial Robot.
[12] Bosscher, P., Williams II, R. L., and Tummino, M., "A concept for rapidly-deployable cable robot search and rescue systems," in Proceedings of the 2005 ASME DETC/CIE conferences, (Long Beach, California), DETC2005-84324, September 2005.
[13] Williams II, R. L., Albus, J. S., and Bostelman, R. V., 2004. "3D cable-based Cartesian metrology system". Journal of Robotic Systems, 21(5), pp. 237 - 257.
[14] Bosscher, P., 2004. "Disturbance robustness measures and wrench-feasible workspace generation techniques for cabledriven robots". PhD thesis, Georgia Institute of Technology, Atlanta, GA, November.

