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ABSTRACT 

This paper presents a design concept and analysis of a bipedal 
walking robot with a novel type of actuation using elastic cables. Each 
leg has 6-dof, the trunk has 3-dof, and each arm has 1-shoulder-dof. 
Conventional walking robots consist of joint-attached drives at 
revolute joints. This yields relatively heavy legs and arms with high 
moments of inertia, which makes balancing robot dynamic walking 
difficult due to the high inertial forces of distal segments. 

The cable-based actuation system is designed for the most 
kinetically-active biped segments, such as lower legs.  These consist of 
DC motors located on the trunk, elastic cables (with serially-connected 
springs) and cable routing with specially-designed pulleys. Since the 
trunk segment accelerations are significantly lower than the leg 
segments accelerations, it is expected that the overall energy required 
by the cable-actuated robot is significantly lower than the energy input 
to a directly-actuated biped. 

Another novelty in the biped actuation system design is the use of 
elastic rather than non-elastic cables, for two reasons: smoothing out 
the sharp impulses due to the foot-ground collision and reduction of 
the number of motors to actuate each joint. Non-elastic cable-based 
drives require each cable to be pulled by a separate motor, which 
would double the number of motors and increase the weight. This 
problem can be solved using elastic cables and specially-shaped 
pulleys to reduce the number of motors with a slight increase in 
controller complexity. 

The bipedal walking robot architecture with cable drives mimics 
the human body architecture, where the hip joint is a 3-dof spherical 
joint, 1-dof knee joint, and 2-dof ankle joint. The architecture is more 
compact compared to the conventional joint attached drive 
architecture, wherein all revolute joints are separated. 

Based on the kinematic and dynamic analysis of the robot, a 
controller is designed and the perturbation robustness tested. A 

feedback linearization controller design is used, requiring system 
dynamics knowledge. Steps toward hardware implementation have 
been made, since we have implemented an elastic cable actuation 
system on a robotic cat prior to the concept design for the bipedal 
robot. The difficulties are discussed, including future plans for 
improvements and hardware testing.  

 
 
1. INTRODUCTION 

Simplicity in design and implementation is one of the most 
important reasons that robotic manipulators are mainly actuated 
by joint directly mounted rotary motors, the joint attached 
drives. The rotation of the motor shaft is proportionally mapped 
into rotation of connected robotic links about the joint axis, 
using a gear set. Design methodology and the theoretical 
treatment of robotic manipulator systems penetrated into a 
relatively new robotic field, the robotic walkers. While joint 
mounted motors are suitable for relatively slowly moving 
robotic manipulators/systems with a stationary support base, 
they are unlikely to met needs of the robotic walkers. Although 
there exist examples of successful and advanced robotic walkers 
with directly joint mounted motors [1,2], they necessarily 
consume higher amounts of energy comparing to their 
corresponding biological walkers [3]. 

However, biological walkers that use an inverted pendulum 
like mechanism [4,5,6] are considered energy efficient relatively 
with respect to the state of the art robotic walkers [7,8], using a 
different kind of actuators, the muscles, which can be 
considered as elastic (stretchable) linear actuators. Energy 
efficiency and the level of the walk cycle precision and 
smoothness are among important reasons for mimicking 
biological walkers. As the fundamental actuator unit, the muscle 
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behavior and structure attract special attention of research in 
robotics. There have been a number of attempts to produce 
artificial muscles for use in robotics [9-12], based on different 
principles such as pneumatics, piezoelectric effect, 
magnetostriction, etc. 

One of the possibilities of a walking robot muscle-like 
actuation is to use (elastic) cables. Applications of the cable 
actuation in general robotics [13] show that the main feature, 
among other interesting features, of the cable actuation is the 
possibility to achieve relatively high accelerations, due to the 
reduced mass of the most kinetically-active segments of the 
robots.  

Since the walking robots usually have to carry an 
independent energy source (batteries), it is the most critical to 
reduce the energy consumed per distance walked. Using the 
cables the motors are moved to the sections of the robot that are 
the least kinetically-active and experience the lowest 
accelerations. The main benefits are: the balancing stability of 
the robot is improved and the energy consumption is reduced 
due to the reduced mass of the fast moving segments of the 
walking robot. It will also lead to significantly reduced overall 
weight of the robot.  

Further benefit of using cables is obtained by introducing 
elastic cables in the cable driven robot design. Foot-ground 
collisions generate impulsive forces and torques through the 
joints. Using elastic cables, the shock energy is absorbed while 
the motor torques are smoothened. The joint angular velocities 
remain continuous through out the entire walking cycle, which 
allows us to avoid using the continuous and the collision 
dynamics combination (the hybrid dynamics).  

Some work has been done in the area of cable actuation in 
the walking robotics. A partially cable actuated hexapod is 
analyzed in [14]. A quadruped walking robot with knee joints 
driven via elastic cables [15] has been designed with some 
success in terms of reducing energy input and smoothness of the 
walk. However, there is no evidence that a bipedal walking 
robot with elastic cables based actuators has been designed/built 
or such a design discussed. Therefore, this paper introduces a 
novelty concept that certainly has significant benefits that will 
be emphasized throughout the test results analysis.  

 
 

2. ELASTIC CABLE ACTUATED BIPEDAL WALKING 
ROBOT ARCHITECTURE 

Besides the benefits of reducing the energy consumed per 
walked distance and reducing the mass, and consequently the 
inertial forces, of the most kinetically active segments (lower 
legs, feet), another very important benefit of using cables is that 
ability to use a more compact robot architecture that is closer to 
the biological bipedal walkers. A biological hip joint is a 
spherical joint with 3 DOF, which basically combines three 
revolute joints and certainly would contribute to compactness 
of the robot architecture as well as reducing the total mass (by 
eliminating the distance links between the corresponding 

revolute joints).  
It is difficult to actuate a spherical joint via directly mounted 

motors, which is why spherical joints are not usually found in 
robotic designs with rotary motors. However, it is highly 
recommended to use spherical (ball and socket) joints when 
cables are used, as shown in Figure 1. A role of the gear box 
with rotary joint mounted motors have the small connecting 
rods (attached at A1, A2, K1, K2, H1, H2 in the figure); the longer 
the rods, the larger torque is generated by a certain cable force 
on the expense of larger cable pulling speed (such that the 
power remains the same). 

The walking robot architecture shown in Figure 1 reflects the 
aspects of cable actuation. With 6 DOF per leg, the architecture 
enables cornering walk and mimics a biological biped 
architecture.   

 
Figure 1. CABLE DRIVEN BIPEDAL WALKING ROBOT ARCHITECTURE 

 
The main purpose of using cables is to relocate the motors that 

represent the major part of the total robot’s weight. The ankle joint is 
an adjusted spherical joint, with 2 DOF rather than 3DOF, which is 
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shown in the figure detail. The restriction of one DOF is done by 
introducing a pin that can slide along the arc shaped guide. The two 
DOF are the rotation about the axis along the pin, 2z , and the rotation 

about the axis that is perpendicular to the plane of the arc-shaped 
guide, 1z .  

The ankle joint is actuated via 3 cables and motors that are 
positioned in the trunk segment of the robot, the segment that 
experiences much lower accelerations than the ankle position of the 
leg. This is why there is no purpose to actuate the hip joint via cables, 
the motors are already near to the low acceleration segment, the trunk. 
Since the intention is to use the spherical joint for hip, three linear 
motors are used, each attached between two corresponding smaller 
ball and socket pairs, as shown in Figure 1. 

A difficulty with this concept is that a significant nonlinearity is 
introduced. While with joint attached motors, the motor shaft rotation 
is proportional to the rotation about the joint axis, the length of cable 
pulled is not necessarily proportional to the rotation about the joint 
axis. This fact becomes particularly important when a controller is 
designed, which usually requires special treatment either by 
cancellation of the nonlinearities or by a mathematical model 
linearization. Another difficulty that accompanies the beneficial 
features of the cable actuation concept is the possibility of 
singularities. During the motion, a combination of joint angles might 
exist such that the direction of cable passes through a joint axis or 
cables are parallel with a particular axis, which means that the cable 
cannot generate a moment about that axis (e.g. the singularity can 
occur at the ankle joint when the three cables are parallel to 2x  axis in 

Figure 1, or a singularity can occur when the three linear actuators are 
parallel to 6z  axis of the hip joint). 

The nonlinearity between the cable pulling speed and the 
corresponding joint angular speed can be seen in Figure 2, where a 
cable actuated knee joint design is shown. The nonlinearity and the 
difference in the two cable changes require that each cable is pulled 
independently in case non-stretchable cables are used. If the cable 
length is increased on one side in the same way as the cable length on 
the other side of the joint, then one can use a regular pulley with a 
single motor to actuate the joint. However, this is not the case, very 
soon from the initial position, one cable would become loose which 
would cause a pure transport delay in control terms and the walking 
robot would loose controllability. 

(a)  (b)   
 

Figure 2. (a) CABLE ATTACHMENT DESIGN, (b) THE CABLE 
ATTACHMENT POINTS PARAMETERS 

 
Figure 2. (c) CABLE LENGTH CHANGE DIFFERENCE 

 
The solution to this problem is to design a specially-shaped pulley 

that will cancel nonlinearities. This pulley profile is shown in Figure 3.  
 

 
Figure 3. SPECIAL PULLEY PROFILE 

 

The abscissa in the figure denotes the pulley main symmetry axis 
with the origin on the left hand-side of the helical cable guide, which 
can be directly proportionally related to the angle of rotation.  The 
cable is stored on the specially shaped pulley in a helical trace, as 
shown in Figure 4.  
 

 
 

Figure 4. HELICAL CABLE GUIDE 

 
The pulley is attached to a trunk mounted motor and the cables are 

traced from the trunk to the knee joint. Basically, higher cable pulling 

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Difference in the two cables length change


 L

 [m
]

 

 

3 (deg)

- (K
2l
K

2u
)+(K

1l
K

1u
)

(K
1l
K

1u
)=-K

2l
K

2u
+K

2l
K

2u0

(K
2l
K

2u
)=K

2l
K

2u
-K

2l
K

2u0

Helical cable guide  

ax
is

 o
f 

ro
ta

ti
on

 

R
l R

r 

R
c 

R
P

l(z
) 

R
P

r(
z)

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

pulley axis z   (m)

ra
di

us
 (

m
)

Pulley profile

 

 

back cable pulley section

connecting  -||- 

front cable -||- 

rl (z)

rr (z)

z axis is the main symmetry axis of the pulley with the origin at 
the left end of the cable helical guide (see Fig. 4) 

z
lpl rplcpl

)(zRP

rh1

lh1

2h

3h

lh4

rh4

k

uK 1

uK 2

3

5h
5h

lK 1

lK 2

K2u 

K2l 

K1l 

K1u 

3

k/3 



sp
ec

ia
ll

y 
sh

ap
ed

 p
ul

le
y 



4 Copyright   2012 by ASME 

speed at the knee joint means that the cable should be positioned at the 
larger radius at the pulley, such that no cable become loose. The 
equation of the pulley profile can be derived by considering how the 
cable pulling speed is changed while keeping the angular joint rate 
constant.  
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where k








des

3




 is the desired ratio of the two rotations, 

minR  is the minimum (positive) radius of the pulley and the 

derivatives are given in (1), the plus sign is for right hand-side 
segment of the pulley profile (Figure 3).  

Since the machined pulley would always have some error in 
the profile, in order to prevent a cable becoming loose it is 
necessary to use stretchable and preloaded cables that will 
provide some compensation for the inaccuracy in the pulley 
profile. 

On the other hand, since stretchable cables are used, the 
ratio k cannot be precisely constant due to the fact that the cable 
is stretchable and we cannot compensate the general cable 
tension force, since it is not only a function of the angles, but 
also depends on the inertial forces and the payload. 

Finally, the architecture (Figure 1) shows that the trunk 
segment has a spherical joint, which is actuated in a similar 
fashion as the hip joint, via the three linear actuators. The 3 DOF 
enable the upper body to deviate from the vertical positions and 
in that way help to control the position of the Zero Moment Point 
(ZMP) [16]. 
 
 
3. DYNAMICS OF THE BIPEDAL ROBOT 

Using the Lagrange energy method, a set of nonlinear differential 
equations of second order is derived. Since the derivation details 
would take significant space, we will include the final results for every 
particular DOF, but limit the analysis on the sagittal plane, due to the 
limited space to show details of the transformations between the 
coordinate systems shown in Figure 1. 

The dynamics of the system can be represented by the matrix 
equation 

 

  )())((P)())(,)(C()())(M( ttttttt 






 ,  (2) 

 

where )(t


, )(t


 and )(t


 are the joint angle, velocity and 

acceleration vectors, respectively,  ))(M( t


 is the inertial properties 

matrix, 



 ))(,)(C( tt  

 is the angular speed coupling matrix, ))((P t


 

is the conservative (generalized) forces vector that includes the gravity 
terms and cable tension terms and )(t


 is the vector of torques acting 

at the joints. The product )())(,)(C( ttt  




 represents all combined 

products of the joints angular speed, which is consisted of the Coriolis 
and relative normal accelerations. Due to limited space,  )M(


 and 

vector )())(,)(C( ttt  




  are not shown here.   

The vector of the conservative generalized forces ))((P t
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 requires 
an explanation that is related to the further analysis, and we present it 
below. The vector )(


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 (3) 
where:  Srk , lkS  are the cable stiffness coefficients for the front and the 

back knee joint cable, respectively,  
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are the deformation of cable springs (in geometrical terms as functions 
of the knee and the pulley angles (see Figure 2(a)),  while the 
expressions for the spring deformations for the swing leg, rswl  and 

lswl , are analogous to (4) (the deformations are related to external 

load  through algebraic equations of moment balance, by neglecting 
the pulley dynamics), 
 1m , 2m  and tm  are masses of lower leg, thigh and the trunk, 

respectively, 
   1l  and 2l  are lower and upper leg lengths, respectively,  
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  1cl  and 2cl  are distances from the neighboring lower joint to the 

center of gravity (cg) of lower and upper leg, respectively, and  '1cl  =

1l 1cl , '2cl = 2l 2cl , 

  1tl  and 2tl  denote the position (in the sagittal plane) of the trunk cg  

with respect to the hip joint lateral axis, 

  combined angles are denoted as: 2332   , 432234   , 

94322349   , 10943210_2349   ,  

  rrsK hhhhh 42311  , rrcK hhhhh 41321  , llsK hhhhh 42312  , 

llcK hhhhh 41322  , 

  ul KK 11 31311  chshh cKsKK  , ul KK 22 32322  chshh cKsKK  . 
 
The new quantities included in (4) denote the following: 0rS  and 0lS  

are the cables pre-tensions, )(PrR  and  )(PlR  are the two pulley 

variable radii given by (1) and   is the geometrical angle of the cable 
guide on the pulley, shown in Figure 2. The integrals in (4) represent the 
stored cable along the pulley thread.  

The vector of the torques 


 in (2) is  
 

  Ttttt 0)()(0)()( hswah  


, (5) 

 
where )(h t  and )(a t  are the torques at the hip and the ankle joints of 

the stance leg, respectively; )(hsw t is the torque at the hip of the swing 

leg. The knee torques are considered here as internal torques, which is 
why the vector of torques has zeros at the corresponding entries. The 
two torques are considered in the equations of motion through the 
spring deformations in the vector (of conservative generalized forces) 
P


, given by (3).  
If we consider the dynamics of the pulleys with the motors, we 

would have two additional degrees of freedom, as well as two 
additional differential equations of the second order, which would 
significantly increase computational efforts without contributing 
significantly to the accuracy of the mathematical model (inertial and/or 
viscous friction effects of the drive system are negligible). 

The inclusion of the corresponding differential equations into a 
state space model of the system can be avoided by considering that the 
pulley/motor dynamics happens instantaneously, which results in an 
algebraic equation rather than a differential equation. Essentially, the 
algebraic equations to complete the system of equations are the 
moment balance equations for the pulley/motor systems (located at the 
trunk), that is 

 
)()(),()(),( p3SlPr3Sr tRlkRlk stPlstlststr   ,   

 (6) 
)()(),()(),( psw10SlPr10Sr tRlkRlk swPlswlswswr   , 

 
where p  and psw  are the torques applied on the specially shaped 

pulleys, PlR  and PrR  are the radii functions of the left and right 

segment of the pulley, respectively, as shown in Figure 4. The 

mathematical model (2) along with the two algebraic equations (6) is 
inherently implicit with the respect to the torque inputs (the vector 


 

in (5) does not include the pulley torques).  
 
 
4. CONTROLLER DESIGN 

The controller design for the robotic walker is based on the 
trajectory regulation control [17]. Since the controller algorithm 
requires the mathematical model of the system be in an affine form, 

  )()( xGxfx  , the dynamics model is made explicit with respect 
to control inputs (torques), using the algebraic equations (6) and the 
definition of the pulley radius functions PR , given by (1).  The 

resulting model in the affine form, required by the control technique, 
has the vector of torques 

 

  Tpswp tttttt )()()()()()( hswah  


, (7) 

 
which represents the control inputs vector, while the adjusted vector 

))(( tP 


 does not have the terms with cable stiffness parameter. After 
expressing the model in the affine form, the trajectory regulation 
control technique can be applied.  

 
4.1 Controller Architecture  

The control system architecture (Figure 5) consists of [17]: 
 
(a) Nominal trajectories generator, 
(b) Inverse dynamics for nominal control calculation, 
(c) Tracking error regulation controller, 
(d) Measurement system, and  
(e) Plant – the biped. 
 

 
Figure 5.  THE TRAJECTORY REGULATION CONTROLLER 

ARCHITECTURE 

 
The nominal motion specification block generates the joint 

trajectories that provide a balanced walk. The information about the 
nominal joint angles at every time-step is sent to the error dynamics 
controller and the nominal torques generator. The nominal torques are 
generated based on the inverse dynamics mathematical model. Since 
the mathematical model of the robot is not an exact description of the 
dynamic behavior, there will be errors in the resulting motion. The 
amount of the resulting motion deviation from the desired motion is 
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calculated based on the measurements of the joint’s angles, which is 
used by the error dynamics controller to generate the correction 
torques.  

The inverse dynamics that is used to generate the nominal torques 
is obtained directly from (2), where the torques are explicitly 
expressed in terms of the functions of angles and their first two 
derivatives. However, physically realizable approximations of input 
signals derivative are obtained via a second order low-pass filter of the 
form (in the Laplace domain) 

 

 
1

)(
2

2
1 


ss

s
s


,     23

2,1 10,10  .  

 
Since the controller architecture is based on the error dynamics, we 
need to obtain the corresponding error dynamics model. 

 
4.2 Error dynamics 

The error dynamics model is based on the state space model in 
affine form and it has the following form 
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where 


 denotes the nominal trajectory of the system state (regarding 

the robot angles and angular velocities) in the state space, iii  
~

 

is the error of the i-th variable with respect to its nominal value for the 
specified time and j

~  (j  {h,p,a,hsw,psw}) represents corrective 

torque inputs, generated by the feedback controller with the objective 

to have the error vector norm 0
~



 (exponentially). The way the 

error vector is stabilized is discussed in the following section. 
 

4.3 Control Law 
The control law should provide the corrective torques such that the 

errors converge to zero with an exponential decay. To achieve this 
goal the control inputs cancel the nonlinearity (FL technique) and 
introduce the terms proportional to the errors of the state variables as 
follows. 

 

11514131211

~
gpswhswaph bGGGGG   , 

22524232221

~
gpswhswaph bGGGGG   , 

33534333231

~
gpswhswaph bGGGGG   ,  (9) 

44544434241

~
gpswhswaph bGGGGG   , 

55554535251

~
gpswhswaph bGGGGG   , 

where 

222121221
~~

)()(
~

 kkffbg 


, 

444343442
~~

)()(
~

 kkffbg 


, 

666565663
~~

)()(
~

 kkffbg 


, 

888787884
~~

)()(
~

 kkffbg 


, 

101010910910105
~~

)()(
~

 kkffbg 


, 

 
and ijk  (i=2,4,...,10; j=i-1,i) are the constants that need to be 

determined, such that the closed control loop error dynamics are 
exponentially stable and have desired transient behavior.  

Particularly, we can set up the constraint that the system has less 
than 5% overshoot, and the settling time less than 0.5 seconds for each 
joint rotational DOF, which results in the damping coefficient

69.0  and the natural frequency 
s

rad
59.11n  .  To obtain the 

two values, the coefficients ijk  need to have the following values 
2

1,
s

rad
3.134 







iik , 







s

rad
16iik , )10,...,4,2( i . 

 
Finally, the control law is  
 

  gbG
 ~~ 1 , (10) 

 
Where G is the reduced input matrix in (8) (without zero rows) 

evaluated at the nominal trajectory 


.  Next, we will evaluate the 
performance of the control law via simulation results. 

 
4.4 Nominal Joint Trajectories 

Nominal trajectories should be designed such that the bipedal robot 
has a balanced walk and that the controller has relatively low 
corrections (within the area of attraction AOA). Basic tool for 
calculating the trajectories toward this goal is the Zero Moment Point 
(ZMP) calculation. Biped needs to keep ZMP within the convex 
region defined by the feet prints on the ground in order to have a 
balanced walk. Figure 6 shows the nominal ZMP trajectory, which is 
designed such that: (i) it passes through the middle points of foot 
prints, (ii) it is confined within the convex hull (enclosed by the dashed 
line in Figure 6) and (iii) the tangent line at those points is parallel to 
xB axis (the coordinate system is shown in Figure 1). 
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Figure 6. ZERO MOMENT POINT TRAJECTORY 

 
The trajectory function 

 


































22

22)(
SS

P L

x

L

x
Lxy , SS LxL   (11) 

 
 is obtained via interpolation with the slope constraints. Whole 
dynamics (gravitational and inertial forces) of the system influences 
the position of the ZMP (center of pressure for a balanced walk). For a 
relatively slow walk, the ZMP is close to the COM ground projection 
and calculation is significantly simplified. 

On the other hand, we can design the trajectory of the center of 
mass in the vertical plane such that it follows a trajectory of a 
simplified model that is used of an energy optimization, like a mass 
and spring model, as shown in Figure 7.  

 

 
 

Figure 7. CENTER OF MASS TRAJECTORY 

 
An energy optimized trajectory obtained by simple models (mass-
spring) is, of course, not energy optimized for the higher complexity 
model, like the one shown in Figure 1, but it provides a way of energy 
reduction. Particularly, in this case the following trajectory was used: 
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which in a dimensionless form is 

 22 22
2/

)(  
S

P

H

H
, 

2/SL

x
 , 

2/

)(

SH

xz
 , 

with the domain 11   . 
Using this approach the joint trajectories for the stance leg are 

obtained, as shown in Figure 8. 
 

 
Figure 8. NOMINAL JOINT TRAJECTORIES 

 
Using the nominal joint trajectories and kinematic analysis of the 

system, the cable pulling speed is calculated. In a similar way, by 
considering the distance between the cable attachment points as a 
function of joints angles and by finding the corresponding vectors in 
directions of the cable segments, three-dimensional vectors of the 
moments and the cable forces are calculated and shown in the 
following figures. The stance leg knee joint cable force magnitudes are 
shown in Figure 9. 

 
Figure 9. STANCE LEG KNEE JOINT CABLE FORCES 

 

Simulations of the system showed that the way the cables are 
attached, particularly the position of the attaching rods at the 
points A1, A2, K1, K2, H1, H2 (Figure 1), has a dominant influence 
on the required cable forces and required cable speed.  
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The ankle joint cable forces are shown in Figure 10. The 
cable forces for the ankle joint are significantly higher than for 
the knee joint.  

 
Figure 10. STANCE LEG ANKLE JOINT CABLE FORCES 

 
The cable actuators act in some way as parallel manipulators and 

form closed mechanical loops. Unlikely with serial robotic 
manipulators, there can be infinitely many solutions for the set of cable 
forces providing the same torque for the joint. In this case, it is useful to 
use an optimization approach and derive additional constraints which 
will choose the solution among infinitely many providing the same 
joint moment. An additional criterion, for example, can be to minimize 
a sum of squares of cable tensions, but considering the inherited 
constraint that cables can deliver only tension forces. 

Unlike the cable forces for the knee and the ankle joints, the linear 
actuator forces for the hip joint can deliver tension and compression 
forces as well, which is why three actuators are sufficient for the 
spherical joint (3 DOF), rather than four which would be needed in the 
case of using cables (number of cables needed for an n DOF joint is 
n+1, so it would be 4 for the hip joint).  

The linear actuator forces for the stance leg hip joint are shown in 
Figure 11. The calculation of the forces included the pitch and the roll 
moment, as well.  

 

 
Figure 11. STANCE LEG HIP JOINT LINEAR ACTUATOR FORCES 

 
The realized angles of the stance and swing leg, without rolling at 

the hip and the ankle, are compared with the nominal trajectories in 

Figure 12. Although the pitch angles at the hip and the ankle are 
negative, according to the definitions shown in Figure 1, they are 
represented in the following figures with the same sign, in other to 
better use the space available for comparison. Figure 12 shows good 
performance of the controller since the trajectories are followed 
closely with minor errors. It is necessary to emphasize that the 
trajectories shown in the figure are obtained for a stationary (non-
accelerating) walk, such that the joint trajectories show the cyclic 
behavior and symmetry. 

 

 
Figure 12. REALIZED VERSUS NOMINAL JOINT TRAJECTORIES 

 
When the system starts from the rest, the nominal trajectories at 

the initial instant behave like step functions, requesting the joints to 
“suddenly” change angles according to the initial conditions. In this 
situation, the controller shows a bit worse performance, but it guides 
the system toward the stationary walking cycle without loosing the 
stability, as shown in Figure 13. 
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In this case, all trajectories start from the origin and the highest 
oscillation happens at the stance leg ankle joint, as expected due to the 
fact that the highest forces/torques are needed at the ankle joint. 

The total (nominal plus correction) torques related to the sagittal 
plane motion for the stance and the swing leg are shown in Figure 14. 

 

 
Figure 14. STANCE AND SWING  LEG TOTAL TORQUES 

 
It can be noticed that the lowest values for the torques are 

associated to the joints on the swing leg, due to the fact that those joints 
do not “see” the trunk weight or the trunk inertial forces as their load.  

The corrective torques generated by the error regulation controller 
are shown in Figure 15, with a peek value of 12 Nm in the initial phase 
of the cycle. 

 

 
Figure 15. STANCE AND SWING LEG CORRECTIVE TORQUES 

 
The nominal torques obtained by the inverse system (inverse 

plant) are shown in Figure 16. Those are the torques that would, in an 
ideal case of knowing exact dynamics of the system, drive the system 
exactly according to the nominal trajectories, which is not the case in 
real application and an error regulation/ tracking controller is necessary 
to combine with the inverse plant. In absence of the inverse plant, the 
controller would need some additional time such that the integrators 
find the nominal values. 

 
Figure 16. STANCE AND SWING LEG NOMINAL TORQUES 

 
The inverse plant generates the nominal torques based on the 

derivatives of the nominal joint trajectories, shown in Figure 17. 
Calculating of the derivatives is done via pseudo-differentiators (filters) 
of second order. Pseudo-differentiators help to reduce the effect of 
eventual discontinuities, sharp slope changes or a noise in the input 
trajectories signals. All derivatives start from the origin (zero), due to 
the fact that the derivatives are obtained as outputs from a second order 
system (the filter). However, outputs find the corresponding values for 
the derivatives relatively fast. 
 

 
Figure 17. STANCE AND SWING LEG NOMINAL ANGLES AND ANGULAR 

VELOCITIES OBTAINED USING PSEUDODIFFERENTIATORS 
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major part of the robot weight corresponds to actuators makes the 
concept how the actuators are positioned very important for two main 
reasons: 

(i) Joint mounted motors positioned on the most kinetically active 
robot links, such as the lower leg, experience high inertial forces, 
meaning that other actuators of the robot “see” the particular motor as 
an additional weight – load that need to be carried, 
accelerated/decelerated frequently during every step.  

(ii) Besides the fact that frequent acceleration and deceleration 
costs significant amount of energy, it impedes the balancing capabilities 
of bipedal walkers due to the additional inertial forces acting as a 
disturbance to the controller. 

The need of using two different pulley-motor pairs to actuate a 
revolute joint in case of using non-stretchable cables is compensated 
using the stretchable cables with the design of the special pulley profile. 
The threaded pulley profile with the variable radius ensured that, along 
with relatively small deformations of the cable spring, the cables do not 
become loose, which would lead directly into complications with “pure 
transport delays” in the control law.  

A potential problem of using elastic cables can be high amplitude 
oscillations in the case if there is no sufficient attenuation in the system 
(friction). In this case, the controller has to be capable of stabilizing the 
walk, which can be an accompanying challenge of the controller 
design. 

The mathematical model is derived and the corresponding error 
dynamics is used to design the controller using the trajectory regulation 
control with an open-loop nominal controller and a closed loop tracking 
error regulation controller. The nominal controller is based on the 
inverse dynamics model of the plant. The closed-loop controller is 
based on the feedback linearization control, where plant nonlinearity is 
cancelled by state feedback, and desired linear dynamics properties are 
assigned (eigenvalues). 

The performance of the joint trajectories tracking was analyzed 
using simulations, which showed satisfactory results of tracking the 
prescribed joint trajectories.  The possible problematic cases of the 
tracking would be the cases with the sharp changes and/or associated 
noise in the desired trajectories, due to the need of finding 
(approximate) derivatives. The controller performed satisfactorily by 
tracking nominal trajectories under relatively high initial disturbance 
due to significant discontinuity in the commanded trajectories.  

Our future work plan mainly consists of implementing the design 
and proving the concept in hardware. A quadruped walking robot, 
partially cable actuated with the specially shaped pulleys has been built, 
which can be seen at: 
  

www.youtube.com/watch?v=sZZpKn_nDIc 
www.youtube.com/watch?v=ZCydQB9Vyfo 

 
Radio-controlled servomotors are used with a built in (local loop) 
angular position controller. Currently the RoboCat employs a statically 
stable walking gait, with standard Radio Controlled (R/C) servo motors 
as actuators. The joint motion control scheme is open-loop in nature, 
which limits the robot’s performance in sense of walk smoothness. 

We plan to implement this concept and build a bipedal walking 
robot.  
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