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ABSTRACT 

The purpose of this paper is to study a 7-DOF humanoid 
cable-driven robotic arm, implement kinematics and dynamics 
analysis, present different cable-driven designs and evaluate 
their merits and drawbacks. Since this is a redundant 
mechanism, kinematics optimization is used to avoid joint 
limits, singularities and obstacles. Cable kinematics analysis 
studies the relationships between cable length and the end-
effector pose. This is a design modified from the literature. 
Several new designs are compared in pseudostatics analysis of 
the arm and a favorable design is suggested in terms of motion 
range and the cable tensions. Linear programming is used to 
optimize cable tensions. Dynamics analysis shows that the 
energy consumption of a cable-driven arm is much less than 
that of traditional motor-driven arm. Cable-driven robots have 
potential benefits but also some limitations. 

 
INTRODUCTION 

An arm model with 7 DOF is often proposed for spatial 
robots. However, typically the actuators of the conventional 
robot are directly installed on the joints. It not only increases 
the moving weight and inertia of robot, but also greatly reduces 
its load capacity. At the same time, this type of design also 
cannot be used for high-speed motion and rapid response of a 
robot. However, a cable-driven method introduces a concept to 
overcome the disadvantages of conventional robot in motion 
performance (Chen et al., 2006). 

The cable-driven structure is a kind of parallel mechanism 
transmitting force and motion by cables. There are several 
advantages for it such as lower weight, higher rigidity, higher 
accuracy and higher load capacity, compared with conventional 
serial robots. It can also be used in high-speed motion of a 
robot. Therefore, many researchers have paid attention to this 
area recently. 

For 7 DOF redundant robotic arms, the inverse kinematics 
is not a difficult problem for researchers. Williams (1992) 
specified a certain variable to reduce 1 DOF and make this 
underconstrained problem into a constrained problem, so the 
solutions are unique. However, this method has its own 
limitations and is not suitable for general cases. Also, standard 
linear solution techniques cannot be used in this problem 
because the Jacobian matrix is not square. Williams (1994) 
proposed the general redundant solution to solve the problem. 
Because there are infinite solutions for this underconstrained 
problem, optimization should be used to improve the behavior 
of the motion of manipulator, in addition to producing the 
required motion. Several objective functions are used to avoid 
joint limits, singularities and obstacles (Liegeois, 1977; 
Williams, 1994). 

There are not many published papers about cable-driven 
mechanism design. To realize the force-closure of the cable-
driven mechanism, redundant forces are required because 
cables can only be pulled unilaterally in tension. In order to 
generate n DOF motion in one joint, at least n+1 cables are 
needed as actuating elements (Yang et al., 2005). Yang et al. 
(2005) proposed a design to use six cables to drive a spherical 
joint with 3 DOF. In this design, the shoulder and wrist joints of 
the 7 DOF manipulator are driven by six cables each, and the 
elbow joint is driven by two cables. They also discussed the 
kinematic relationship between the cable lengths and the poses 
of end-effector of this humanoid robotic arm. Although this 
design provides the robotic arm with advantages of high 
dexterity and large reachable workspace, it is complicated to 
control the arm because of the high redundancy of its spherical 
joints. Chen et al. (2006) proposed another design to drive the 
shoulder and wrist joints by four cables each, and the elbow 
joint by two cables. This design reduces the redundancy of 
spherical joints. However, the cables that control motions of 
elbow and wrist joints all go through the holes in the moving 
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platform of shoulder joint, which affects the motion of shoulder 
joint and increases the complexity of controlling it. 

For cable-driven robots, it is critical to always maintain 
positive cable tensions in the motion. Williams et al. (2006) 
used a MATLAB function lsqnonneg, which solves the least-
squares problem to maintain all non-negative cable tensions. 
However, this function is not reliable because in some cases it 
will still give negative solutions for cable tensions, which is not 
allowed in cable-driven mechanisms. Additionally, Borgstrom 
et al. (2009) suggested Linear Programming (LP) as an 
approach to optimize cable tensions for cable-driven robots. 

 
ARM MODEL  

A 7-DOF arm model and its DH Parameters (Venkatayogi, 
2007) are used in this paper. As shown in Fig. 1, the model 
attached with eight frames includes 3 DOF for shoulder, 1 DOF 
for elbow and 3 DOF for wrist. Frame 0 is a fixed frame shown 
in Fig. 1. Frames 1 and 0 overlap when the rotational angle θ1 
is equal to zero. Hand is considered as one link and fingers are 
not included in this model.  

 
Figure 1. 7-DOF ARM MODEL (Venkatayogi, 2007) 

 
KINEMATICS 

Kinematics of the robotic arm includes forward pose 
kinematics, forward velocity kinematics and inverse velocity 
kinematics.  

 
Forward Pose Kinematics 

Forward pose kinematics is the calculation of end-effector 
(hand) pose of robotic arm with known rotational angles in 
each frame. The end-effector pose can be obtained by 
multiplying homogeneous transformation matrices between 
frames: 

 [ 𝑇𝐻0 ] = [ 𝑇10 ][ 𝑇21 ][ 𝑇32 ][ 𝑇43 ][ 𝑇54 ][ 𝑇65 ][ 𝑇76 ][ 𝑇𝐻7 ] （1） 
 

Forward Velocity Kinematics 
Forward velocity kinematics is the calculation of the 

Cartesian velocity of end-effector with known joint rates. The 
Cartesian velocity of end-effector can be obtained by 

 {�̇�} 
𝑚 = 𝐽 𝑚 {�̇�} （2） 

 
where 𝐽  

𝑚 is the Jacobian matrix based on the Frame m; �̇� is 
joint rates. 
 
Inverse Velocity Kinematics 

Inverse velocity kinematics is a problem of solving the 
linear equation for the joint rates with given Cartesian velocity 
of end-effector. The general redundant solution (Williams, 
1994) is used for solving this problem: 

 �̇� = 𝐽∗�̇� + 𝑘(𝐼𝑛 − 𝐽∗ 𝐽)∇𝐻   （3） 
 
The first term 𝐽∗�̇� is the particular solution. The second 

term  𝑘(𝐼𝑛 − 𝐽∗ 𝐽)∇𝐻  is the homogeneous solution causing 
zero motion of the end-effector. The matrix 𝐽∗ is the Moore-
Penrose pseudoinverse of Jacobian matrix. The vector 𝛻𝐻 is 
the gradient of an objective function of joint angles. The gain k 
is positive to maximize H and negative to minimize H. The 
singularities of the arm model are obtained by | 𝐽 𝐽𝑇| =0 
(Williams, 1994). Different objective functions can be used for 
different optimizations. 

 
CABLE-DRIVEN ROBOTIC ARMCONCEPT DESIGN 

The typical 7 DOF cable-driven robotic arm includes two 
spherical joints (shoulder and wrist) with 3 DOF for each and 
one revolute joint (elbow) with 1 DOF. A spherical joint with 
four cables is proposed by Chen et al. (2006). The detailed 
information of the design is listed as follows: The main surface 
of platform P1P2P3P4 is a square with side length 2lc. The 
thickness of platform is d. The platform and a supporting bar 
are connected by a ball joint. The platform can rotate about the 
ball joint by pulling the four cables connected to it. Those 
cables go through holes B1, B2, B3, B4 in a beam and connect to 
motors in a fixed base. Actually, B1 and B2 are the same hole so 
are B3 and B4. In the original design (Chen et al. 2006), it 
doesn’t specify the lengths of 2lb and 2lc.  

Based on this design, many designs come up: First, there 
are three designs—Design 1A, 1B and 1C shown in Fig. 2 by 
specifying the relation between the lengths of lb and lc. Second, 
there are other three designs—Design 2A, 2B and 2C by 
rotating the beam by 90° as shown in Fig. 2. Third, there is one 
more design (Design 3A) by changing the surface of the beam 
to a square instead of a rectangle as shown in Fig. 2. However, 
Design 3A has more limitations in motion range than others so 
it will not be considered in the following analysis. For the 
elbow joint, the design with two cables proposed by Yang et al. 
(2005) is used here. Statics analysis and motion ranges will be 
discussed in the following sections.  

 
STATICS ANALYSIS 

An approach that calculates the coordinates of points in the 
moving platform of a spherical joint with known rotational 
angles of three frames (Chen et al., 2006) is used in the process 
of statics analysis. In order to make the problem easier to solve, 
statics of the whole arm will be analyzed part by part 
separately. 

First, the hand is analyzed; its free body diagram is shown 
in Fig. 3. The weight of the moving platform Q7Q8Q9Q10 is G4 
and its side length is 2lq. The length of R7R9 in the beam is 2lp. 
The length of the supporting bar is lg. A ball joint is used to 
connect the supporting bar with the platform Q7Q8Q9Q10. The 
weight of the hand is G5. The force exerted by the supporting 
bar on the platform is f6��⃗ . The scalars t7, t8, t9, t10 are the 
magnitude of cable tensions for the four cables. To maintain 
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static equilibrium of forces exerted on the hand, the equation 
can be expressed by  

 ∑ (L𝑖/ l𝑖 ∙ t𝑖10
𝑖=7 ) + f6��⃗ + G5����⃗ + G4����⃗ = 03×1 （4） 

 
where L𝑖/ l𝑖 is a unit vector along the direction of the cable 
tension and L𝑖/ l𝑖 ∙ t𝑖  is the vector of cable tension. To 
maintain static equilibrium of torques about point I (the ball 
joint), the equation is 

 ∑ (IQ����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))10
𝑖=7 + IJ��⃗ × G5����⃗ = 03×1 （5） 

 

 
Figure 2. DIFFERENT SPHERICAL JOINT DESIGNS 
 

 
Figure 3. FREE BODY DIAGRAM OF HAND 

 
All vectors in Eqn. (4) and Eqn. (5) are expressed in Frame 

0 (a fixed frame). There are seven unknowns in those equations 
including t7, t8, t9, t10 and the x, y, z components of f6��⃗ . And 
there are three equations in each of those equations so there are 
six equations in total. This is an underconstrained problem 
because there are more unknowns than equations. Therefore, it 
is possible to minimize the sum of the cable tensions of four 

cables by linear programming function linprog in MATLAB. In 
this case the objective function is min fTt = t7 + t8 + t9 + t10 
and the lower bound of cable tension should be bigger than zero 
because cables can only provide positive tensions. The upper 
bound is obtained by the limit of cable tension divided by a 
safety factor. The optimal solution of cable tensions and the 
solution of the three components of f6��⃗  are obtained by this 
method. 

 
Figure 4. FREE BODY DIAGRAM OF FOREARM 

 
Second, consider the forearm. Its free body diagram is 

shown in Fig. 4. In the figure, −f6��⃗  is reaction force of f6��⃗  in 
Fig. 3. The cables 7, 8, 9 and 10 in Fig. 3 that control the 
motion of the hand go through the holes R7 and R9 in the beam 
fixed in the forearm and connect directly with four motors in a 
fixed base. T��⃗𝑗1 and T��⃗𝑗2 are forces applied on the beam by the 
tensions of the four cables (j=7, 8, 9, 10). Those cable tensions 
are obtained from statics analysis of the hand. Frictions 
between cables and holes are not considered in this paper. The 
weight of the beam is negligible. Point G is the center of 
gravity of the forearm and G3 is the weight of the forearm. The 
beam P5P6 is perpendicular and fixed to forearm EI. The beam 
is driven by two cables P5Q5 and P6Q6 and it rotates around a 
revolute joint E with the forearm. The two cables go through 
the holes Q5, Q6 and connect directly to the motors in the fixed 
base. The scalars t5 and t6 are magnitudes of these cable 
tensions. The force f4��⃗  is exerted on the forearm by the upper 
arm. In order to maintain static equilibrium of forces exerted on 
the forearm, the equation can be expressed by 

 
∑ (L𝑖/ l𝑖 ∙ t𝑖6
𝑖=5 ) + G3����⃗ + f4��⃗ − f6��⃗ + ∑ (T��⃗𝑗1 + T��⃗𝑗2)10

𝑗=7 = 03×1 （6） 
 
In order to maintain static equilibrium of torques about joint E, 
the equation can be expressed by  
�∑ (EP����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))6

𝑖=5 + EG�����⃗ × G3����⃗ + EI���⃗ × �−f⃗6� + ER�����⃗ 7 ×

∑ (T��⃗𝑗1 + T��⃗𝑗2)8
𝑗=7 + ER�����⃗ 9 × ∑ (T��⃗ 𝑘1 + T��⃗ 𝑘2)10

𝑘=9 �
T
∙ �

0
0
1
� = 01×1 （7） 

  
Because the revolute joint E can only rotate along the z 

axis, it can only balance torques in the z direction. That is why 
Eqn. (7) only contains equation of torques in the z direction. 
Since f6��⃗  is known from the analysis of the hand, there are only 
five unknowns and four equations in Eqn. (6) and (7). The five 
unknowns are t5, t6 and three components of f4��⃗ . This is still an 
underconstrained problem. The optimal solution for t5, t6 and 
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solution for f4��⃗  can be obtained from those equations by linear 
programming. The torques in the x and y axes will transfer to 
upper arm by this revolute joint. They can be calculated by 

𝜏1 = �∑ (EP����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))6
𝑖=5 + EG�����⃗ × G3����⃗ + EI���⃗ × �−f⃗6� +

ER�����⃗ 7 × ∑ (T��⃗𝑗1 + T��⃗𝑗2)8
𝑗=7 + ER�����⃗ 9 × ∑ (T��⃗ 𝑘1 + T��⃗ 𝑘2)10

𝑘=9 �
T
∙ N （8） 

 

where N=�
1 0 0
0 1 0
0 0 0

� and 𝜏1 is a 1 × 3 vector. The first two 

items of 𝜏1 are the torques expressed in the x and y axes of 
Frame 3 of the arm model. The third item is zero because 
torques in the z axis can be balanced by the revolute joint. 

 

 
Figure 5. FREE BODY DIAGRAM OF UPPER ARM 
 
Third, the statics of the upper arm is analyzed here. The 

free body diagram is shown in Fig. 5. In the figure, 𝜏1 is the 
torque transferred by the revolute joint in elbow. And – f4��⃗  is 
reaction force of f4��⃗  in Fig. 4. The cables 5 and 6 in Fig. 4 that 
control the motion of the forearm go through the holes Q5 and 
Q6 in the beam fixed in the upper arm and connect directly with 
two motors in a fixed base. T��⃗ 𝑖1 and T��⃗ 𝑖2 are forces applied on 
the beam by the two cable tensions (i=5, 6). The cable tensions 
are obtained from statics analysis of the forearm. The weight of 
the beam is negligible. The vector G2 is the weight of the upper 
arm and point C is the center of gravity of upper arm BE. The 
vector G1 is the weight of the moving platform P1P2P3P4 and 
point B is its center of gravity. The side length of platform is 
2lc. The force f1��⃗  is exerted by the supporting bar on the 
platform. The length of the supporting bar is lh and the length 
of upper arm is lu. Points B1 and B2 overlap, so do points B3 
and B4. The distance of B1B3 is 2lb. The platform is driven by 
four cables going through holes B1 and B3 and connecting to 
motors in the fixed base. To maintain static equilibrium of 
forces exerted on upper arm, the equation is 

∑ (L𝑖/ l𝑖 ∙ t𝑖4
𝑖=1 ) + f1��⃗ + G1����⃗ + G2����⃗ − f4��⃗ + ∑ (T��⃗𝑗1 + T��⃗𝑗2)6

𝑗=5 =
03×1                                                   （9） 

 
To maintain static equilibrium of torques about point B, the 
equation is 

∑ (BP�����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖4
𝑖=1 )) + BC�����⃗ × G2����⃗ + BE�����⃗ × �−f4��⃗ � + 𝜏1𝑇 +

BQ�����⃗ 5 × �T��⃗ 51 + T��⃗ 52� + BQ�����⃗ 6 × �T��⃗ 61 + T��⃗ 62� = 03×1        （10） 
 

There are seven unknowns and six equations here. The 
seven unknowns are t1, t2, t3, t4 and three components of f1��⃗ . 
This is also an underconstrained problem and the optimal 
solutions can be obtained by linear programming. The complete 
optimal solutions of cable tensions for the whole arm are 
available after statics analysis of the hand, the forearm and the 
upper arm. Next, a numerical example will be used here to test 
which design consumes the least cable tensions for the same 
pseudostatic motion (slow enough that acceleration of the 
motion is negligible) of the robotic arm.  

Example 1: The robotic arm will perform a pseudostatic 
motion with rotations about 7 joints. In each joint, the angle 
changes from one limit to the other in the following range. 
θ1 = [0°, 10°], θ2 = [0°, 20°], θ3 = [0°, 20°], θ4 = [10°, 25°], 
θ5 = [0°, 10°] , θ6 = [0°, 20°] , θ7 = [0°, 25°] . The cycloidal 
function (Wiliams, 2009) is used to form an array of angles 
changing smoothly from one limit to the other. 

 𝜃𝑖(𝑡) = 𝜃𝑖0 + (𝜃𝑖𝐹 − 𝜃𝑖0) � 𝑡
𝑡𝐹
− 1

2𝜋
𝑠𝑖𝑛 2𝜋𝑡

𝑡𝐹
� （11） 

 
where i is from 1 to 7; 𝜃𝑖0 and 𝜃𝑖𝐹 is the first and second 
component of the motion range above, respectively; t is the 
time variable and tF is the final time; t changes from 0 to 10 
seconds, so this motion is slow and the acceleration of the 
motion is negligible. The common parameters of seven designs 
are listed as follows: 

Density of material of mechanism: 𝜌𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 =
2700 kg/m³, lower bound cable tension: 5 N. In upper arm: 
lh=0.075 m, lc=0.05 m, lu=0.315m, radius of upper arm bar 
r=0.01 m, thickness of platform d1=0.01 m. In forearm: 
EF=0.005 m, RE=0.04 m , P5F=P6F=0.03 m, lf=0.287 m, radius 
of forearm bar r=0.01 m. In hand: lg=0.04m, lq=0.025m, 
lha=0.105m, radius of hand bar r=0.01m, thickness of the 
platform d2=0.005m. 

 The specific parameters for seven design are listed as 
follows: For Design 1A, lb=0.015m<lc, Q5R=0.015m<P5F, 
lp=0.01m<lq. For Design 1B, lb=0.05m=lc, Q5R=0.03m=P5F, 
lp=0.025m=lq. For Design 1C, lb=0.06m>lc, Q5R=0.04m>P5F, 
lp=0.03m>lq. For Design 2A, lb=0.015m<lc, 
Q5R=0.015m<P5F, lp=0.01m<lq. For Design 2B, lb=0.05m=lc, 
Q5R=0.03m=P5F, lp=0.025m=lq. For Design 2C, lb=0.06m>lc, 
Q5R=0.04m>P5F, lp=0.03m>lq. 

 Cable tensions for the whole cable-driven robotic arm can 
be obtained by simulations in Matlab. Comparing the cable 
tensions of Designs 1A, 1B and 1C, it is concluded that with 
length increase of lb, Q5R and lp, the cable tensions needed for 
upper arm decrease greatly and tensions for other cables stay 
about the same, so Design 1C is the best design out of those 
three designs for using the least cable tensions to perform the 
same motion. Comparing the cable tensions of Designs 2A, 2B 
and 2C, it is similar that with length increase of lb, Q5R and lp, 
the cable tensions needed for the upper arm decrease greatly 
and tensions for other cables stay about the same, so Design 2C 
is the best design out of those three designs for using the least 
cable tensions to perform the same motion. Design 1C uses 
even smaller cable tensions than Design 2C to perform the 

http://en.wikipedia.org/wiki/Mechanical_equilibrium�
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same motion, so the best design for using the least cable 
tensions is Design 1C.  

Actually, the trend of decrease of cable tensions with 
length increase of lb, Q5R and lp is not a coincidence. Because 
of the special characteristics of this 3 DOF spherical joint, it is 
much harder to create torque in the z axis than torques in the x 
or y axes (see Fig. 6). Therefore, the design can produce the 
same torque in the z axis with less cable tensions is better. One 
cable tension in three different designs is analyzed in Fig. 6. It 
is disassembled in the x, y and z axes. In Design 1A (lb<lc), the 
component forces that affect torque in the z axis are Tx and Ty. 
The directions of torques provided by Tx and Ty are opposite, so 
the two torques will partially cancel out. In Design 1B (lb=lc), 
there is no component force in the x direction so the torque in z 
axis is only provided by component force Ty. In Design 1C 
(lb>lc), the torques provided by component forces Tx and Ty 
are in the same direction so the total torque is the sum of two 
torques. In order to provide the same torque about the z axis, 
the cable tension in Design 1C is the smallest. And producing 
torque in z axis is the hardest part of the motion, so that is why 
Design 1C uses the smallest cable tensions to perform the same 
motion.  

 
Figure 6. ANALYSIS OF TORQUES ABOUT THE Z AXIS  

 
MOTION RANGE  

It is known that Design 1C is the best design for the using 
the least cable tensions from the previous section. However, it 
is uncertain if its motion range is bigger than the other designs’ 
or not. It is vital to always maintain a positive tension for every 
cable in a cable-driven mechanism, which can be used to find 
the practical motion range of this mechanism (Chen et al., 
2006; Pham et al., 2004). The motion ranges of shoulder joint 
are calculated using the approach by MATLAB and shown in 
Fig. 7, 8 and 9. 

The approximate volumes of motion ranges of shoulder 
joints of Designs 1A, 1B and 1C are 15, 8 and 7, respectively. It 
is also shown in the figures that the motion ranges of shoulder 
joint of Design 1A and 1C are the biggest and smallest out of 
three designs. Because the structures of shoulder joint and wrist 
joint are similar, the motion range of wrist joint of Design 1A is 
also bigger than that of Design 1C. Therefore Design lA has the 
biggest motion range out of three designs and Design 1C has 
the smallest one. 
 

 
Figure 7. DES 1A SHOULDER JOINT MOTION RANGE  

 

 
Figure 8. DES 1B SHOULDER JOINT MOTION RANGE 

 
Figure 9. DES 1C SHOULDER JOINT MOTION RANGE 

 
CABLE KINEMATICS ANALYSIS 

Cable Kinematics represents the relationship between cable 
lengths and the end-effector pose of 7-DOF cable-driven 
robotic arm. It includes forward pose cable kinematics and 
inverse pose cable kinematics. 

 
Forward Pose Cable Kinematics 

Forward pose cable kinematics is used to get the end-
effector pose of robotic arm given the lengths of the driving 
cables from moving platforms to corresponding motors in a 
fixed base. The 7-DOF cable-driven arm is shown in Fig. 10 
and it is controlled by 10 cables connected with 10 motors (not 
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shown in the figure) in the base. The shoulder and wrist joints 
are the spherical joints (Design 1B). The elbow joint is a 
revolute joint driven by two cables. 

 

 
Figure 10. 7-DOF CABLE-DRIVEN ARM 

 
A method (Yang, et al., 2005) is used here to implement 

forward pose cable kinematics of this model. According to the 
Section of Forward Pose Kinematics, the end-effector pose can 
be expressed by 

 𝑇80 = 𝑇 ∙3
0 𝑇 ∙4

3 𝑇 ∙7
4 𝑇87  （12） 

 

where 𝑇 = �𝐼3×3 𝑃87
0 1

�8
7  and 𝑃 = [0 0 𝑙ℎ𝑎]𝑇8

7 ; lha is the 

length of hand; 𝑇30 , 𝑇43  and 𝑇74  represent the pose of Frame 3 
with respect to Frame 0, Frame 4 with respect to Frame 3, and 
Frame 7 with respect to Frame 4, respectively; 𝑇30 =

� 𝑅3
0 03×1
1 0

�, where 𝑅30  is the rotational matrix of Frame 3 with 

respect to Frame 0; 𝑇 = � 𝑅4
3 𝑃43
0 1

�4
3 , where 𝑅43  and 𝑃43  are 

the rotational matrix and pose of Frame 4 with respect to Frame 
3; 𝑃43 = [𝑙𝑢 0 0]𝑇 and lu is the length of the upper arm; 

𝑇 = � 𝑅7
4 𝑃74
0 1

�7
4 , where 𝑅74  and 𝑃74  are the rotational matrix 

and pose of Frame 7 with respect to Frame 4; 
𝑃74 = [𝑙𝑓 0 0] and lf is the length of forearm. In Eqn. (12) 

only 𝑅30 , 𝑅43  and 𝑅74  are unknown. They are relative to 
rotational angles of seven frames which are also unknown, so 
obtaining 𝑅30 , 𝑅43  and 𝑅74  directly by those angles doesn’t 
work. Finding the direct relationships between the cable lengths 
and rotational matrices is an appropriate approach.  

 

 
 Figure 11. SHOULDER MODULE  

 
There are three steps in forward pose cable kinematics of 

the whole arm. First, the relation between cable lengths and the 
end-effector pose in the shoulder joint is analyzed here. As 

shown in Fig. 11, the lengths of four cables--𝐵1𝑃1������,𝐵2𝑃2������,𝐵3𝑃3������ 
and 𝐵4𝑃4������ are known because the bar B1B3 is attached to the 
base. The origins of Frames 0 and 3 are the same point B. 
Suppose that the coordinates of Pi and Bi (i=1, 2, 3, 4) with 
respect to Frame 0 are given by 𝑃𝑝𝑖 

0 = (𝑥𝑝𝑖 ,𝑦𝑝𝑖 , 𝑧𝑝𝑖) and 
𝑃𝑏𝑖 
0 = (𝑥𝑏𝑖 ,𝑦𝑏𝑖 , 𝑧𝑏𝑖) , respectively. Then the following 
equations are obtained by analysis: 

𝑥𝑝32 +  𝑦𝑝32 + 𝑧𝑝32 = (𝐵 𝑃3�����)2  
(𝑥𝑝3 − 𝑥𝑏3)2 + (𝑦𝑝3 − 𝑦𝑏3)2 + (𝑧𝑝3 − 𝑧𝑏3)2 = (𝐵3𝑃3������)2 
(𝑥𝑝1 − 𝑥𝑏1)2 + (𝑦𝑝1 − 𝑦𝑏1)2 + (𝑧𝑝1 − 𝑧𝑏1)2 = (𝐵1𝑃1������)2 

 
Because P3 and P1 are symmetric about point B and the 

coordinates of B with respect to Frame 0 is 𝑃𝑏 
0 = (0, 0, 0),  

the coordinates of P1 are also expressed as (−𝑥𝑝3,−𝑦𝑝3,−𝑧𝑝3). 
Plug them into the equations above to replace the coordinates 
of P1. Then for the three equations above, the only unknowns 
are the coordinates of P3 (𝑥𝑝3,𝑦𝑝3, 𝑧𝑝3). At most two sets of 
solutions can be found by solving those three equations. 
Similarly, two sets of solutions for the coordinates of P2 
�𝑥𝑝2,𝑦𝑝2, 𝑧𝑝2� can be obtained. The distance between P2 and P3 
(P2P3�����) is known, which can been used to check the solutions for 
those two points. Normally, only one set of solutions for P2 and 
one set of solutions for P3 are valid. Suppose that the known 
coordinates of Pi with respect to Frame 3 are 
𝑃𝑝𝑖 = ( 𝑥𝑝𝑖 

3 , 𝑦𝑝𝑖 
3 , 𝑧𝑝𝑖 

3 ) 
3 . The connections between 𝑃𝑝𝑖 

0  and 
𝑃𝑝𝑖 
3  are: 

𝑃𝑝3 
0 = 𝑅30 𝑃𝑝3 

3  
𝑃𝑝2 
0 = 𝑅30 𝑃𝑝2 

3  
𝑃𝑝3 
0 × 𝑃𝑝2 

0 = 𝑅30 ( 𝑃𝑝3 
3 × 𝑃𝑝2 

3 ) 
 

So 𝑅30  can be obtained by 
𝑅30 = � 𝑃𝑝3 

0 𝑃𝑝2 
0 𝑃𝑝3 

0 × 𝑃𝑝2 
0 �� 𝑃𝑝3 

3 𝑃𝑝2 
3 𝑃𝑝3 

3 × 𝑃𝑝2 
3 � 

−1
 

 
With known 𝑅30 , 𝑇30  in Eqn. (12) is known. 
 

 
Figure 12. ELBOW MODULE 

 
Second, the relationship between cable lengths and end-

effector pose in the elbow joint is analyzed here. With known 
𝑇30  and coordinates of C3 in Frame 3 in Fig. 12, the coordinates 

of C3 in Frame 0 (base frame) is known so the cable length 
between C3 and the corresponding motor in the base is known. 
Therefore, cable length 𝐶3𝐶6������ can be obtained by subtracting 
the cable length between C3 and the motor from the known total 
cable length. Cable length 𝐶1𝐶4������ can be obtained by a similar 
method. Because the revolute joint on the elbow can only rotate 
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about z axis in Fig. 12, so the coordinates of all points in z axis 
are the same. In order to simplify the problem, the z coordinates 
of all points will not be shown in the analysis. Suppose that the 
coordinates of C6 are 𝑃𝑐6 = (𝑥𝑐6,𝑦𝑐6) with respect to Frame 3. 
The known coordinates of Ci (i=1, 2, 3, 5) with respect to 
Frame 3 are 𝑃𝑐𝑖 = (𝑥𝑐𝑖 ,𝑦𝑐𝑖). For this mechanism, the equations 
are obtained by analysis: 

(𝑥𝑐6 − 𝑥𝑐5)2 + (𝑦𝑐6 − 𝑦𝑐5)2 = (𝐶5𝐶6������)2 
(𝑥𝑐6 − 𝑥𝑐3)2 + (𝑦𝑐6 − 𝑦𝑐3)2 = (𝐶3𝐶6������)2 

At most two sets of solutions of coordinates for C6 can be 
obtained by solving two equations above. Only one set of 
solutions can be proved to be the real solution by checking the 
length of the other cable, so 𝐶2𝐶6������ is obtained with known 
coordinates of C6. In ∆C2C5C6, 𝜃4 can be calculated by the 
cosine law:  

   𝜃4 =
𝜋
2
− cos−1(

(𝐶2𝐶5������)2 + (𝐶5𝐶6������)2 − (𝐶2𝐶6������) 2

2𝐶2𝐶5������ ∙ 𝐶5𝐶6������ ) 

 
Since 𝜃4 is known, the transformation matrix 𝑇43  can be 

obtained.  
Third, with known 𝑇43 , 𝑇30  and the coordinates of guiding 

holes of bar for wrist in Frame 4 in Fig. 10, the lengths of the 
cables from the moving platform of wrist to the guiding holes 
of its bar can be obtained by a similar method mentioned in 
elbow. Because the shoulder and wrist joints are similar 
spherical joints, the solutions for them are similar. The 
transformation matrix for the wrist joint 𝑇74  can be obtained by 
a similar method. With known T,3

0 T,4
3 T74  and T87 , T80  can be 

obtained by Eqn. (12) and the pose of end-effector is obtained. 
So forward pose cable kinematics of the whole arm is finished. 

 
Inverse Pose Cable Kinematics (IPCK) 

Inverse pose cable kinematics is calculation of the required 
cable lengths given the end-effector pose. Since this process is 
difficult, it is divided into two steps. First, use inverse pose 
kinematics to find optimal rotational angles in each frame with 
the known pose of the end-effector. Inverse pose kinematics for 
7-DOF redundant arm model has been published by Tarokh et 
al. (2010), so the details of that method will not be discussed 
here. Second, calculate the cable lengths with known optimal 
rotational angles in each frame (Chen et al., 2006). With those 
two steps, IPCK can be accomplished. 

 
DYNAMICS ANALYSIS 

Dynamics analysis considers not only forces and torques 
applied on the system like statics analysis, but also the effects 
of motion to the system including translational and rotational 
accelerations of the system. 

 
Dynamics Analysis of the Cable-Driven Robotic Arm 

The dynamics analysis of the whole robotic arm is also 
done part by part. First, the hand is analyzed; its free body 
diagram is shown in Fig. 13. There are only two new variables 
in the figure: a1 and α1, where a1 is the acceleration of the hand 

and platform and α1 is the angular acceleration of the hand and 
platform about a ball joint I. Both of them are calculated with 
respect to the fixed Frame 0. The rest of the variables are the 
same with those in statics analysis of the hand. The equation of 
forces exerted on the hand can be expressed by 

 ∑ (L𝑖/ l𝑖 ∙ t𝑖10
𝑖=7 ) + f6��⃗ + G5����⃗ + G4����⃗ = (m5 + m4)a1���⃗  （13） 

 
where m4 is the mass of platform and m5 is the mass of hand. 
Use forward pose kinematics to calculate the pose of the center 
of gravity (CG) of hand and platform—s1 with respect to Frame 
0. The acceleration of the hand a1���⃗  is obtained by taking the 
second time derivative of s1. The equation of torques about 
point I can be expressed by 

 ∑ (IQ����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))10
𝑖=7 + IJ��⃗ × G5����⃗ = �I5 + Ip1�α1 （14） 

 
where I5 and Ip1 are the inertia tensors of the hand and platform 
Q7Q8Q9Q10 expressed in Frame 7, respectively. Newton-Euler 
dynamics equations (Craig, 2005) are used where the iterations 
are done from i=0 to 6; Because Frame 0 is a fixed frame, its 
angular velocity 𝜔0 

0  and angular acceleration 𝛼0 
0  with 

respect to its own frame are both equal to [0 0 0]T; 𝑅𝑖𝑖+1  
is the rotational matrix of Frame i based on Frame i+1 and it is 
the inverse (transpose) matrix of 𝑅𝑖+1

𝑖 ; 𝜔 𝑖 𝑖 and 𝛼 𝑖 𝑖  are the 
angular velocity and angular acceleration of Frame i based on 
its own frame, respectively. After iterations 
𝛼7, 
7 𝛼6, 

6 𝛼5, 𝛼4 
4

 
5 , 𝛼3 

3 , 𝛼2 
2  and 𝛼1 

1  are available. The angular 
acceleration of the hand α1 can be obtained by: 

  α1 = 𝛼7 = 
0 𝑅70 𝛼7 

7    （15） 
 
Then linear programming is used to obtain the optimal 
solutions of four cable tensions and the solutions of f6��⃗ .  
 

 
Figure 13. HAND FBD 

Second, the forearm is analyzed; its free body diagram is 
shown in Fig. 14. There are two new variables in the figure: a2 
and α2, where a2 represents the acceleration of the forearm and 
α2 represents the angular acceleration of the forearm. Both are 
calculated with respect to Frame 0. The rest of variables in the 
figure are the same with those in statics analysis of the forearm.  
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Figure 14. FOREARM FBD 

 
The equation of forces exerted on the forearm is: 
∑ (L𝑖/ l𝑖 ∙ t𝑖6
𝑖=5 ) + G3����⃗ + f4��⃗ − f6��⃗ + ∑ (T��⃗𝑗1 + T��⃗𝑗2)10

𝑗=7 = 𝑚3𝑎2����⃗   
                         （16） 
 

where 𝑚3 is the mass of the forearm. The mass of beam P5P6 
is negligible. The equation of torques about point E is 

 �∑ (EP����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))6
𝑖=5 + EG�����⃗ × G3����⃗ + EI���⃗ × �−f⃗6� +

ER�����⃗ 7 × ∑ (T��⃗𝑗1 + T��⃗𝑗2)8
𝑗=7 + ER�����⃗ 9 × ∑ (T��⃗ 𝑘1 + T��⃗ 𝑘2)10

𝑘=9 �
T
∙ �

0
0
1
� =

(I3α2)T ∙ �
0
0
1
�                 （17） 

 
where I3 is the inertia tensor of the forearm with respect its 
own frame. Because the revolute joint E can only provide 
torques in z axis in Fig. 14, Eqn. (17) only contains torques in z 
axis. The angular acceleration of forearm about point E α2 can 
be obtained by 

 𝛼2 = 𝛼4 
0 = 𝑅40 𝛼4 

4  （18） 
 

Using Eqn. (16), (17) and (18), the optimal solutions of cable 
tensions and solutions of f4��⃗  can be obtained by linear 
programming. Then the torques in the x and y axes transferred 
by the revolute joint to the upper arm can be calculated by 

𝜏1 = �∑ (EP����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖))6
𝑖=5 + EG�����⃗ × G3����⃗ + EI���⃗ × �−f⃗6� +

ER�����⃗ 7 × ∑ (T��⃗𝑗1 + T��⃗𝑗2)8
𝑗=7 + ER�����⃗ 9 × ∑ (T��⃗ 𝑘1 + T��⃗ 𝑘2)10

𝑘=9 − I3α2�
T
∙

�
1 0 0
0 1 0
0 0 0

�                                         （19） 

 
where 𝜏1 is a 3 × 1 matrix. The first two components of 𝜏1 
are the torques in the x and y axes expressed in Frame 3 of the 
arm model. The third component is set to be zero because 
torques in the z axis can be balanced by the revolute joint. 

Third, the upper arm is analyzed; its free body diagram is 
shown in Fig. 15. There are also two new variables in the 
figure: a3 and α3, where a3 is the acceleration of the upper arm 
and platform, and α3 is the angular acceleration of the upper 
arm and platform. Both are calculated with respect to Frame 0. 
The rest of variables are the same with those in the statics 
analysis of the upper arm. The equation of forces exerted on the 
upper arm can be expressed by 

∑ (L𝑖/ l𝑖 ∙ t𝑖4
𝑖=1 ) + f1��⃗ + G1����⃗ + G2����⃗ − f4��⃗ + ∑ (T��⃗𝑗1 + T��⃗𝑗2)6

𝑗=5 =
(m2 + m1)a3���⃗                                     （20） 
where m2 is the mass of the upper arm and m1 is the mass of the 
platform P1P2P3P4.  
 

 
Figure 15. UPPER ARM FBD 

 
The equation of torques about the ball joint B can be 

expressed by 
∑ (BP�����⃗ 𝑖 × (L𝑖/ l𝑖 ∙ t𝑖4
𝑖=1 )) + BC�����⃗ × G2����⃗ + BE�����⃗ × �−f4��⃗ � + 𝜏1𝑇 +

BQ�����⃗ 5 × �T��⃗ 51 + T��⃗ 52� + BQ�����⃗ 6 × �T��⃗ 61 + T��⃗ 62� = (I2 + Ip2)α3 （21） 
 
where I2 and Ip2 are the inertia tensors of the upper arm and the 
platform with respect to Frame 3, respectively. The angular 
acceleration of the upper arm and platform α3 is obtained by  

 α3 = α3 = 
0 R α3 

3
3
0  （22） 

With Eqn. (20), (21) and (22), the optimal solutions of cable 
tensions and solutions of f1��⃗  can be obtained by linear 
programming. Therefore, dynamics analysis of the whole arm is 
accomplished. Design 1B will be used for dynamics analysis to 
perform the same motion in the Example 1 of statics analysis.  

           
        (i)                         (ii)   

 
             (iii) 

Figure 16. SLOW DYNAMICS CABLE TENSIONS 
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            (i)                       (ii) 

            
            (iii) 

Figure 17. FAST DYNAMICS CABLE TENSIONS 
When the total time tF=10 sec (slow motion), the optimal 

cable tensions of dynamics analysis are shown in Fig. 16. When 
tF =0.3 sec (fast motion), the optimal cable tensions of 
dynamics analysis are shown in Fig. 17. Comparing Fig. 16 
with Fig. 17, it is proved that cable tensions of fast motion are 
greater than those of slow motion. 

  
Dynamics Analysis of Motor-Driven Robotic Arm 

Typically, motors of traditional motor-driven robotic arm 
are directly installed at each joint. The motors are moving with 
the robot, so it has the following disadvantages: heavy, slow 
response and low load capacity. The arm model in real world is 
shown in Fig. 18. In the figure, d is the distance between two 
frames in a spherical joint. Suitable motors are selected based 
on their abilities of generating motions needed in different 
joints. The weights of those motors are considered in dynamics 
because they are heavy and they greatly affect the motion of the 
arm. For this traditional robotic arm with 7 DOF, seven motors 
are needed because one motor generates 1 DOF motion. 

Next, iterative Newton-Euler dynamics algorithm (Craig, 
2005) is employed for dynamics analysis of the arm model 
shown in Fig.18. It includes two steps: outward iterations and 
inward iterations. After those iterations, 𝜏𝑖 that is the torque 
needed from the motor in frame i is obtained (i=1, 2, 3, 4, 5, 6, 
7). The energy needed for each frame can be calculated by:  

 𝐸𝑖 = ∫ 𝜏𝑖𝑑𝜃𝑖
𝜃𝑖𝑓
𝜃𝑖=𝜃𝑖0

 （23） 
 

where 𝜏𝑖 is the torque needed in frame i (i=1, 2, 3, 4, 5, 6, 7); 
𝜃𝑖  is the rotational angle in frame i and it is expressed in 
radians; 𝜃𝑖0 is the initial angle and 𝜃𝑖𝑓 is the final angle for 
frame i. 

 
Figure 18. 7-DOF ARM MODEL IN REAL WORLD 

.  
In order to finish the same motion mentioned in statics 

analysis, total energy of seven motors is shown in following 
cases: 

a) Slow motion: tF=10 sec, d=0.05m. (Fig. 19) 
b) Fast motion:  tF=0.3 sec, d=0.05m. (Fig. 20) 
From Fig. 19 and 20, the total energy consumptions of all 

motors in fast motion and slow motion of the same path are 
about the same (3.7 J) because the changes of the total energy 
(potential energy and kinetic energy) of the motor-driven 
robotic arm in both motions are about the same. 

    
Figure 19. TRADITIONAL SLOW DYNAMICS ENERGY 

Figure 20. TRADITIONAL FAST DYNAMICS ENERGY 
 

Comparison of Cable-Driven and Motor-Driven Robot   
This section will compare the consumptions of energy and 

power of cable-driven robot and traditional motor-driven robot 
to perform the same motion in Example 1. 

First, total energy consumptions of both robots are 
compared. Since the cable tensions of cable-driven robot are 
obtained in dynamics analysis, its total energy consumption for 
each cable is: 

 𝐸𝑗 = ∫ 𝑡𝑗𝑑𝑠𝑗
 
𝑐𝑗

 （24） 

where tj is tension of cable j (j=1, 2, 3, 4, 5, 6, 7, 8, 9, 10); s𝑗  is 
the pose of cable j; 𝑐𝑗 is the path of the pose of cable j. The 
method of calculating cable lengths was proposed by Chen et 
al. (2006). For slow motion (tF=10sec), the total energy needed 
for two different robots is shown in Fig. 21. 

  
Figure 21. SLOW MOTION ENERGY COMPARISON 

Figure 22. FAST MOTION ENERGY COMPARISON 
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From Fig. 21, it is shown that even in slow motion the total 
energy needed for the cable-driven robot is about 1/9 of that 
needed for the motor-driven robot. That means cable-driven 
robot is better than motor-driven robot in saving energy to 
perform the same slow motion. For fast motion (tF=0.3sec), the 
total energy needed for two different robots is shown in Fig 22. 
From the figure, it is shown that in fast motion the total energy 
needed for the cable-driven robot is only about 1/10 of that 
needed for the motor-driven robot. That means in the same fast 
motion the cable-driven robot performs far better than the 
motor-driven robot in saving energy.  

Second, power consumptions of both robots are compared. 
The instantaneous power can be obtained by: 

 𝑃 = 𝑑𝐸
𝑑𝑡
≈ ∆𝐸

∆𝑡
 （25） 

 
where E is the energy needed for the motion and t is time. 

For slow motion ( tF = 10sec and ∆t = 0.1 sec ), the total 
instantaneous power needed for two different robots is shown 
in Fig. 23. For fast motion (tF = 0.3sec and ∆t = 0.003 sec), 
the total instantaneous power needed for two different robots is 
shown in Fig. 24.  

In Fig. 23, the maximum total instantaneous power of 
cable-driven robot is about 1/10 of that of motor-driven robot in 
the same slow motion. In Fig. 24, the maximum total 
instantaneous power of cable-driven robot is less than 1/10 of 
that of motor-driven robot in the same fast motion. It proves 
that cable-driven robot is much better than motor-driven robot 
for saving power in both slow motion and fast motion.  

    
Figure 23. SLOW MOTION POWER COMPARISON 

  Figure 24. FAST MOTION POWER COMPARISON 
 

CONCLUSIONS 
This paper focuses on mechanism design, kinematics and 

dynamics analysis of a 7-DOF cable-driven humanoid robotic 
arm. The relations among rotational angle 𝜃 , pose of end-
effector x, rotational velocity 𝜔 ( 𝜔 = �̇� ), velocity of end-
effector �̇� and cable length 𝐿 are discussed. 

Forward pose kinematics, forward velocity kinematics and 
inverse velocity kinematics are discussed. The general 
redundant solution is introduced. Seven designs are presented 
based on a design proposed in the literature. In statics analysis 
Design 1C uses the smallest cable tensions out of those designs 
to perform the same motion and Design 1A has the biggest 
motion range out of Designs 1A, 1B and 1C. The relationships 

between cable lengths and end-effector pose are also analyzed. 
Dynamics analysis of the cable-driven robot and the traditional 
robot are implemented. It is concluded that the cable-driven 
robot needs much less energy and much smaller power than 
traditional motor-driven robot in the same motion. 
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