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ABSTRACT 

 
This paper shows an overview of the walking model by 

grouping them into two large groups: the models with the 
concentrated mass and models with distributed mass. As an 
example of the models with concentrated mass, a mass-spring 
inverted pendulum model is shown, accompanied with a short 
analysis. As an example of a more complex model, a 13 DOF 
walking robot model is analyzed including the model 
kinematics, dynamics and controls accompanied with 
numerical solutions (simulations) for particular desired joint 
trajectories, recorded from a real human walking cycle. 
Kinematic and Dynamic analysis is discussed including results 
for joint torques and ground force necessary to implement the 
prescribed walking motion. This analysis is accompanied with 
a limited comparison with available experimental data.  
Finally, an inverse plant and tracking error linearization based 
controller design approach is described accompanied with 
results analysis and conclusions about the controller 
performances. 

 
 
 
1. INTRODUCTION 

 
Modeling of human body walking has been evolved from 

simple models such as an inverted pendulum model [1, 10, 11] 
and mass-spring model [2, 12] to relatively complicated 
models that include relatively high number of degrees of 
freedom [5-8, 13]. Primary goal of those models is to predict 
the internal and external forces during a regular walking cycle. 

Detailed human body models can include calculations of the 
most important muscle forces for particular type of motion. 
However, for a robot that is actuated via rotational motors, 
calculation of particular muscle forces is not necessary, but the 
moments they produce about the corresponding joints are 
needed for a couple of reasons:  
 
(a) Based on a walking model can predict maximum torques 
that are necessary to generate particular motion of a robotic 
structure. The maximum torque and maximum power are 
necessary data to choose joint actuators.  
 
(b) Torques at relevant joints for particular motion, calculated 
based on a walking model, can be used to generate nominal 
control trajectories for a complex walking robotic structure. 
Those nominal trajectories can be calculated offline or in real-
time using an inverse plant model. 
 
Inclusion of more degrees of freedom in a walking robot 
model normally leads to more precise results, but also it leads 
to more efforts needed to understand the process and what is 
happening with internal variables in the robotic structure. The 
next sections give an overview of the simplified models and 
general features of a more complex model. 
 
 
1.1 MODELS WITH CONCENTRATED MASS 
 

The group of relatively simple walking models is based 
on the inverted pendulum structure with variations combining 
a spring or two springs and dampers. The simple models 
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include one or two variables with overall mass concentrated 
into a point, a center of mass (COM).  
Six Determinants model [1] has been used in the past to 
analyze the human gait cycle. Due to inconsistency with 
theoretical and experimental results, this model has been 
replaced by Inverted Pendulum model, which gives results 
much closer to those obtained experimentally. One of the 
major inconsistencies of the regular Inverted Pendulum model 
results with the experimental results is the zero energy input, 
which means that the model does not consider the energy lost 
during the gait cycle. A more advanced, but still one of the 
simplest models for human gait analysis is Mass and Spring 
Inverted Pendulum (MSIP) model [2]. The point mass is equal 
to the total mass of the body concentrated into the center of 
gravity. The spring connects the ground contact point (the 
center of pressure CP) and the center of gravity (CG) and its 
deflections include all changes of the distance between the CP 
and the CG points due to flexions/extensions of the hip, knee 
and ankle joints. Figure 1 shows the concept of representing a 
complex human body (or a bipedal robot) by a mass and 
spring model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Mass and spring inverted pendulum walking gait 
representation: (a) single support, (b) double support 
represented by two springs, (c) double support represented by 
a single spring.  
 
The spring connects the center of pressure (CP) and the center 
of mass (COM) (a). The COM point can be considered as very 
close to hips since its position varies relatively close to the hip 
joint during the walking cycle. Double support period (b) can 
be modeled using mass and two springs connecting the COM 
and centers of pressures CP1 and CP2. However, double 
support period is relatively short compared to the duration of 
the gait cycle and frequently can be considered as 
instantaneous. Besides this case, a single spring model can 
cover a double support period in the way of interpreting the 
spring-ground connection as a zero moment (ZM) point (c). In 
other words, the total moment of 1yF and 2yF  forces for ZM 

point is equal to zero. A state space representation of the 
simple mass-spring inverted pendulum, shown in Figure 2, is: 
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Figure 2. Mass-spring inverted pendulum model  
 
 
The model includes damping represented by the coefficient b 
and a torque τ  for the case when the center of pressure at a 
foot is not taken as a spring - ground contact point. The 
ground contact force that occurs during human walking can be 
predicted using the mass-spring model.  
 
Potential energy accumulated in the spring and the 
gravitational potential energy interchange with the kinetic 
energy of the point mass. A portion of the mechanical energy 
is lost during the walking half-cycle due to the inelastic 
collision of the foot with ground [3], and the rest of the 
accumulated energy continues to interchange between kinetic 
and potential energy in the next half-cycle which is described 
by the percentage of recovery parameter [4].  
 
Although those models are very simplified representations of 
the real human body anatomy, they provide very convenient 
way to interpret and analyze majority of relevant parameters 
of the gait cycle. Integral features of the human gait cycle, 
such as the overall kinetic energy, potential energy, angular 
momentum with respect to the ground contact point, center of 
mass trajectory and laws of motion, and ground force in 
sagittal plane, can be considered using a simplified model (e.g. 
MSIP).  
 
Using the state space model (1), the ground force can be 
obtained (Figure 3) and can be used to qualitatively predict the 
real ground reaction force which occurs during bipedal 
structures walking.  
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Figure 3. Ground reaction force (vertical component) obtained 
using the mass-spring inverted pendulum model (including a 
damper) compared to the real ground reaction force occurring 
during a single leg stance phase 
 
Besides the ground reaction force, the mass-spring model can 
predict qualitatively potential, kinetic and total mechanical 
energy of walking. Figure 4 shows the energy change during 
walking predicted by the mass-spring model. 
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Figure 4. Potential, kinetic and total mechanical energy 

change (relative energy with respect to the initial 
energy level) 

 
 
1.2 Models with distributed mass and multiple 
degrees of freedom 

Complex bipedal walking models and their practical 
implementation bipedal robots are generally based on the 
human body anatomy [5, 6, 7]. However, all those models and 
implementations include fewer degrees of freedom (DOF) of 
motion than the DOF existing in the human body. The spinal 
region of the body has relatively high number of freedom. The 

motion within the spinal region influences the walking cycle 
behavior, but this motion can be neglected and majority of the 
models with distributed mass represent the trunk region as a 
rigid body or as two rigid bodies with a single revolute joint in 
the trunk. Motion of the system within the human body 
(approximate) symmetry plane is called the sagittal plane 
motion. Dominant accelerations of the body parts centers of 
gravity occur parallel to the sagittal plane which results in 
dominant inertial forces and moments due to the motion 
parallel to this plane. Unless there is a sharp change in the 
walking direction, relatively negligible inertial forces occur 
due to the accelerations perpendicular to this plane at every 
instant of the walking cycle.  
 
Due to the dominance of the inertial forces parallel to the 
sagittal plane and for the sake of the model simplification, the 
analysis and control design shown in this paper is restricted on 
the planar motion of the model/bipedal robot. 
 
 
2. Bipedal Robot Model with 13 DOF 

The model shown in Figure 5 is a bipedal structure with 10 
internal rotational degrees of freedom. Three additional 
degrees are an absolute (external) rotational degree, which is 
chosen to be the angle of the trunk with respect to the vertical 
direction, and two translational degrees with a reference point 
which is chosen to be at the hip joint. Human joints allow 
much more freedom than just a rotation about a single axis (a 
revolute joint). Generally, human ankle and hip joints can be 
considered as spherical (ball and socket) joints. The knee joint 
can be approximately considered as a revolute joint (one 
degree of freedom). However, the model shown in Figure 5 
includes only revolute joints, since the analysis is restricted on 
the sagittal plane motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Model with distributed mass: (a) absolute angles, (b) 
generalized coordinates (angles are relative - joint coordinates) 
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As described earlier, the spinal region, including the neck and 
had, is considered as a rigid body, since there is no significant 
bending during the gait cycle and, consequently, the joint 
trajectories and generalized forces are not affected 
significantly.  
 
External coordinates of the hip joint are dependent (assuming 
no-slip condition) on the other generalized coordinates 
(angles) of lower extremities within a walking cycle. 
However, they are still needed to cope with possibility of the 
walking - running transition.  
 
Two types of coordinates are shown in Figure 5: absolute and 
relative. Generally, it is easier to work with the absolute 
coordinates (angles) when we consider the mathematical 
description of the model’s behavior and response to the input 
torques and forces. However, very significant argument is on 
the side of relative coordinates and this is the sensors way of 
coordinate measurements. The joint sensors (e.g. encoders, 
potentiometers) measure relative angles, which are then 
directly used in a feedback fashion to guide and control the 
robot.  
 
A special attention in the model is given to the foot design 
(Figure 6) in such way that the transition phase between the 
walking cycles becomes smooth as much as possible. A 
walking robot flat foot design requires that the foot is always 
parallel to the ground during the stance phase, which is 
significantly different to the human walking stance phase. 
Although a flat foot design is commonly used in walking 
robotics, it causes certain discontinuities in the kinematic 
relations and sudden changes in the nominal generalized 
forces, required to mimic a human-like walking. Besides that, 
the stabilization of the walking cycle becomes difficult, since 
the contact is theoretically at the edge of the foot during the 
significant part of the cycle time. Consequently, the zero 
moment point (ZMP) is then tied to the foot edge, which 
complicates the control operations.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Foot design: (a) two cylindrical surfaces with 
different radii, (b) ellipsoidal cylinder (ankle joint is marked 
by A). 
 
 
2.1 Kinematic and dynamic analysis of the model 

Forward kinematics gives Cartesian coordinates of any point 
of the structure for a given set of the joint and the external 
variables. The kinematic relations are necessary to close the 
set of differential equations that describes the robot dynamics.  
 

The forward kinematics of the robot model can be expressed 
as follows: 
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where CiP  (i=1, ..., 11) are position vectors of the center of 

gravity of the i-th segment and has the form [ ]Tyx 0CiCi .  

Generalized coordinates in right hand-side of (2) can be the 
absolute angles of the segment and external coordinates, or 
they can represent the joint angles and external coordinates. 
Besides the equation (2), complete kinematic analysis includes 
the first and second time derivative of (2). Since the expanded 
equations in (2) and its first two time derivatives are too long 
to be shown in this paper, they are omitted and we proceed 
with the dynamic analysis. 
 
Since the control law, which is discussed in the following text, 
is based on an inverse model and an error dynamics, it is 
necessary to analyze both, forward and inverse dynamic 
equations. The derivation of those equations is done using 
energy based method - Lagrange equations. The inverse model 
has to provide the nominal generalized forces (the joint 
torques), based on the nominal joint angular trajectories, 
which is, by definition, the inverse dynamics. On the other 
hand, the error based controller uses the differential equations 
of motion to generate a correction value/signal for the input 
torques. The differential equations are also needed for 
numerical simulation of the robot and evaluation of the 
controller performances.  
 
Figure 7 shows a partial free-body diagram, which includes 
the right leg only.  

 
 
Figure 7. Partial free-body diagram including the leg segments 
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Lagrange equations for the walking robot model are  
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where =),,( ii qqtL ),(),,( iii qtPEqqtKE −  is the 
Lagrange function generally depending on time, generalized 
coordinates and generalized velocities, ),,( ii qqtR  is the 

dissipation (Rayleigh’s) function and ),,( ii
nc qqtQ  is the 

generalized force. The dissipation function can be used to 
model the lost of energy at the instant of feet collision with the 
ground. The generalized forces are torques generated by 
motors at the robot joints. 
 
Kinetic energy of the structure is the sum of the kinetic energy 
for translational and rotational motion for each segment 
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where Civ  is the i-th segment center of gravity velocity 

magnitude, CiI  is the i-th segment moment of inertia for the 

center of gravity Ci and iω  is the angular velocity of the i-th 
segment. The centers of gravity velocity can be expressed in 
terms of the joint angular velocities using the kinematic 
relations (2). The potential energy is basically the gravitational 
potential energy since no springs are included in the model.  
 
An alternative way to derive the model dynamics is to apply 
the combination of the Newton’s and Euler d’Alembert’s law 
for the translation and rotation, respectively. In either way, the 
following form of dynamic equations is obtained 
 
[ ][ ] [ ][ ] [ ] [ ][ ]τ)()(),()( qDqGqqqCqqM =++ ,   (5) 
 
where: [ ])(qM  is the matrix of inertia, [ ]),( qqC  represents 

cross-correlation of the joint angular velocities, [ ])(qG  is the 

gravity influence vector, [ ]τ  is the control torque vector, and  

[ ])(qD  represents the matrix of the control torques 
distribution. 
 
The equations of the form (6) will be used to derive the 
control law for each actuated joint of the robot model. This is 
shown in the following controller design section. 
 
 
2.2 Controller design 

The controller design is based on a nonlinear system control 
approach. A combination of the inverse plant with modified 
gain scheduling is applied.  
 

 
2.2.1 Desired robot motion 

Based on a typical human walking, the corresponding angular 
trajectories for the hip, knee and ankle joints can be recorded 
using cameras and markers positioned on human body 
segments. In this way, following trajectories are obtained and 
used for the desired robot motion (Figure 8).  
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Figure 8. The robot joint trajectories based on a human 
walking cycle (positive angles denote flexion/dorsiflexion) 

The figure shows that the trajectories do not vary on the left 
side of the interval as much as they vary on the rest of the 
walking cycle. The subinterval (the swing phase) contains 
relatively high derivatives and it is very important to 
determine precisely the toe off instant, since any variation the 
toe off instant would cause significant change in the nominal 
torques and the calculated ground reaction force. From the 
mechanical structure basis, there is a configuration change 
since the structure changes from the double support, which 
represents the structure with a closed loop, to the single 
support configuration, which is an open chain configuration. 
Therefore, the when the configuration change occurs it 
triggers the control law change. Basically, the instant of this 
configuration change can be determined based on the ground 
force reaction which is measured using pressure pads 
positioned at the feet.  
 
The first two derivatives of the desired trajectories are shown 
in Figure 9 and Figure 10, respectively. Relatively high 
derivatives are noticeable in the swing phase of the cycle. The 
nominal trajectories recorded based on human motion usually 
have significant noise embedded due to errors during the 
measurements. 
 
Since the control system input requires nominal angular 
velocity and nominal angular acceleration per each actuated 
joint, it is necessary to smooth out the nominal trajectories.  
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Figure 9. The hip, knee and ankle joint angular velocities  
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Figure 10. The hip, knee and ankle joint angular accelerations 
 
Although the amplitude of the noise is usually small relative to 
the nominal signal, its derivatives can dominate the nominal 
angular velocities and accelerations, which would cause 
significant errors in the desired motion (errors in the reference 
input vector).  
 

 

 
This problem can be solved using filtering of the recorded 
signal. The cut-off frequency should be set-up such that the 
steepest parts of the nominal trajectory can pass through the 
filter without significant change. In this case, the low-pass 
filter cut-off frequency was 30 rad/s, for the joint trajectories 
and their first derivatives.   

The nominal trajectories are used for the inverse dynamics to 
generate nominal torques at the joints, which is discussed next. 
 
 
2.2.2 Inverse system  

The inverse plant (Figure 11) takes the desired joint 
trajectories and corresponding derivatives and provides the 
nominal torques, based on the inverse dynamics equation 
formed using (5) 
 

[ ] [ ] [ ][ ] [ ][ ] [ ]{ })(),()()( 1 qGqqqCqqMqD ++= −τ .  (6) 
 
One significant problem with the inverse plant design is that 
the derivatives of the desired trajectories (desired output) 
include the points placed at future time instants, which makes 
the control system non-causal. A possible solution to this 
problem is to use an estimator by setting up a Hurwitz 
polynomial. However, the inverse plant may become unstable 
using this predictor. In the frame of this work, back-stepping 
method has been used to stabilize the inverse plant. 
 
 
2.2.3 Error dynamics 
 
The nominal inputs to the plant (nominal torques), generated 
by the inverse plant, are sufficient to drive an ideal system 
precisely to follow the desired joint trajectories. However, a 
mathematical representation has always more or less errors 
with respect to the system which is represented by that model. 
 
 Disturbances can appear due to: 
- initial conditions, 
- effects which are not included in the model, since their way 

of action and the system response on them is unknown, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. The nonlinear system control based on a gain scheduling approach and the inverse plant prediction 
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- unavoidable delay in sensors (encoders, potentiometers and 

A/D conversion),  
- intentionally simplifying the model mathematical 

description, since we rely on the control law to minimize the 
error, (e.g. leaving some friction effect not modeled), etc. 

 
The robot model architecture in the anatomical position has a 
vertical plane of symmetry (sagittal plane). Due to this 
symmetry, and cyclic nature of the nominal trajectories, the 
leg and arm joints on one side of the body have same nominal 
torques over the walking cycle, just shifted in phase, when the 
motion is restricted to the planar motion.  
 
Then, the control design of two single support phases and a 
double support phase completing a walking cycle can be 
narrowed down to a single support and a double support 
phase. 
 
Moreover, for the sake of the simplicity of this discussion, the 
influence of the arms relative dynamics with respect to the 
trunk will be neglected and considered as a disturbance whose 
effect has to be minimized by the controller. The system 
(walking robot mathematical model) can be represented as 
follows. The state space representation of the three joint 
variables on the one leg of the robot model is  
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or in simplified notation  
 

  [ ] [ ] [ ][ ]τξξξ )()( bf += ,    (8) 
 
where ξ  is the state space vector related to the three joint 
angles and it’s derivative, as shown in (7). Although the 
torques distribution functions )(j i ξb  (i=1, ... , 6; j=1, 2, 3) 

are shown to depend on entire state vector, precisely they 
depend on just even components of the state vector (on the 
angles of the structure, not angular velocities). Further on, (8) 
will be used instead of (7) for the sake of simplicity. 
 
The real state space vector of the system is ξ , which 

generally deviates from the nominal state vector ξ . The 
difference of the two vector is denoted as the error vector 

ξξξ −=~
. Using the time derivative of the error vector and 

(8), following is obtained 
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Equation (9) is used for the linearization based controller 

design, where the matrices )(ξA  and )(ξdb  contain the 

derivatives which are used for the scheduled gains of the 
controller.  The gain scheduled controller, based on (9) alone, 
cannot cope with the steady state errors. This is the reason 

why the state space vector ξ~  is augmented with three 
integrators (they integrate the angle error for the ankle, knee 
and hip joint, respectively) as follows 
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Stability of the gain scheduling controller is limited by the 
maximum allowed time derivatives of the desired joint angle 
trajectories, which are used as the scheduling variables 
 

   μ≤)(des tq ,           (11) 

 
where )(des tq  is the vector of desired joint angles trajectories 

and μ  is a positive constant  (Theorem 12.1 in [14]). This is a 
serious limitation of the controller as a result of the “frozen 
time” concept application. However, application of the inverse 
system (Figure 11) significantly improved the controller 
capabilities, since the inverse system (plant) includes the time 
derivatives of the desired joint trajectories and the limitation 
(11) on the time derivatives of the scheduling variables 
(desired joint angles) is replaced by the limitation on the time 
derivatives of the error vector. For this design, μ  is about 6 
rad/s. 
 
The performances of the gain scheduled controller, combined 
with the inverse plant, are discussed following. 
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3.  Simulation results 

Using the gain scheduling based controller in the way shown 
in the block diagram of Figure 11, the following results are 
obtained. Figure 12 shows the nominal torques at the hip, knee 
and ankle joint, which are obtained using the inverse plant 
system. 
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Figure 12. Nominal torques at the ankle, knee and hip joint 
obtained via the inverse plant of the controller system 
 
These nominal inputs to the controlled system are normalized 
with respect to the body weight (BW) multiplied by the total 
leg length (LL), such that the results are scalable with respect 
to the body mass (if the proportion of the body segments 
lengths and mass is maintained constant). The tracking 
performance of the controller for the ankle joint is shown in 
Figure 13. 
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Figure 13. Controller tracking performance for the ankle joint 
 
The controller tracking performance for the knee joint angle is 
shown in Figure 14. 
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Figure 14. Controller tracking performance for the knee joint 
angle 
 
For the hip joint, the goal of the controller was a regulation of 
the trunk angle with the respect to the vertical direction. The 
controller performance of keeping this angle relatively small 
during the walking cycle is shown in Figure 15. 
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Figure 15. The controller tracking performance of the hip joint 
angle and regulation performance of the trunk angle via the 
hip torque 
 
Finally, the ground force from the robot model is calculated 
and shown in Figure 16. Besides the ground force of the 
model with distributed mass. 
 
The controller design performances with results shown in the 
Figures 13 through 16, are discussed next.  
 
 
4. Results Discussion  

Initial system response with a zero initial conditions (zero 
angles, which means the standing anatomical position, and 
zero angular velocities) looked a bit worse than the system 
response for the second cycle, whose results are shown in the 
figures. However, the steady walking cycle response is 
achieved very fast after the (zero) initial conditions and the 
second cycle is shown in the figures. 
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Figure 16. Ground reaction force calculated using the 
distributed mass model and compared to the measured force 
 
The tracking error for the ankle and knee joints angles is not 
significant as shown in Figures 13 and 14. Although the time 
derivatives are very high in a couple of subintervals of the 
cycle period, the gain scheduled controller succeeds to keep 
the response angle close to the desired path. The high time 
derivatives is the always a questionable issue with gain 
scheduled controllers, since gain scheduled controllers are 
based on the frozen time concept. Accepting that the time 
derivatives are relatively high for this type of the control, the 
successful control performance can be justified in this case by 
the usage of the inverse plant such that the error dynamics 
based controller has to correct just a small deviation from the 
nominal torques provided by the inverse plant.  
 
Although the desired angle trajectories (Figure 8) showed that 
there is a small variation of the trunk angle with respect to the 
vertical direction, the control goal for the hip joint was set-up 
to maintain (regulate) a zero trunk angle. The results shown in 
the figure indicate a good regulation performance, since the 
angle variation remains within 1° range. 
 
Finally, the ground force, calculated based on the centers of 
gravity acceleration, shows relatively good agreement with the 
experimentally measured data. Small deviations can be 
partially explained by eventual deviations of the segmental 
lengths of the walking model from the real human segments, 
accompanied with some deviations of the recorded joints 
angle versus time functions from the real joint angle 
trajectories.  

 

5. Conclusion  

Two main groups of the bipedal walking models exist. The 
first group is consisted of relatively simple models but very 
useful for ground force analysis, kinetic, potential and total 
energy balance analysis, energy recovered from potential to 
kinetic and vice-versa by the walking mechanism, and other 
integral features of the bipedal body considered as a 
concentrated mass at the center of gravity. The second group 
of models consists of the models with distributed mass, which 
allows more detailed analysis such as torques at the walking 
structure joints (which cannot be measured directly in a human 
body), inertial effects due to the segmental motion with 
respect to the center of gravity, control low design used to 
guide a bipedal robot, etc. 
 
As a significant simplification of walking models with respect 
to the human body structure, one can consider the entire spinal 
region as a rigid body, since there is no significant bending 
and no significant contribution of the trunk bending dynamics 
to the overall walking structure dynamics. Other 
simplifications can be related to the types of the joints, the 
foot shape, etc. 
 
A walking robot tracking control can be based entirely on 
human body joint trajectories. Those time-angle functions can 
be recorded for each joint using cameras, segmental markers 
and image processing. The control system input requires 
nominal angular velocity and nominal angular acceleration per 
each actuated joint. Therefore, it is necessary to smooth - out 
the nominal trajectories and pass the trajectories through a 
low-pass filter, since any discontinuity or a sudden change in 
the recorded data generates very high derivatives and can 
make the control system unstable. 
 
The cut-off frequency should be set-up such that the steepest 
parts of the nominal trajectory can pass through the filter 
without significant change. In this case, the low-pass filter cut-
off frequency was 30 rad/s, for the joint trajectories and their 
first derivatives.   
 
Control system can be successfully designed and implemented 
in a form of a combination of an inverse plant model and a 
linearization based controller with gain scheduled according to 
the nominal state space vector change. The inverse plant 
basically generates the nominal control inputs (the joint 
torques). However, the inverse plant becomes non-causal if 
precise values of time derivatives of the reference input 
(desired output) are necessary. Alternatively, the derivatives 
can be predicted by the inverse plant. A disadvantage of this 
approach is the fact that the system can become unstable and 
need to be stabilized. In this work, a back stepping method 
was used. 
 
The gain scheduled error dynamics controller successfully 
made the system output follows the desired joint trajectories. 
Although the gain scheduling is a frozen time concept, which 
means that the time derivatives must (their absolute values) 
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stay within a certain range in order to maintain controller 
performances and stability of the system, the simulation 
results showed remarkable tracking performances, which can 
be explained as a good prediction of the nominal torques via 
the inverse plant. 
 
Finally, the comparison of the model results for the ground 
force shows a satisfactory good agreement between the model 
results and measured data. 
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