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ABSTRACT 

 
 This paper presents a partial decoupling method for the 
well-known matrix method commonly in use for the linear 
inverse dynamics problem of planar mechanisms.  Any 
mechanism with a dyad of binary links can benefit from the 
proposed method, which involves extracting submatrices by 
looking for sufficient columns of zeros such that a reduced 
problem may first be solved with an equal number of scalar 
equations and unknowns.  Then some equal-and-opposite 
internal joint forces are transferred to the remaining FBDs and 
the solution proceeds until the input link is solved in a 
decoupled manner.  The method leads to significant reductions 
in computational cost for common planar mechanisms.  The 
kinematics & dynamics textbooks have overlooked this partial 
decoupling in their presentations of the matrix method for 
inverse dynamics. 
 
 
1. INTRODUCTION 

 
The inverse dynamics problem (also referred to as kinetostatic 
analysis) for planar mechanisms is stated as follows: Given the 
mechanism, desired kinematic motion, and external loads to 
overcome, find the unknown internal joint forces and the 
driving torque (or force for a translating input motor).  The 
solution of this problem is an important step in the machine 
design process, to size links to withstand the dynamic loading 
and to size the actuator.  With the kinematic terms given, the 
dynamic equations of motion are linear in the unknown forces 
and driving torque. 

 The old-school solution technique was the method of 
superposition (e.g. [1]).  The inverse dynamics problem was 
solved link-by-link, where only one moving link at a time was 
given mass and rotational inertia.  The remaining links became 
two-force members and the problem was solved for each link 
graphically or analytically.  When all links had been assigned 
inertia in their turn, the overall solution was found by 
summing the unknowns for all steps.  This method was nice 
due to the physical insights gained; however, it took a long 
time to solve a single inverse dynamics snapshot. 
  In the 1980s the matrix method gained prominence to 
solve the inverse dynamics problem [1,4,5].  This is a general 
procedure to assemble all the dynamics equations of motion 
into a single matrix-vector equation (three scalar equations for 
each moving link, XY sum of forces and Z moment), linear 
with n equations in n unknowns.  Dynamicists were taking 
advantage of the power of computers (as PCs were on the rise) 
to solve linear equations via standard matrix methods.  
Physical insight and analytical solutions were sacrificed, but 
the computer could solve the inverse dynamics problem 
quickly and in one step at each snapshot.  Using the computer, 
the inverse dynamics problem was easily solved for the entire 
range of motion of any planar mechanism, to find the worst 
cases for mechanical design. 
 In teaching about 900 students to date, the matrix method 
has been the author’s choice for solving the inverse dynamics 
problem.  Recently we made a discovery regarding a partial 
decoupling in the matrix method for planar mechanisms, not 
presented in any of the textbooks on the subject [1-7]. 
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2.  FOUR-BAR MECHANISM INVERSE DYNAMICS 
MATRIX METHOD 

 
 For each moving link we can write the following two 
vector dynamics equations (Newton’s 2nd Law and Euler’s 
Equation): 
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Vector equations (1) yield two XY scalar equations from the 
dynamic force balance and one Z scalar equation from the 
dynamic moment balance.  Moments must be summed about a 
suitable point (chosen as the center of gravity for each link 
above; the mass moment of inertia must be for the same 
point). 
 For the standard four-bar mechanism, three free-body 
diagrams (FBDs) are drawn and equations (1) are applied, 
once for each moving link.  The result is a 9x9 coupled set of 
linear equations (2) to solve for the unknowns (four vector 
internal joint forces ijF  and the driving torque τ2).  A similar 
set of equations is found in [1-4].  Again, there are three scalar 
equations for each moving link, for a total of 9 equations.  
There are eight scalar force unknowns (4 vector internal forces 
with 2 XY components each) and one scalar torque unknown 
for a total of 9 scalar unknowns. 
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In (2), ijF  is the unknown vector internal joint force of link i 
acting on link j, ijr  is the  known moment arm vector pointing 
to the R joint connection with link i from the CG of link j, 
gravity g is included, and external vector forces EF  and 
moments EM are included for links 3 and 4. 
 This 9x9 set of linear equations can be represented by 
Av = b  and the solution is, conceptually, 1−v = A b .  Gauss-
Jordan elimination with pivoting is much more efficient and 

numerically robust and it should be used in place of matrix 
inversion. 
 
 
3.  PARTIAL DECOUPLING OF THE MATRIX 
METHOD 
 
3.1  DR. BOB PEDAGOGY 
 Prior to approaching a useful mechanism like the four-
bar (Figure 1) in class, I always introduce the inverse 
dynamics solution of a single rotating link.  This involves a 
3x3 matrix-vector equation, an easier step for the students to 
grasp on the way to the 9x9 four-bar dynamic equations (2).  
The problem may be solved without matrix methods, as the X 
and Y forces are decoupled. 
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Figure 1.  Standard Four-Bar Mechanism 

 
 In leading up to the derivation of (2) for the four-bar 
mechanism inverse dynamics problem, I always ask the class 
if we can decouple this problem link-by-link and thus make 
use of the simpler single rotating link dynamics.  Link 2 has 3 
equations and 5 unknowns; links 3 and 4 have 3 equations and 
4 unknowns each.  So until recently, the answer was always 
no, we cannot solve one link at a time, the links are coupled.  
This statement is still true.  But then an ME junior asked, can’t 
we look at the link 3 and 4 FBDs together?  This would be 6 
equations in 6 unknowns. 
 
3.2  FOUR-BAR MECHANISM DECOUPLING 
 Looking at the original 9x9 matrix (2) and noting there 
are three 6x1 columns of zeros (columns 1, 2, 9) in rows 4 
through 9, it is clear that links 3 and 4 may be solved together, 
without link 2.  Here is a more efficient solution, compared to 
the full 9x9 system of equations (2): 
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(3) cannot be further decoupled since both sets of two 3x1 
columns of zeros are insufficient. 
 Denote (3) as 34 34 34A v = b  and solve for the six 
unknowns 1

34 34 34
−v = A b  (use Gauss-Jordan elimination in 

place of inversion) and then use the solved F32X and F32Y in the 
following 3x3 set of linear equations, from the link 2 FBD, 
similar to the single rotating link: 
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We do not need a matrix solution to (4) since the X and Y 
force equations are decoupled: 
 

( )
21 2 2 32

21 2 2 32

2 2 2 32 32 32 32 12 21 12 21

X G X X

Y G Y Y

G Z Y X X Y Y X X Y

F m A F
F m A g F

I r F r F r F r Fτ α

= − +
= − + +
= + − − +

    (5) 

 

 Matrix inversion requires approximately 
33

log
n

n
 and 

Gauss-Jordan elimination requires approximately 
( )2

2
1

3

n n
n

−
+  multiplications/divisions [8].  Table I presents 

the computational efficiency for solving the four-bar 
mechanism inverse dynamics in four ways. 
 
Table I.  Number of Multiplications/Divisions (Four-Bar) 
Method Inversion Gauss-

Jordan 
Reduction 

9x9 2292 321 86% 
6x6 & link 2   840 113 87% 
Reduction 63% 65%  
 
 
There is an impressive 65% reduction in computational cost 
for Gauss-Jordan elimination with the 6x6 plus decoupled link 
2 method compared to the full 9x9 approach in common use.  

Also, the numerical accuracy may also improve with this 
method since we needn’t do unnecessary calculations with the 
three 6x1 columns of zeros. 
 Clearly, Gauss-Jordan elimination requires far less 
computational power than matrix inversion.  In addition, with 
the use of pivoting, Gauss-Jordan elimination leads to better 
numerical robustness.  The CS computational efficiency 
experts at Ohio University say one can use the number of 
multiplications/divisions as a comparison basis; additions/ 
subtractions are about as expensive and overall, they would 
roughly double the number of operations in Table I for each 
category, leading to the same reductions. 
 
3.3  SLIDER-CRANK MECHANISM DECOUPLING 
 There is a similar partial decoupling for the slider-crank 
mechanism (Figure 2).  The slider-crank mechanism inverse 
dynamics matrix-vector set of equations (6) is of dimension 
8x8.  Compared to the four-bar, the link 4 moment balance 
dynamic equation has been lost (it is 0 = 0 due to zero moment 
arms and zero angular acceleration α4).  To address this 
problem, unknown F14X was eliminated using a friction 
constraint at the piston wall [3].  There is no vertical 
translation of the slider (AG4Y = 0 in (6)). 
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Figure 2.  Standard Slider-Crank Mechanism 
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 In (6) μ±  indicates the program must reverse the sign of 
the slider velocity on the friction coefficient μ for each 
snapshot in time.  In the original 8x8 matrix (6) there are three 
5x1 columns of zeros (columns 1, 2, 8) in rows 4 through 8.  
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So we may extract a 5x5 matrix-vector equation, solving for 
the link 3 and 4 FBDs independently of link2.  Here is a more 
efficient solution: 
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Denote (7) as 34 34 34A v = b , solve for the six unknowns 34v  
using Gauss-Jordan elimination, and then use F32X and  F32Y in 
the decoupled solution (5) from the link 2 FBD (identical to 
the four-bar). 
 
Table II.  Number of Multiplications/Divisions (SC) 

Method Gauss-Jordan 
8x8 232 
5x5 & link 2   72 
Reduction 69% 

 
 
There is a substantial 69% reduction in computational cost 
for Gauss-Jordan elimination with the 5x5 plus decoupled link 
2 method compared to the full 8x8 approach in common use.  
Also, we needn’t do unnecessary calculations with the three 
5x1 columns of zeros. 
 
3.4  SIX-BAR MECHANISMS DECOUPLING 
 The matrix method may be applied to more complex 
mechanisms with greater numbers of moving links.  The 
inverse dynamics problem for any mechanism with a dyad of 
binary links may be partially decoupled in a manner similar to 
the four-bar and slider-crank mechanisms above. 
 For example, consider the five well-known Watt and 
Stevenson planar six-bar mechanisms.  All five have 15x15 
matrices for inverse dynamics (5 moving links times 3 
equations per link; 7 vector internal force unknowns plus 1 
torque unknown).  Four of these (Stephenson I, Stephenson III 
– see Figure 3, Watt I, and Watt II) have a dyad of binary 
links.  If these moving links are numbered 5 and 6, one can 
always solve the inverse dynamics of the FBDs 5 and 6 
independently of the other links (six equations in six 
unknowns).  The original 15x15 matrix has nine 6x1 columns 
of zeros (columns 1, 2, 3, 4, 5, 6, 7, 8, 15) in the six rows 10 
through 15, from which a 6x6 subsystem of linear equations 
may be extracted.  Solve for these six unknown vector forces 
and transfer some of them to the remaining FBDs through 
equal-and-opposite vector forces. 
 Next, consider the FBDs of only links 3 and 4: this is 6 
equations in 6 unknowns, partially decoupled form the original 
15x15 matrix with seven 6x1 columns of zeros (columns 1, 2, 

11, 12, 13, 14, 15) in the six rows 4 through 9, and realizing 
that two of the scalar unknowns are now known from the first 
decoupling step.  Solve six more unknowns from this step and 
transfer any more equal-and-opposite vector forces to the link 
2 FBD.  Then the link 2 FBD is solved analogously to (5), i.e. 
decoupled and analytically, without need for the last 3x3 
matrix solution. 
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Figure 3.  Stephenson III Six-Bar Mechanism 

 
 The partial decoupling method is similar and the 
computational complexity identical for the Stephenson I, 
Stephenson III, Watt I, and Watt II six-bar mechanisms (Table 
III).  See [9] for details on the Watt II mechanism inverse 
dynamics. 
 
Table III.  Number of Multiplications/Divisions (Six-Bars) 

Method Gauss-Jordan 
15x15 1345 
6x6 twice & link 2   183 
Reduction 86% 

 
 
There is an astonishing 86% reduction in computational 
cost for Gauss-Jordan elimination with the 6x6 twice, plus 
decoupled link 2 method compared to the full 15x15 approach 
in common use.  Also, we needn’t do unnecessary calculations 
with the sixteen 6x1 columns of zeros. 
 The Stephenson II six-bar mechanism (Figure 4) does 
not have a dyad of binary links, thus the above method does 
not apply.  However, upon inspection of the original 15x15 
matrix, we find three 12x1 columns of zeros (columns 1, 2, 
15) in the twelve rows 4 through 15.  This means links 3, 4, 5, 
and 6 can be solved first independently of link 2, by extracting 
the appropriate 12x12 matrix equation followed by the 
standard link 2 solution (5) after making use of an equal-and-
opposite vector force that was solved in the first step.  The 
computational savings is not as impressive as in the former 
six-bar cases: for the Stephenson II six-bar mechanism there is 
a 46% reduction in computational cost for Gauss-Jordan 
elimination with the 12x12 plus decoupled link 2 method 
compared to the full 15x15 approach in common use. 
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Figure 4.  Stephenson II Six-Bar Mechanism 

 
 
3.5  UICKER SOLUTION 
 Now, we have stated that kinematics & dynamics 
textbooks [1-7] have overlooked this partial decoupling 
method for inverse dynamics using the matrix method – this is 
a true statement.  We discovered this independently and 
thought it was original.  However, Uicker et al. [10] hint at the 
possible decoupling in their discussion of four-bar mechanism 
inverse dynamics.  They note that links 3 and 4 may be 
addressed first.  However, they do not present the matrix 
method at all – instead they further find convenient moment 
centers to make various unknowns disappear until they solve 
all nine unknowns, one or two at a time.  Since our method 
involves the power and generality of the matrix method we 
contend it is original. 
 
3.6  SERIAL ROBOT SOLUTION 
 This paper applies only to closed-chain mechanisms and 
parallel manipulators.  The inverse dynamics problem for 
open-chain serial manipulators already has the well-known 
Newton-Euler recursive solution approach [11] which is 
decoupled link-by-link and needs no matrix techniques. 
 
 
4.  CONCLUSION 
 
 This paper presented a method to partially decouple the 
solutions to inverse dynamics of common planar mechanisms 
using the matrix method, leading to substantial savings in 
computational cost.  The kinematics & dynamics textbooks 
have overlooked this significant simplification in the matrix 
method.  Now, some may question the need for this method 
due to fast PC processors and cheap and plentiful memory.  
We contend that engineers must always consider 
computational efficiency, no matter how fast and powerful 
computers become in the future.  
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