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ABSTRACT 
This paper presents dynamics equations and controller 

simulation for the Contour-Crafting-Cartesian-Cable (C4) 
Robot. The C4 robot was previously introduced for large-scale 
contour crafting construction. The pseudostatic and dynamics 
equations are presented, including how to maintain positive 
cable tensions. A controller design is also proposed for the C4 
robot, based on the computed-torque method. MATLAB 
simulation is presented for controller simulation with different 
trajectories and controller gains.  
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1.  INTRODUCTION 

Khoshnevis ([1], [2]) proposes contour crafting (CC) for 
construction of single-family dwellings and other buildings.  In 
[3] we proposed the translation-only Contour Crafting 
Cartesian Cable (C4) robot to perform the Cartesian motions 
required in CC construction. In [4] we considered two C4 robot 
design alternatives and chose the best design based on wrench-
feasible workspace and translational and rotational stiffness. 
Figure 1 shows the preferred C4 robot diagram from [4] and 
Figure 2 shows this C4 robot in simulated CC construction. 

The translation-only C4 robot consists of a rigid frame and 
an end-effector suspended from twelve active cables, grouped 
into eight upper cables and four lower cables.  The eight upper 
cables occur in four pairs of parallel cables.  The pulleys for the 
upper cables are mounted on horizontal crossbars, oriented at 
45º with respect to the frame members, where the width of each 
crossbar is equal to the width of the corresponding side of the 
end-effector (also oriented at 45º for all motions). 

 
Figure 1.  C4 Robot Kinematic Diagram 

 
The upper cable pairs support the end-effector weight and 

provide translation-only motion.  For each pair of cables, the 
two cables are controlled to have the same length.  A 
parallelogram is formed by each pair of cables and the 
corresponding crossbar and end-effector edge.  By maintaining 
this parallelism, translation-only motion can be guaranteed [3].  
This simplifies manipulator control and reduces the complexity 
of the forward kinematics solution. 

To prevent cable interference with the building under 
construction, the four single lower pulleys are actuated 
vertically (heights hi, i=5,6,7,8 are independently-controlled 
variables).  The cables have been crossed (the lower cables 
connect to the end-effector top and the upper cables connect to 
the end-effector bottom), which leads to superior rotational 
stiffness [4] without cable interference. 
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Figure 2.  C4 Robot in Simulated Construction 

 
This paper presents the pseudostatics and dynamics 

equations for this C4 robot, followed by controller design and 
simulation.  All cable robot motions must be subject to a 
constraint of only positive cable tensions, which is presented 
also. 

2.  PSEUDOSTATICS AND DYNAMICS 
We present the pseudostatics and dynamics equations of 

the C4 robot of Figures 1 and 2 in this section. Then we discuss 
how to maintain positive cable tensions for all robot motions. 

2.1  Pseudostatics Model 
Before we derive the dynamics equation for the C4 robot, 

we build a statics model which is required for maintaining 
positive cable tensions.  Figure 3 shows the C4 robot end-
effector free-body diagram.  For static equilibrium, the sum of 
all forces and moments (cable tensions and external wrench 
including weight) exerted on the end-effector must be zero. 
Although we use the virtual cables concept (VCC, [3]) to 
simplify the translational-only kinematics problem motion for 
the C4 robot, VCC is not fit for solving the statics or dynamics 
problems, since pairs of cables in general take different 
tensions for static and dynamics balance. 
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Figure 3.  C4 End-Effector Free-body Diagram 

From Figure 3, we can write the force (1) and moment (2) 
statics equilibrium equations: 
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The end-effector mass is m, and the gravity vector is g = [0, 
0, -g]T. P

CGP  is the position vector from the origin of {N} to the 
end-effector center of gravity; this may be a variable due to 
concrete sloshing and extrusion. In (1) and (2),  ˆ

k k kt=t L are 
the cable tension vectors, where tk is the kth cable tension and   
ˆ

kL is the kth cable direction unit vector, pointing  away from the 
end-effector to indicate positive direction for each cable tension.  
The k indices are in two groups, ia and ib, i=1,2,3,4 for the 
upper four pairs of cables, and j=5,6,7,8 for the lower four 
single cables.  Moment arm vectors pk are from the origin of {N} 
to the appropriate cable connection point.  Although the C4 
robot has twelve cables, there are only eight pk vectors because 
the eight upper cables share four connection points on the 
bottom plane of the end-effector.  FR and MR are the resultant 
force and moment vectors of the environment acting on the 
end-effector.  Taken together, this is the external wrench WR 
which is generally zero except in the case of unwanted 
disturbances.  The overall statics equations are:  
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where J is the 6x12 Jacobian matrix (expressed in the base 
frame {B}): 
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and { }1 1 4 4 5 8

T
a b a bt t t t t t=T is the 12x1 vector 

of cable tensions. 
Generally the C4 robot cable tensions cannot be controlled 

directly; instead the actuator torques are the control variables. 
In this paper twelve actuator torques are used to independently 
control the twelve cable tensions.  The twelve actuators are 
divided into two groups: the top eight actuators control four 
pairs of parallel cables (pairs of cables do not always have the 
same tensions as their partner cable) and the bottom four 
actuators control the tensions of four single cables. 

We assume that the twelve actuator shaft cable pulley reels 
all have identical radius r.  Then the pseudostatics equations 
using actuator torques in place of cable tensions are simply: 
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where { }1 1 4 4 5 8

T
a b a bτ τ τ τ τ τ=τ is the 12x1 

vector of actuator torques. 
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2.2 Maintaining Positive Cable Tensions 
Because the C4 robot uses cables to move the end-effector, 

how to maintain positive cable tensions is important in the C4 
robot operation.  In this paper, we propose three solutions to 
solve this problem: particular & homogeneous solution, 
lsqnonneg solution, and specified-value solution. 

To evaluate the effect of all three solutions in this section, 
we use MATLAB simulation. The specified trajectory is a 
circle with the center at the point [0, 0, 5], and radius 15 m. The 
height of the four pulleys is 3 m, shown in Figure 4.  The end-
effector cube side length is 1m, the cube base frame side is 50m,   
the horizontal crossbar is b = 1m, the end-effector weight is 
1000N, no additional end-effector wrench is considered, and 
the maximum allowable cable tension is 10kN. 

 

 
Figure 4.  CC Circular Trajectory Simulation 

 
2.2.1 Particular & Homogeneous Solution 

The C4 robot has considerable actuation redundancy to 
guarantee its manipulator translation-only motion in the 
workspace. However, because the Jacobian matrix is a 6x12 
matrix and the tension (or torque) vector is 12x1, so equations 
(3) (or (5)) are 6 scalar equations with 12 unknowns, with 
infinite solutions. To find the solutions (demonstrated for 12 
tensions throughout this section), we first adapt the well-known 
particular and homogeneous solution from resolved rate control 
of kinematically-redundant serial manipulators: 

[ ] [ ] [ ] [ ]( ){ }12
R

P
R CG

m
m

+ +− −⎧ ⎫
= + −⎨ ⎬− − ×⎩ ⎭

F g
T J I J J w

M P g
       (6) 

 
The particular solution is the first term of (6) and the 

homogeneous solution is the second term of (6).  [I12] is the 
12x12 identity matrix and vector {w} is an arbitrary vector 
which was chosen by trial and error to ensure all twelve cable 
tensions are positive for all motions. [J]+ is the 
underconstrained Moore-Penrose pseudoinverse of the 6x12 
underconstrained statics Jacobian matrix: 

[ ] [ ] [ ][ ]( ) 1T T −+ =J J J J                               (7) 

 
MATLAB function pinv performs this calculation.  First 

we present the particular-only solution.  The results (Figure 5) 
display some negative tensions, rendering this particular-only 
solution useless.  We note that only lower cables have negative 
tensions, and the upper cables never do, since they are loaded 
by gravity. Further, t5 and t8,  t6 and t7, and t2a and t2b are 
symmetrical to each other about the vertical axis.  Also, t1a and 
t1b,  t3a and t3b, and t4a and t4b are identical to each other. 

 

 
Figure 5.  Cable Tensions Particular Solution 

 
Since the particular-only solution fails, we now present an 

example combining the particular and homogeneous solutions. 
Vector {w} in (6) is chosen to compensate for the negative 
particular cable tensions, as shown in the results of Figure 6. 

 

 
Figure 6.  Particular & Homogeneous Solution 

 
All cable tensions are positive in Figure 6. However, there 

is a height limit: at pulley height h = 40 m (see Figure 1) and z 
= 46 m the low limit of w should be 500 N. Above this height 
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limit, no matter how we increase {w}, some cable tensions are 
always negative, verifying the workspace results in [3]. 

 
 
2.2.2 lsqnonneg Solution 

Here the MATLAB function lsqnonneg (linear least 
squares with non-negative result) is applied in attempt to 
maintain positive cable tensions. But the results (Figure 7) still 
show many negative tensions and the results are not smooth; 
therefore, this MATLAB function cannot solve the problem. 

 

 
Figure 7.  Positive Cable Tensions using lsqnonneg 

 
2.2.3 Specified-Values Solution 

In Figure 5, the negative cable tensions only appear in the 
lower C4 robot cables. To compensate, we can specify positive 
values for these cables tensions and then use equation (3) to 
find the values of other tensions [6].  We specify the four lower 
cable tensions as given positive values for cable tensions t5 
through t8 and extract their corresponding Jacobian column 
vectors from J to form Jacobian submatrix [ ]58 6 4×

J and separate 
the rest of columns (for the upper cable pairs) in J to form 
another submatrix [ ]14 6 8×

J .  The solution for the upper cable 
tensions t1a through t4b is then: 
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where { }14 1 1 2 2 3 3 4 4

T
a b a b a b a bt t t t t t t t=T . 

However, upon implementation, this method did not work, 
i.e. some elements of 14T  were still negative for some portions 
of motion.  This is due to the crossed cables, which is 
preferable for rotational stiffness [4], but not for the specified 
values-solution.  Therefore, the particular & homogeneous 
approach is favored for this robot. 

2.3  Dynamics Equations 
The C4 robot dynamics equations with cable tensions are: 
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Most terms, including Jacobian matrix J from (4), were 
introduced in the pseudostatics equations.  The new terms for 
dynamics are end-effector mass matrix m, end-effector 
principal inertia tensor I, and end-effector acceleration X : 
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The C4 robot dynamics equations with actuator torques are: 
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Equation (12) is used in the Controller Design section. 

3 CONTROLLER DESIGN 
It is important to design a suitable controller for the C4 

robot to enable its end-effector to follow specified CC 
trajectories and resist disturbances. In this section, we will 
focus on the controller design for the C4 robot system. The C4 

robot is a non-linear system because its system dynamics are 
functions of the manipulator positions. Thus, the normal linear 
control cannot meet the control request and we select the 
classical computed-torque control [7] combined with PD 
controller to control the C4 robot. 

The computed-torque control method is a nonlinear control 
method that is popular for robots [7]. Computed-torque is a 
feedback linearization method applied to a non-linear system.  
Now we present the computed-torque method equations. The 
robot dynamics equations are: 

distM(q)q + V(q,q) + G(q) + f (q,q) = τ                (13) 
 

Here, the M(q) is the manipulator inertia matrix, V(q,q)  is 
the vector of centripetal and Coriolis torques, G(q)  is the 
vector of gravitational torques, distf (q,q)  is the vector of viscous 
and Coulomb friction torques, and τ is the vector of control 
torques.  The desired trajectory is defined as: 

d dY = q (t)                                    (14) 
 

The actual path is: 
r rY = q (t)                                     (15) 

 
The resulting errors are: 

d re = q - q                                   (16) 
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d re = q - q                                  (17) 
 

The computed-torque control law is: 
     d v p distM(q)(q + k e + k e) + V(q,q) + G(q) + f (q) = τ      (18) 

 
Where, p vk ,k  are the diagonal controller gain matrices. 

3.1  Proposed Controller Algorithm  
Before giving the corresponding algorithm, we need to 

match the dynamics equations (12) to equations (13): 
R
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where again J+ is the pseudoinverse of the underconstrained 
6x12 statics Jacobian matrix.  Comparing equations (19) and 
(13), V(q,q) = 0 . Also, it is assumed that the system is 
frictionless, distf (q,q) = 0 , and the external wrench of the 
environment on the end-effector is zero. Therefore, the terms 
for Cartesian dynamics equations (13) are: 
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Equation (18) becomes: 

d v pM(q)(q + k e + k e) = τ - G(q)                  (24) 
 

Here, kv is the matrix gain of the D controller, and kp is the 
matrix gain of the P controller. Because the manipulator moves 
translationally-only, the values for , ,x y zθ θ θ  are always zero and 
their first order and second order differentials are also zeros. 
The computed-torque control architecture is shown in Figure 8. 
First, we specified a desired trajectory (14) in frame {B} and its 
period for the CC process. Then, a time step is set and the 
period divided into a series of equal time segments. The 
position, velocity and acceleration at the end of each time 
segment is computed. 

To simulate a trajectory, a starting point x,y,z is given. To 
correct the trajectory, the errors of the end-effector’s 
displacement and velocity in CC process simulation must be 
solved by equations (16) and (17). Then MATLAB function 
ODE45 is used to solve the end-effector displacement and 
velocity. To compare ( , )r rx y and ( , )r rx y of the simulated 
trajectory with ( , )d dx y and ( , )d dx y  of the desired trajectory, the 

time step for both trajectories are identical. The errors are 
solved and applied in the computed-torque control law (19). 
The new corrected accelerations are the input for another 
ODE45 block. After that, the new values of displacement and 
velocity become the corrected ones. Then, these new values are 
inputted as the initial value for the next iteration in a for loop 
until the time range ends. 

 

 
Figure 8.  Computed-Torque Algorithm for the C4 Robot 

3.2  Controller Design MATLAB Simulation 
The major problem in designing non-linear controllers is: 

can one set of gains be used for all motions in one plane at all 
heights? To address this problem, we simulate controller 
performance at different pulley and end-effector heights. We 
will follow the discretization method that we did for stiffness 
[4].  How to choose PD controller gains is another important 
problem. Based on Sections 2.3 and 3.1, the C4 robot dynamic 
equations can be simplified to a second-order dynamic system. 
The standard form for the second-order characteristic 
polynomial is, demonstrating for the scalar case: 

2 2( ) 2 n np s s sζω ω= + +                           (25) 
 

Where ζ  is the dimensionless damping ratio and nω is the 
natural frequency (rad/s).  The controller gains are: 

2
p nk ω=                                        (26) 

2v nk ζω=                                      (27) 
 

To avoid undesirable collisions, the end-effector should not 
overshoot. Therefore, choose critical damping ( 1ζ = ) in the 
design of the PD controller, leading to the relationship 

2v pk k= .  Setting the natural frequency ωn = 10 rad/s, the two 
gains are kp = 100 and kv = 20. In circular trajectory simulation, 
the starting point is (50/3, 0) and the circle center is (0, 0).  

p vk ,k  are the diagonal controller gain matrices with kp and kv 
for the diagonal terms, respectively. 

We tested the effectiveness of one set of controller gains in 
all end-effector heights; we noticed that all trajectory 
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simulation results are identical [5]. Therefore we will provide 
only a set of simulation diagrams (h = 0m and z = 3m) out of 
six sets of pulley and end-effector heights tested.   

Although the control law and PD controller are proved to 
be effective in correcting the end-effector trajectory errors in 
the simulated CC process [5], the deflection of the path is still 
large in the first half period and the settling time for path 
correcting is still too large because of low gains [5]. Therefore, 
the gains of the PD controller were changed to improve both 
aspects. We applied trial-and-error to find new gains: the 
natural frequency was increased to ωn = 50 rad/s so the new 
gains are kp = 2500 and kv = 100.  The MATLAB simulation 
results are shown in Figure 9. 

 

 
Figure 9.  Controller Simulation at h = 0 m and z = 3m 

 
In Figure 9, the controlled (corrected) path is almost 

following the desired path. It is obvious that the path shows the 
desired performance under the high gains control.  The lower 
gains yielded unacceptable error performance and so these 
results are not shown. 

Figure 10 shows the controller errors for the high gains.  
Though the initial error is large (~0.7 m), this is almost 10 
times less error than the controller with low gains.  The settling 
time also decreases significantly for the higher gains. The size 
of steady-state error is on the centimeter level (-0.026 m < error 
< 0.026 m), in a 50 m high building simulation, this is 
acceptable [1,2]. 

However, the initial error in Y is unacceptable, 
approaching 0.7 m for a brief time.  Therefore, we increase the 
natural frequency to 250 Hz which yields new gains kp = 62500 
and kv = 500.  The new simulation is shown in Figure 11 (the 
desired and controlled (corrected) appear identical at this scale) 
and Figure 12 shows that the new errors are much smaller than 
those of Figure 10; the worst Y error is now about 2.5 cm. 

 
 

 
Figure 10.  Position Errors for Figure 9 

 
We ask if our controller can be used for all layers at all 

heights (pulley heights h = 0m, 15m and 30m; end-effector 
heights z = 3m, 18m and 33m). Six MATLAB controller 
simulation results were compared [5] and their performance 
was essentially identical for the higher gains controller 
simulation. Thus, we just show two of them (Figures 11 and 13) 
to demonstrate this point. 

 

 
Figure 11.  Higher Gains Simulation at h = 0 m and z = 3m 
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Figure 12.  Position Errors for Figure 11 (higher gains) 

 

 
Figure 13. Higher Gains Simulation at h = 15m and z = 18m 

 
4.  CONCLUSION AND FUTURE WORK 

This paper presents pseudostatics, dynamics, and control 
for the C4 robot in simulated contour-crafting construction. 
Under pseudostatics, methods were presented in attempt to 
maintain positive cable tensions for all motion. 

In the controller design, we chose the classic computed-
torque control method, with a PD controller for the outer-loop 

control. A single set of PD controller gains was sufficient to 
control the robot at different pulley and end-effector heights.  

Future work includes building and controlling scale 
experimental C4 robot hardware. The controller design still 
requires further work to ensure generality and robustness in the 
nonlinear system control. We can also optimize the 
performance of our controller for practical applications. 
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