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ABSTRACT 
 This paper presents a concept for virtual-reality-based vehicle 
simulation with whole-body haptics.  The cable-suspended NIST 
RoboCrane is adapted to carry human operators in simulating a variety 
of vehicle motions.  A realistic, immersive VR system is proposed with 
3D graphics, haptic motion input devices, 3D surround-sound audio, 
articulating fans, and an olfactory generator.  The real-world cockpit 
and input devices will be used to increase realism, suspended from 
nine active cables for motion simulation.  The intent is to replace 
existing heavy, expensive, and dangerous Stewart-Platform-based 
flight simulators with a lighter, more economical, stiff, safe, high 
bandwidth, cable-suspended system.  Many potential applications are 
proposed in addition to flight simulation.  Our long-term goal is to 
create an economical, safe, realistic vehicle simulator with full-body 
motion for operator training, research & development, vehicle design, 
entertainment, rehabilitation, and therapy. 
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1.  INTRODUCTION 
 Flight simulation has been achieved using Stewart/Gough/ 
Cappel-Platform-based octahedral hexapods (Stewart, 1965-66, Gough 
and Whitehall, 1962, and Cappel, 1967) since the 1960s (Bonev, 
2003).  These systems (for example, see Figure 1) have been proven to 
provide realistic flight simulations including transference of pilot 
training to real-world flight.  However, they are too heavy, expensive, 
and dangerous for widespread application. 
 Parallel cable-suspended, or wire-driven, robots have been of 
great interest in the literature recently to enable robot systems with 
large workspace (at least translational), efficient actuation, extremely 
high payload-to-weight ratios, and other good potential characteristics.  
Pioneers in this area include the NIST RoboCrane (Albus et al., 1993) 
and the McDonnell-Douglas Charlotte robot (Campbell et al., 1995).  
Lafourcade et al. (2002) present a cable-suspended robot for posing 
small-scale aircraft models in wind tunnels. 
 The current paper presents a lighter, more economical, stiff, safe, 
high bandwidth, cable-suspended vehicle simulation system concept 
that has the potential to improve the Stewart Platform disadvantages 
(cost, size, safety) while expanding significantly the potential vehicle 
simulation applications.  The current concept is intended for humans to 

ride and interact in various simulated vehicle dynamics situations.  The 
main motion unit is an adapted NIST RoboCrane (Albus et al., 1993), 
which in itself is basically an inverted Stewart Platform with six stiff, 
lightweight active cables in place of the six hydraulic actuators.  
Actual cockpits from real-world vehicles, including the vehicle input 
devices (steering wheels, flight sticks, etc.) will be used to increase 
realism.  A disadvantage of the proposed vehicle simulation system is 
that cables cannot push but can only apply tension; therefore, gravity 
and/or actuation redundancy is required to fully constrain the vehicle 
simulator motion. 
 

 
Figure 1.  Octahedral Hexapod F-16 Flight Simulator1. 

 
 We herein propose many vehicles that can be simulated with 
immersion in VR, not just flight simulators.  Since our system could be 
safer and much more economical, it could find widespread application 
in various missions that will be discussed.  It is important to note that 
this is a concept paper; hence we do not yet attempt to prove any 
claims regarding improvements over the Stewart platform. 
 
2.  VEHICLE SIMULATION SYSTEM DESCRIPTION 
 Figure 2 presents the new concept for a Whole-Body Haptics 
Vehicle Simulator System (VSS).  The 6-dof (xyz translations, roll-
pitch-yaw rotations) motion for the human user is imparted using the 

                                                           
1 www.mfg.mtu.edu/cyberman/machtool/machtool/altstruc/res5.html 
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ceiling-mounted six-cable-suspended robot.  The rotations are rather 
limited, similar to a Stewart-Gough Platform, but the translational 
workspace can be quite large with a cable-suspended robot.  Motors 
and cable reels are fixed to the ceiling and the cable ends are attached 
to the moving platform carrying the vehicle ‘cockpit’.  The system 
bandwidth and accelerations will be designed to allow a variety of 
vehicle simulations.  The ‘cockpit’ is the real device from the real 
world, insofar as possible (see vehicle list given later), with real input 
devices for realism.  We will include haptic (force-feedback) inputs 
where possible such as haptic flight sticks or haptic driving wheels.  
As shown in Figure 2, the cable robot is a modified NIST RoboCrane 
(Albus et al., 1993), which itself is a 3-3 Stewart-Gough platform 
inverted and hung from the ceiling, with active cables in place of 
hydraulic cylinder legs.  We modify the RoboCrane to include three 
cables pulling down (see Figure 2) for crisp downward motions; that 
is, in this way we needn’t rely on gravity for downward accelerations 
(plus, downward accelerations larger than g can be achieved in this 
manner).  The down-pulling cables convert the gravity-constrained 
RoboCrane to a fully constrained cable robot.  Figure 2 also shows a 
passive gravity off-load system that will be designed to partially 
relieve the weight due to gravity, allowing smaller motors for the same 
desired accelerations in motion.  Not shown, there will have to be 
redundant safety systems developed to ensure human passenger safety 
during all vehicle motion simulations. 
 We envision two control modes for vehicle simulation: 1. Pre-
programmed, ‘canned’ motion of the vehicle in which a human can 
ride passively to experience the simulated dynamics; and 2. Active, 
real-time mode wherein the human ‘pilot’ enters vehicle motion 
commands through realistic control inputs and experiences the 
dynamics of his or her commands in the resulting simulated motions.  
Dynamics and control are not presented in the current paper. 

Below we discuss the possible vehicles, system components, and 
possible applications of this proposed vehicle simulation system. 

 
2.1  Range of Possible Vehicles for Simulation 
 This vehicle simulation system concept allows for a large variety 
of real-world vehicles to be simulated, with their real-world cockpit 
physically suspended from the nine active cables for the human user to 
ride in, including, but not limited to, the following: 
 
• Aircraft, Gliders, Hang Gliders, Dreamtime ‘Peter Pan’ Flight 
• Automobiles, Motorcycles, Four-wheelers, Snow-mobiles, 

Tractors 
• Sailboats, Windsurfers, Kayaks, Jet Skis 
• Mountain Bikes, Skateboards, Downhill and Cross-country skiing 
• Equestrian riding 
• Roller Coasters and other Thrill Rides 

 
The same system could be quickly modified to allow various real-
world cockpits to be interchanged as desired in the same laboratory, 
clinic, or arcade.  Thus, one cable-suspended robot and VR system 
could handle many different needs. 
 Even given a specific type of vehicle, such as automobiles, 
different options may be programmed and presented to the user for a 
choice to represent different automobiles with different physical 
characteristics and motion types. 
 
2.2  System Components 
 A key to this concept is immersion in a realistic VR environment 
with real inputs and cockpits, allowing interaction with the system.  
The design calls for 3D stereo vision graphics with realistic vehicle 
environments (delivered via a giant projection screen, or better yet, 

through a wireless head-mounted display (HMD)), 3D surround sound 
audio, articulating fans for motion perception enhancement (when the 
cockpit is not enclosed) and an olfactory generator for realistic smells 
to increase the sense of realism in our vehicle simulations. 
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b.  Side View. 

Figure 2.  Whole-Body Haptics Vehicle Simulator System. 
 
 From Figure 2, the main system components for VR immersion 
with whole-body haptics (vehicle simulator motion) are as follows: 
 
• Nine-cable-suspended vehicle simulator 
• Real-world cockpit 
• Realistic input devices, with haptics where possible, for 

interaction 
• 3D Video projected on a giant screen, in a VR cave, or within a 

head-mounted display (HMD) 
• 3D surround-sound audio 
• Articulating fans for simulated breezes in motion 
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• Olfactory generator for realistic smells 
• System for partial gravity offload to allow smaller control motors 
• Sensors for inputs and motion feedback including 6-dof tracking 

technology 
• Redundant-cables safety system (not shown) 

 
2.3  Potential Applications 
 For each of the many vehicles proposed for suspended motion 
simulation, there are also various applications or missions – many of 
the following are common to many of the proposed vehicles. 
 
• Research & Development 
• Engineering Design and Simulation of Vehicles 
• Operator Training 
• Safety Research and Training 
• Rehabilitation 
• Therapy 
• Emotional therapy for autistic, mentally-handicapped, and others 
• Entertainment 
• Recreation for City Dwellers / Access to Experience prior to 

going out into the real world 
• Serious Gaming – including military training/remote control 
• High-End Arcades – to make the human player more active 

 
 
3.  VEHICLE SIMULATION SYSTEM KINEMATICS 

Figure 3 shows the vehicle simulation system kinematic diagram.  
This cable-suspended robot is intended to be a versatile, economic, 
accurate, stiff, safe vehicle simulation tool for various applications as 
discussed above. 

In Figure 3, the fixed base Cartesian coordinate frame is {B} and 
the moving vehicle simulation platform has Cartesian coordinate frame 
{P} fixed to its CG.  The active control tensioning motors are mounted 
to the base frame: two motors each at fixed cable connection points B1, 
B2, and B3, and one motor each at fixed cable connection points B4, B5, 
and B6.  The cable-connection vertices of the moving platform are P1, 
P2, P3, and P4, and point P is the centroid of the moving vehicle 
platform.  In Figure 3, equilateral triangles are assumed for the fixed 
ceiling base points, the moving platform upper cable-connection 
points, and the fixed floor base points with sides LB (shown), LP 
(shown), and LBfloor (not shown), respectively.  However, any desired 
geometry may be used for these important points; the kinematics 
equations presented in the next section will be identical. 

The lengths of the nine active cables are Li, 1,2, ,9i = .  As 
shown in Figure 3, the upper RoboCrane cables are described as 
follows: cable L1 connects P1 to B1, cable L2 connects P2 to B1, cable 
L3 connects P2 to B2, cable L4 connects P3 to B2, cable L5 connects P3 
to B3, and cable L6 connects P1 to B3.   Also shown in Figure 3, the 
lower three down-pulling cables are described as follows: cable L7 
connects P4 to B4, cable L8 connects P4 to B5, and cable L9 connects P4 
to B6. 

 
3.1  VSS Inverse Pose Kinematics Solution  

The inverse pose kinematics problem is stated: Given the desired 
moving vehicle platform pose B

P⎡ ⎤⎣ ⎦T , calculate the nine active cable 

lengths Li, 1,2, ,9i = .  The solution to this problem may be used as 
the basis for a pose control scheme, executing both pre-planned 
trajectories and/or real-time interactive vehicle simulations based on 
human inputs and a virtual vehicle dynamics model.  The VSS inverse 
pose kinematics solution is straight-forward and poses no 

computational challenge for real-time implementation: given the 
moving platform pose, we can easily find the moving platform cable 
connection points P1, P2, P3, and P4.  Then the inverse pose solution 
consists simply of calculating the cable lengths using the Euclidean 
norm of the appropriate vector differences between the various moving 
and fixed cable connection points.  The inverse pose kinematics 
solution yields a unique closed-form solution. 
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Figure 3.  Vehicle Simulation System Kinematic Diagram. 
 Given B

P⎡ ⎤⎣ ⎦T  we calculate the moving cable connection points P1, 

P2, P3, and P4 referenced to the fixed base frame {B} using: 
 

{ } { }B B P
i P i⎡ ⎤= ⎣ ⎦P T P   1,2,3,4i =  (1) 

 
Note we must augment each position vector in (1) with a ‘1’ in the 
fourth row to make the 4x4 matrix multiplication indices work.  The 
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constant relative vectors { }P
iP  are known from platform geometry, 

the four position vectors to point Pi from the origin of {P}, expressed 
in {P} coordinates.  The resulting vectors { }B

iP  are the position 

vectors to point Pi from the origin of {B}, expressed in {B} 
coordinates.  Given the four moving cable connection points from (1), 
we find the nine unknown cable lengths using the following Euclidean 
norms of the appropriate vector differences between fixed base and 
moving platform cable-connection points: 
 

1 1 1
B BL = −B P  2 1 2

B BL = −B P  3 2 2
B BL = −B P    

4 2 3
B BL = −B P  5 3 3

B BL = −B P  6 3 1
B BL = −B P    (2) 

7 4 4
B BL = −B P  8 5 4

B BL = −B P  9 6 4
B BL = −B P    

 
3.2  VSS Forward Pose Kinematics Solution  
 The forward pose kinematics solution is required for simulation 
and sensor-based control of the VSS.  The forward pose kinematics 
problem is stated: Given the nine active cable lengths Li, 1,2, ,9i = , 

calculate the resulting moving vehicle platform pose B
P⎡ ⎤⎣ ⎦T .  Generally 

for cable-suspended robots, the forward pose kinematics solution is not 
as straight-forward as the inverse pose kinematics solution.  For 
instance, the 6-cable RoboCrane with the simplified 3-3 Stewart-
Gough Platform geometry has a closed-form solution that is quite 
complicated, yielding 16 possible solutions (generally not all real) by 
finding the roots of a 16th–order polynomial (Williams, 1992).  
However, unlike most parallel robot forward pose kinematics 
problems, there exists a closed-form solution for the Vehicle 
Simulation System of Figure 3, and the computation requirements are 
not demanding.  There are multiple solutions, but generally the correct 
solution for the VSS can easily be determined. 
 The closed-form VSS forward pose kinematics solution is based 
on finding the intersection of three spheres (four times in succession).  
At each step, each sphere center and radius is known.  The closed-form 
three-spheres’ intersections algorithm is straight-forward and not 
computationally-intensive (Williams et al., 2004).   
 The first step in the forward pose kinematics solution is to 
calculate lower platform cable-connection point P4 given the lower 
active cable lengths L7, L8, and L9 using the intersection of three 
spheres algorithm and knowing the floor-fixed base points.  Then 
moving platform cable-connection points P1, P2, and P3 can be 
similarly found, by intersecting three known spheres three different 
times, each time using this P4 as one of the sphere centers.  Referring 
to a sphere as a vector center point c and scalar radius r, (c,r), the VSS 
forward pose kinematics solution is summarized below: 
 

1.  P4 is the intersection of: ( 4B ,L7), ( 5B ,L8), ( 6B ,L9); 

2.  P1 is the intersection of: ( 4P ,lP1), ( 1B ,L1), ( 3B ,L6); 

3.  P2 is the intersection of: ( 4P ,lP2), ( 1B ,L2), ( 2B ,L3); and 

4.  P3 is the intersection of: ( 4P ,lP3), ( 2B ,L4), ( 3B ,L5). 

where the three known lengths fixed on the platform are 
1Pl = 1 4P - P , 2Pl = 2 4P - P , and 3Pl = 3 4P - P . The detailed 

solution for the intersection of three spheres is presented in (Williams 
et al., 2004).  That article also presents discussions on imaginary 
solutions, singularities, and multiple solutions. 

 Now let us finish the forward pose kinematics solution.  Given 
B

iP , we can calculate the orthonormal rotation matrix B
P⎡ ⎤⎣ ⎦R  directly, 

using the definition that each column of this matrix expresses the X, Y, 
and Z unit vectors of {P} with respect to {B} (Craig, 2005).  These 
columns are calculated as follows, from the moving platform 
geometry. 
 

1 2

1 2

ˆ
B B

B
P B B

X −=
−

P P
P P

  5 3

5 3

ˆ
B B

B
P B B

Y −=
−

P P
P P

  ˆ ˆ ˆB B B
P P PZ X Y= ×  (3) 

 
where 5

B P  is the midpoint of P1P2.  Finally, to find the platform 
control point P where the {P} frame is affixed, we use the following 
vector loop-closure equation: 
 

4 4
B B B P

P P= −P P R P     (4) 
 
Given { }B

PP  and B
P⎡ ⎤⎣ ⎦R , we then have the 4x4 description of pose, 

B
P⎡ ⎤⎣ ⎦T , as follows(Craig 2005): 

 

{ }

0 0 0 1

B B
P PB

P

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R P
T    (5) 

 
There are two solutions to the intersection point of three given 

spheres (Williams et al., 2004).  Therefore, the forward pose 
kinematics problem yields a total of 24 = 16 mathematical solutions 
since we must repeat the algorithm four times for the VSS.  It is 
generally straight-forward to determine the correct unique solution 
using logic in the forward pose kinematics solution implementation. 

The down-pulling cables allow for a big improvement over the 
standard RoboCrane: the existence of a straight-forward forward pose 
kinematics solution, in addition to improved upper cable tensioning. 
 
4.  VEHICLE SIMULATION SYSTEM PSEUDOSTATICS 

To maintain safe and stable control in all motions, all cable 
tensions must remain positive at all times.  First, gravity will help to 
ensure that the top six active cables remain in tension, as long as the 
rotations are not too far from the horizontal nominal orientation.  
Further, the cable-suspended robot of Figures 2 and 3 is overactuated 
(three more cables than the minimum number of six cables for a 
ceiling-mounted RoboCrane and 6-dof operation).  This actuation 
redundancy will be used to attempt to ensure cable tensions for all 
motions.  We develop a pseudostatic model in this section and then 
apply it in attempt to maintain positive cable tensions using two 
methods: a pseudoinverse-based actuation redundancy resolution 
scheme and then a method wherein the cable tensions of the three 
lower cables are specified and the remaining unknowns calculated 
without redundancy. 
 
4.1  Equations for Static Equilibrium 
 This section presents statics modeling for the 9-cable VSS robot.  
All nine active cables connect in parallel from the fixed base to the 
moving platform.  The 9 active drive cables have variable tensions 
which must be maintained as positive.  For static equilibrium the sum 
of all active and passive cable tensions plus gravitational loading 
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acting on the moving platform must equal the resultant wrench exerted 
on the environment by the robot.  For free-space pseudostatic motions, 
this resultant wrench is zero; when the tool is in contact with the 
environment, there is no robot motion, but the resultant wrench is non-
zero.  We envision that the VSS will generally be used only for free-
space motions, with zero contact wrench for all motion, so the only 
external loading on the moving platform will be due to gravity.  
However, we will include the environment wrench in case it is 
required in the future for any application.  Figure 4 shows the statics 
free-body diagram for the moving platform where CG indicates the 
center of mass point.  The nine active cable tension vectors are ti, 

1,2, ,9i = .  Now we derive the pseudostatics Jacobian matrix based 
on the force and moment statics equations.  This Jacobian matrix is a 
linear transformation mapping scalar cable tension magnitudes into the 
Cartesian wrench of the moving platform. 
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Figure 4.  Moving Platform Free-Body Diagram. 

 
The vector translational and rotational equations of static 

equilibrium are: 
 

9

1
i R

i
m

=

+ =∑t g F   (6) 

9

1

B P
i P CG R

i
m

=

+ × =∑m R P g M   (7) 

 
where ˆ

i i it=t L  is the vector cable tension applied to the moving 
platform by the ith active drive cable and (in the positive cable length 
direction ˆ

iL  and because it  must be in tension; ˆ
iL  are defined to 

point from the moving platform to the fixed base); m is the total mass 
of the moving platform with vehicle cockpit; { }0 0 Tg= −g  is the 

gravity vector; B
i P i i= ×m Rp t  is the moment due to the ith active cable 

tension ( ip  is the moment arm from the moving platform control point 
P to the ith active cable connection point, expressed in {P} 
coordinates); P

CGP  is the position vector to the moving platform 
center of mass (CG) from the moving platform control point P; and 

RF and RM  are the vector force and moment (taken together, wrench) 
exerted on the environment by the moving platform (both zero for 
free-space motions).  Moments are summed about the platform control 

point P and all vectors must be expressed in a common frame, {B} in 
this paper.  From Figure 4, there are only four distinct moment arms 
for the nine cable tension moments about P, due to the symmetry in 
design: 
 

1 1=p h    2 2=p h    3 2=p h    

4 3=p h    5 3=p h    6 1=p h   (8) 

7 4=p h    8 4=p h    9 4=p h    
 
Substituting these details into (6) and (7) yields: 
 

[ ]{ } { }R= −S t W G       (9) 
 

where { } { }1 2 9
Tt t t=t  is the vector of active drive cable 

tension magnitudes, { } { }TB P
P CGm m= ×G g R P g  is the gravity 

loading wrench vector, { } { }T
R R R=W F M  is the external wrench 

vector exerted on the environment by the vehicle cockpit, and the 
active statics Jacobian matrix [ ]S  is: 
 

[ ] 1 2 9

1 1 2 2 9 9

ˆ ˆ ˆ

ˆ ˆ ˆB B B
P P P

⎡ ⎤
= ⎢ ⎥

− × − × − ×⎢ ⎥⎣ ⎦

L L L
S

L Rp L Rp L Rp
 (10) 

 
One benefit of the active statics Jacobian matrix [ ]S  is that it may be 
readily adapted for resolved-rate (inverse velocity) control without 
additional computations: The inverse Jacobian matrix M is closely 
related to the active statics Jacobian matrix of (10): T= −M S .  We do 
not present this in the current paper but intend to pursue this as one of 
our vehicle simulation hardware control modes.  Also, this section 
does not yet incorporate the gravity-offload system of Figure 2. 
 The statics equations (9) can be used in two ways.  Given the 
active cable tensions { }t  and each of the nine cable unit vectors ˆ

iL  
from kinematics analysis, forward statics analysis calculates the 
external wrench { }RW  applied on the environment by the vehicle 
cockpit, using (9) directly. 

For control and vehicle simulation, the more useful problem 
is inverse statics analysis: calculate the required active cable tensions 
{ }t  given the moving platform mass and the desired external wrench 

{ }RW , plus each ˆ
iL .  This solution may be used for tension 

optimization control, in attempt to ensure all active cables remain in 
tension for all pseudostatic motions.  We have two algorithms for this, 
presented in the next subsection. 
 Note that VSS dynamics may be an important factor in cable 
tensioning, especially for simulated vehicle motions with high 
velocities and accelerations.  That is, certain dynamic motions of the 
moving platform will cause higher tensions in some cables and lower 
tensions in other cables, even slack cables (negative tensions) than that 
predicted by the pseudostatic model of this section.  Therefore, future 
work into dynamics (e.g. see Williams et al., 2003) is required to 
complement the pseudostatic approach of this paper. 
 Now, even for relatively slow pseudostatic robot motions, not all 
desired configurations and wrenches will be able to exist with only 
positive active cable tensions.  Even for zero applied Cartesian wrench 
(i.e. only supporting the weight of the moving platform and vehicle 
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cockpit), our cable tension optimization algorithms presented in the 
next subsection may fail, especially for large rotations of the moving 
platform away from the nominal horizontal orientation. 
 
4.2  Maintaining Positive Cable Tensions 
 This subsection presents two approaches to maintain positive 
cable tensions on all active cables for all robot motion.  Both require 
actuation redundancy, i.e. more active cables than Cartesian dof.  The 
first approach extends our previously-published algorithm employing 
active cable tension control with a standard particular/homogeneous 
solutions optimization method (Williams et al., 2003).  That article 
was for planar cable-suspended robots with one degree of actuation 
redundancy and the current paper is for spatial motion and three 
degrees of actuation redundancy (i.e. 9 cables for 6 Cartesian dof).  
The second approach is simpler: specifying and controlling known 
cable tensions in the down-pulling cables and calculating the six 
unknown upper cable tensions via the standard non-redundant matrix 
inverse.  To provide the known tensions in the down-pulling cables, we 
may either include actual linear springs in line with active cables 7, 8, 
and 9, converting the tension control problem into an easier length 
control problem for each of these cables, or it may be done with active 
tension control without physical springs. 
 
4.2.1  Actuation Redundancy Solution 
 Since our 9-cable vehicle simulation system has actuation 
redundancy, (9) is underconstrained (6 equations in the 9 unknown 
active cable tensions { }t ) which means that there are three infinities 

of solutions.  To invert (9) (solving the required cable tensions { }t  

achieve wrench { }R −W G ) we adapt the well-known particular and 
homogeneous solution from rate control of kinematically-redundant 
serial manipulators: 
 

{ } [ ] { } [ ] [ ] [ ]( ){ }9R
+ += − + −t S W G I S S z   (11) 

 
The first term of (11), { } [ ] { }Rp

+= −t S W G , is the particular solution 

to achieve the desired wrench.   The matrix [ ] [ ] [ ][ ]( ) 1T T −+ =S S S S  is 

the 9x6 underconstrained Moore-Penrose pseudoinverse of active 
statics Jacobian [ ]S .  The second term of (11), 

{ } [ ] [ ] [ ]( ){ }9h

+= −t I S S z , is the homogeneous solution, projecting 

any arbitrary vector { }z  into the null space of [ ]S .  [ ]9I  is the 9x9 

identity matrix.  Vector { }z  should be chosen to ensure positive cable 
tensions in all nine resulting cables.  All possible homogeneous active 
cable tension solutions { }h

t  combine to cause zero wrench on the 
environment from the vehicle cockpit (the wrench is supplied only by 
the particular solution). 
 MATLAB function lsqnonneg implements a version of (11).  It 
is the least squares solution (minimum norm solution for 
underconstrained systems of equations such as (9)) subject to only 
non-negative values on all solution components.  This is a good 
function to use for cable-suspended robots with the constraint that 
cables can only exert positive tensions. 
 The following subsection presents a simpler method in attempt to 
ensure all positive cable tensions for all motions of the VSS. 
 

 
4.2.2  Specified Lower Cable Tensions Solution 
 Generally in the particular solution discussed above, the lower 
three cable tensions turn out to be impossible, i.e. negative, requiring a 
pushing up to help resist the weight of the platform and vehicle 
cockpit.  The homogeneous solution may be used in an attempt to 
correct this problem.  However, a simpler approach is to simply 
specify given positive cable tensions for the three lower cables and 
then determine the required upper six cable tensions for pseudostatic 
balance.  These cable tensions may be time-varying and different from 
each other depending on motion requirements.  They can be provided 
by physical springs in line with cables 7, 8, and 9, or they may be 
achieved through active tension control of these cables.  This 
subsection presents the equations to accomplish this cable tensioning 
method. 
 First, partition (9) as follows: 
 

[ ]{ } [ ]{ } { }16 16 79 79 R+ = −S t S t W G     (12) 
 
where [ ]16S  is the first six columns of [ ]S , [ ]79S  is the last three 

columns of [ ]S , { }16t  is the unknown vector of upper cable tensions 1 

through 6, and { }79t  is the specified vector of cable tensions 7 through 
9 (the three down-pulling cables).  Then we can solve for the 
unknowns { }16t  using the standard square matrix inverse: 
 

{ } [ ] { } [ ]{ }( )1
16 16 79 79R

−= − −t S W G S t    (13) 
 
(13), combined with the specified values for { }79t  form a valid 

solution to (9) with all positive cable tensions, assuming { }79t  were 
specified to be positive, and the vehicle cockpit orientation does not 
rotate too far from nominal. 
 
5.  EXAMPLES 
 For all examples in this paper, the following VSS parameters 
were used.  The upper ceiling-mounted fixed-base cable connection 
points are on the vertices of an equilateral triangle with side 4 m.  The 
moving platform cable-connection vertices are on an equilateral 
triangle of side 1 m.  The down-pulling cables attach to the lower 
vehicle cockpit at the triangle centroid, 0.2 m below the plane of the 
triangle.  The lower floor-mounted fixed-based cable connection points 
on an equilateral triangle of side 1 m.  The floor-to-ceiling height is 3 
m.  The platform mass is assumed to be 100 kg and the platform CG is 
assumed to be the same as the platform control point P (the centroid of 
the platform equilateral triangle). 
 
 
5.1  Inverse Pose and Pseudostatics Snapshot Example 
 Given the desired pose of the moving platform with respect to the 
base in terms of position vector and Z-Y-X Euler angles: 
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the assignment is to calculate the associated active cable lengths and 
cable tensions.  The associated input homogeneous transformation is 
calculated: 
 

0.9513 -0.2432 0.1897 0.2
0.2549 0.9662 -0.0394 0.6
-0.1736 0.0858 0.9811 1.5

0 0 0 1

B
P

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

T  

 
 
The inverse pose kinematics solution (2) yielded the following nine 
active cable lengths (m): L1 = 2.1224, L2 = 2.1153, L3 = 2.8805, L4 = 
3.0514, L5 = 2.5667, L6 = 3.0092, L7 = 1.3142, L8 = 1.7152, and L9 = 
1.6180.  The resulting platform vertices are: 
 

{ }B
1

0.6054
1.0064
1.4380

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

P ,  { }B
2

-0.3458
0.7515
1.6116

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

P , 

 

{ }B
3

0.3404
0.0422
1.4504

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

P ,  { }B
4

0.1621
0.6079
1.3038

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

P  

 
To hold the VSS in static equilibrium the required cable tensions from 
the particular solution (the first term of (11)) are given on the left 
below.  Since the lower three cables require negative cable tensions 
from the particular solution, we cannot use it directly (the bottom 
cables are required to push to obtain static equilibrium using the least-
squares solution approach).  Instead, to simplify, specifying a 50 N 
positive cable tension for each of cables 7, 8, and 9, we obtain all 
positive cable tensions using (13), given on the right below: 
 

{ }

123.10
122.02
165.68
154.91
207.18
97.07

-237.14
-143.07
-164.19

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

t   { } 16

79

408.00
439.76
216.85
186.81
381.99
173.33

50
50
50

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

t
t

t
 

 
 
5.2  Forward Pose Check of the Same Snapshot Example 
 Given the nine active cable lengths (m): L1 = 2.1224, L2 = 2.1153, 
L3 = 2.8805, L4 = 3.0514, L5 = 2.5667, L6 = 3.0092, L7 = 1.3142, L8 = 
1.7152, and L9 = 1.6180, the assignment is to calculate the resulting 
pose of the moving platform with respect to the base, B

P⎡ ⎤⎣ ⎦T .  The 

forward pose kinematics solution yielded the following solution, 
identical to the input of the inverse pose kinematics problem, as 
expected (given at the top of this page). 
 The moving platform cable-connection points were identical to 
those listed above.  The pseudostatic cable tensions are also identical 
to those listed above.  The graphical VSS pose for these identical 
snapshot examples is shown in Figure 5. 
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Figure 5.  Pose for Snapshot Examples. 

 
5.3  Inverse Pose Kinematics Trajectory Example 
 Now we present an inverse-pose-based trajectory example 
wherein we can command general sine waves with independent 
amplitudes and frequencies on each of the 6 Cartesian motions (3 
translations and 3 rotations).  Specifically we will request the 
simulated VSS to move in a sine wave in the Z direction with 1 m 
amplitude and 1 rad/s frequency while simultaneously rotating about 
the Z axis with a sine wave of 30 deg amplitude and 2 rad/s frequency, 
from an initial pose of: 
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We simulated this motion for 10 sec; Figure 6 shows a motion 
snapshot at t = 6.0 sec.  For this trajectory example, Figure 7a shows 
the commanded Cartesian pose, Figure 7b  shows the required cable 
lengths as calculated by the inverse pose kinematics solution at each 
time step, Figure 7c shows the nine active cable tensions calculated via 
the particular solution component of (11), Figure 7d shows the nine 
active cable tensions calculated via the complete solution (11) 
implemented by MATLAB function lsqnonneg, and Figure 7e  
shows the nine active cable tensions calculated by specifying positive 
cable tensions of 30, 20, and 10 N for the lower three cables 7, 8, and 
9, respectively, and using (13). 
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Figure 6.  Pose for Trajectory Example at t = 6 sec. 
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Figure 7a.  Commanded Cartesian Pose for Trajectory. 
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Figure 7b.  Required Cable Lengths for Trajectory. 
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Figure 7c.  Particular Solution Tensions for Trajectory. 
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Figure 7d.  lsqnonneg Tensions Solution for Trajectory. 
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Figure 7e.  Tensions with { }79t  Specified for Trajectory. 
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 Figure 7a shows the commanded (and, simulated, achieved) 
Cartesian motions from the initial pose: a sine wave in the Z direction 
with 1 m amplitude and 1 rad/s frequency plus rotating about the Z 
axis with a sine wave of 30 deg amplitude and 2 rad/s frequency.  
Figure 7b shows the required cable lengths to achieve this motion, 
calculated from the inverse pose kinematics solutions.  Due to the 
special symmetry in motion (pure vertical translation and only cockpit 
yaw, no pitch or roll), there is special symmetry in the cable length 
solutions: cable lengths 1, 3, and 5 are identical, cable lengths 2, 4, and 
6 are identical, and cable lengths 7, 8, and 9 are identical, all of which 
make sense from the arrangement of cables in the VSS. 
 For this simulated motion, Figure 7c shows the cable tensions 
calculated by the particular solution of (11) only.  These tensions are 
impossible since the lower three down-pulling cables have negative 
tensions (cables 7, 8, and 9) and thus they are asked to be up-pushing 
cables, which is impossible.  This is always the case for our specific 
VSS design.  The next two figures present attempts to correct this 
problem.  Figure 7d shows the results of MATLAB function 
lsqnonneg over the commanded trajectory.  We see that the lower 
cable tensions turn out to be zero for all motion (the minimum 
allowable tension values) and all six upper cables have significantly 
higher tensions than the (impossible) results of Figure 7c.  In Figure 7e 
we used (13) by enforcing constant positive values for cable tensions 
7, 8, and 9 of 30, 20, and 10 N, respectively.  These results are not 
greatly different from those of Figure 7d; all upper cable tensions are 
somewhat greater over the entire simulated motion.  In fact, if we 
specify 0 cable tensions for the lower cables 7, 8, and 9, and use (13), 
we get identical results to the MATLAB function lsqnonneg as 
shown in Figure 7d. 
 
6.  CONCLUSION 
 This paper presents a concept for a cable-suspended vehicle 
simulation system.  This system is intended to simulate the dynamics 
of a wide variety of real-world vehicles using VR immersion.  
‘Driving’ from a realistic cockpit of the vehicle to be simulated, with 
realistic input devices possibly providing force feedback, the system 
provides motions to the human user designed to mimic real-world 
motions; this is termed whole-body haptics (the human rides in the 
cable-suspended cockpit, similar to Stewart-platform flight 
simulations).  Applications include vehicle operator training, vehicle 
research & development, gaming and entertainment (to enable active 
participation), plus rehabilitation and therapy. 
 This Vehicle Simulation System has the potential to improve 
upon existing Stewart Platform-based flight simulations: the proposed 
system could be lighter, stiffer, have higher accelerations, have better 
safety and lower cost, and simulate a larger range of vehicles.  This is 
merely stated as a hypothesis – the current paper does not attempt to 
prove any of these claims since it only introduces the concept, 

kinematics and pseudostatics equations, and some simulated motion 
examples. 
 Future work plans include design and construction of a human-
enabled Vehicle Simulation System prototype including realistic 
exchangeable cockpits and VR immersion. 
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