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ABSTRACT 

This paper presents the dynamics and nonlinear control of 
the Robotic Lumbar Spine (RLS). The RLS is a 15 degree-of-
freedom, fully cable-actuated robotic lumbar spine which can 
mimic in vivo human lumbar spine movements to provide better 
hands-on training for medical students.  The current design 
includes five active lumbar vertebrae and the sacrum, with 
dimensions of an average adult human spine.  It is actuated by 
20 cables connected to electric motors. Every vertebra is 
connected to the neighboring vertebrae by spherical joints. 
Medical schools can benefit from a tool, system, or method that 
will help instructors train students and assess their tactile 
proficiency throughout their education. The robotic lumbar 
spine has the potential to satisfy these needs in palpatory 
diagnosis.  Additionally, a new approach to solve for positive 
and nonzero cable tensions that are also continuous in time is 
introduced. 
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1.  INTRODUCTION 

Teaching art of palpation to medical students is a 
challenging task. In institutions that teach palpatory diagnosis, it 
is taught by using voluntary human patients who are mostly 
palpated by the instructor for demonstrative purposes. 
Meanwhile, the students usually watch the process and get to 
palpate only their lab partners as “patients” who are, 

considering the general population of medical students, 
relatively young and healthy (many with limited dysfunctions).  
It is, however, very difficult to be able to find and demonstrate a 
different patient for every single dysfunction that the students 
are taught during the lectures or in the laboratories. Therefore, it 
is still hard to teach and learn palpatory diagnosis for different 
variations of dysfunctions. The lack of a means for evaluating 
the transfer of practical information from the instructor to the 
students is another drawback that the medical schools are facing 
today. There exists no assessment device for instructors to 
objectively evaluate progress and success of the students in 
real-life situations. 

The role of simulation in medical education is rapidly 
increasing. The simulations to train nurses, veterinarians and 
doctors (osteopathic and allopathic) have been and are still 
being developed due to their effectiveness and cost-reducing 
advantages. These simulations can be computer-based or in the 
form of mannequins that can simulate some functions of the real 
human body such as breathing, blood pressure, etc. Computer-
based haptic simulations require the utilization of a haptic 
interface to interact with the virtual objects inside a computer 
screen. That is clearly not the case when humans really interact 
with real objects. For instance, the VHB [1], the only simulation 
that is being used to improve palpatory skills of medical 
students, simulates somatic dysfunctions by increased stiffness 
of an area on the virtual back and the users “touch” the back 
with PHANToM® haptic devices which only stimulate the 
proprioceptive receptors and introduces an extra layer of 
disturbance between the fingers and the computer-generated 



 2 Copyright © 2012 by ASME 

objects to be sensed. Therefore, a simulation system which 
allows the user to interact with a real object would be a better 
and more effective approach. 

The robotic spine concept has been studied over the past 
years [2-4]. These studies built humanoid robots with a flexible 
spine which would enhance the human-like movements of the 
robots and increase the range of movement of the robot’s torso. 
These humanoid robots dealt with the movement of the whole 
spine, rather than the relative position and stiffness of a vertebra 
with respect to the adjacent ones. They sufficiently 
accomplished flexible spine movements with less than the total 
number of vertebrae in a human spine. However, no research 
has yet been completed on the subject of developing a robotic 
spine with anatomically accurate vertebrae geometry and 
movements for tactile medical education and/or proficiency 
assessment. 

In this paper, the dynamic model of a robotic lumbar spine 
is derived and used in designing a nonlinear controller. A new 
method to solve for positive and nonzero cable tensions that are 
also continuous in time is introduced. Simulations to test the 
controller for the RLS are presented. The robot will be 
controlled by a joystick or autonomously by preprogramming. 
The user will interact by touching the posterior aspect of the 
lumbar spine that is covered with a skin-like material. The user 
will try to find the type and region of the dysfunction by 
comparing the movement patterns at different configurations of 
the robotic lumbar spine. 
 
2.  RLS KINEMATICS 

The geometry of the lumbar spine was constructed using 
dimensions of an average human spine based on published 
experimental data [5]. A detailed explanation on the 
construction of the lumbar spine geometry can be found in [6]. 
The constructed lumbar spine geometry is shown in Figure 1. 
 
 

 

 
Figure 1. Three-Dimensional Geometry of the Lumbar 

Spine 
 
In order to design a device that mimics an average adult’s 

lumbar spine, it is necessary to have anatomically-correct 
movement patterns of each lumbar vertebra. In this study, these 

movement patterns were acquired by using a three-dimensional 
static model of the human spine. The mathematical model 
includes five lumbar vertebrae and the sacrum, elastic elements 
that connect inferior facets of one vertebra to the superior facets 
of the lower one and torsion springs that represent the collective 
torque resisting effects of the intervertebral disc and ligaments. 
The derivation and validation of this model can be found in [7]. 

The robotic spine, shown in Figure 2, was designed based 
on the study by [5] since it details how lumbar spine moves in 
pre-specified loading conditions. In that study, the upper-most 
vertebrae of freshly-frozen cadaveric human lumbar spines with 
no abnormalities were exposed to external pure moments in 
order to induce motion and both rotational and translational 
movement of each vertebra were recorded.  

The RLS is actuated by 20 cables connected to electric 
motors. Every vertebra is connected to the neighboring 
vertebrae by spherical joints. The use of spherical joints is 
intentional since the rotational motion of the vertebrae is more 
prominent as compared to their translational motion. The 
location of the spherical joint for each vertebra is at the 
inferoposterior corner in the mid-sagittal plane of the vertebral 
body. These locations correspond to the origin of the coordinate 
frames with respect to which the angles of rotation were 
recorded in [5]. As discussed previously, the facet plane in 
Figure 1 was designed to be used as the base on which posterior 
elements with various dimensions can be attached. 

The cable connection points on the ground are at the 
corners of five trapezoids. The innermost trapezoid that 
includes the connection points for the fifth lumbar vertebra (L5) 
has posterior base length of 0.4m, anterior base length of 0.2m 
and height of 0.15m. The remaining four trapezoids are 
constructed with increasing the height of the adjacent (inner) 
one by 0.05m anteriorly and 0.05m posteriorly. This placement 
of the cable connections on the ground prevented cable 
interference during the simulations for six motion types: 
flexion/extension, right/left bending and right/left torque [6]. 

 

 
 

Figure 2. CAD Model of the Robotic Lumbar Spine (RLS)
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3.  RLS DYNAMICS AND CONTROL 
 

3.1 Dynamic Model 
In this section, we will develop the dynamic equations for 

the robotic lumbar spine. The dynamic equations can be stated 
in the following general format: 

 

ሷܙሻܙሺۻ ൅ ,ܙሺ܄ ሶܙ ሻ ൅ ۵ሺܙሻ ൌ ૌ (1) 

 
where ܙ is the vector of generalized coordinates (joint 
variables), ܙሶ  is the vector of generalized velocities, ۻ is the 
inertia matrix as a function of q, ܄ is the Coriolis/centripetal 
term as a function of ܙ and ܙሶ , ۵ is the gravity term as a function 
of q and τ is the vector of generalized forces that are found by 
using the forces applied by the cables. Note that, for systems the 
links of which are actuated at the joints, ૌ is independent of q 
when they are defined to be the joint variables (angle of rotation 
for revolute and distance for prismatic joints). However, as 
shown later in the text, ૌ for the robotic lumbar spine are 
functions of the generalized coordinates as well. 

 We will use the energy based Lagrange’s equation to 
derive the equations of motion for the robotic spine. The 
Lagrange’s formulation does not require the knowledge of the 
constraint forces when all of the constraints in a system are 
holonomic [8]. In Newton-Euler formulation, however, the 
constraint forces between adjacent links must be included as 
variables. The robotic lumbar spine is composed of only rigid 
bodies that are connected to each other via spherical joints, that 
is, all constraints in the system are holonomic constraints. The 
Lagrange’s equation can be stated as: 

 
d
dt
൬
dL
dqሶ
൰ െ

dL
dq

ൌ τ (2) 

 
where ܮ is the Lagrangian and defined as the difference 
between the kinetic and potential energy. 
 

Lሺq, qሶ ሻ ൌ Kሺq, qሶ ሻ െ Uሺqሻ (3) 

 
Adapting to the general format of the dynamic equations (Eqn. 
,ܙሺ܄ ,ሻܙሺۻ ,(1 ሶܙ ሻ and ۵ሺܙሻ are found to be: 

 

ሻܙሺۻ ൌ ቎
݉ሺܙሻଵଵ ⋯ ݉ሺܙሻଵ୨
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where: 
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Where ݉௜ is the mass, ۾େୋ౟

୆  is the augmented vector involving 
center of gravity coordinates of the i-th vertebra, g ൌ
ሾgܠ gܡ	gܢ	0ሿ

୘ ൌ ሾ0 െ 9.806	0	0ሿ୘ is the augmented (a zero is 

added as the last element) gravitational acceleration since y-axis 
is directed upward and ൣ ୧܂

୆ ൧ ൌ ሾ ଵ୆܂ ሿሾ ଶ܂
ଵ ሿ⋯ ሾ ୧܂

୧ିଵ ሿ  is the 4x4 
homogeneous transformation matrix that represents i-th vertebra 
coordinate system with respect to the base frame {B}. The 
transformation matrix of a frame with respect to the 
neighboring one is expressed as: 
 

ൣ ୧ାଵ܂
୧ ൧

ସ୶ସ
ൌ ൥

ൣ ୧ାଵ܀
୧ ൧

ଷ୶ଷ
൛ ୧۾ ሺ୧ାଵሻ୓ୖୋൟଷ୶ଵ

0			0			0 1
൩ 

 
Total kinetic energy of the RLS is: 
 

K ൌ෍ K୧ ୧

୒౬

ଵ

 (4) 

 
where N୴ is the total number of vertebrae, K୧ ୧ is the kinetic 
energy of the i-th vertebra expressed in the local vertebral frame 
and defined as: 
 

K୧ ୧ ൌ
1
2
m ୧܄ ୋ౟ ∙ ୧܄ ୋ౟ ൅

1
2

૑୧ ୧ ∙ ۶୧ ୋ౟ (5) 

 
where ܄୧ ୋ౟ is the linear velocity of the center of gravity, ࣓௜ ௜ is 

the angular velocity, ۶୧ ୋ౟ ൌ ۷୧ ୋ౟ ૑୧ ୧ is the angular 
momentum of the i-th vertebra with respect to its local frame 
and ۷୧ ୋ౟ is the inertia tensor. 

The right hand side of Eqn. (2) is composed of the 
generalized cable forces and the partial derivative of the 
potential energy with respect to joint variables (ܙ) which is 
actually the gravity term, ۵ሺݍሻ, in the Lagrange equation. Note 
that ࣎ is the vector of generalized cable forces. The resulting 
generalized forces must be calculated for proper use of the 
Lagrange equation. The k-th generalized force for the robotic 
lumbar spine can be written as: 
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																					߬௞ ൌ෍෍t୧୨ۺመ ୧୨
୘

୒ౙ

୨ୀଵ

୒౬

୧ୀଵ

∂൫ ୧܂
୆ ൯
∂q୩

୧୨۾
୧  (6) 

Where ܜ୧୨ ൌ t୧୨ۺመ ୧୨ is the tension vector with magnitude t୧୨	and in 
the direction of ۺመ ୧୨, i.e. the unit vector on cable j of  i-th 
vertebra. Using Eqn. (6), the generalized force vector in Eqn. 
(1) can be written as: 
 

	࣎													 ൌ  ሽଶ଴୶ଵܜሻଵହ୶ଶ଴ሼܙሺۯ
(7) 

 
3.2 Cable Tension Optimization 

One of the challenges of designing a cable-actuated robot is 
the fact that the cables must be in tension (positive) at all times 
during the operation of a task. The robots with rigid links that 
are actuated with motors are not subject to this limitation. The 
RLS, being a fully cable-actuated robot, needs to be supplied 
with positive cable tensions. We start with the previously 
derived dynamics equations (independent variables are not 
shown for clarity). 

 

ሷܙሺ୫ൈ୫ሻۻ ሺ୫ൈଵሻ ൅ ሺ୫ൈଵሻ܄ ൅ ۵ሺ୫ൈଵሻ ൌ  ሺ୬୶ଵሻ (8)ܜሺ୫ൈ୬ሻۯ

 
where m is the number of degrees of freedom (=15) and n is the 
number of cables (=20). In order to solve for positive cable 
tensions we introduce an intermediate variable	ૌܞ, which is the 
virtual input to the system and defined as [9]: 
 

ૌܞሺܖൈ૚ሻ ൌ ሷܙۻ ൅ ܄ ൅ ۵ (9) 

 
Therefore, the dynamics equation can be written as: 
 

ૌܞ ൌ  (10) ܜۯ

 
Eqn. (10) can be solved by: 
 

ܜ ൌ ାૌ୴ۯ ൅ ሺ۷୫ െ  (11) ܢሻۯାۯ

 
where ۯା ൌ  ୘ሻିଵ is the Moore-Penrose pseudo-inverseۯۯ୘ሺۯ
of ۷ ,ۯ୫ is the (mൈm) identity matrix, the first term on the right 
hand side is the particular solution and the second term is the 
homogeneous solution which maps ܢ (mൈ1 vector) to the null 
space of ۯ. The homogeneous solution can take any value 
making the solution non-unique. This property can be utilized to 
search for a solution that will generate positive cable tensions 
that are needed to control the RLS. On the other hand, when the 
homogeneous solution is zero, the tensions are calculated in the 
least-squares sense which does not guarantee a solution that will 
satisfy the positive cable tensions criterion. It is also imperative 
to obtain positive and non-zero cable tensions in order to be 
able to keep the robot under control during a task. Eqn. (11) can 
also be written as [10]: 

 

ܜ ൌ ାૌ୴ۯ ൅  ሻો (12)ۯሺۼ

 
where Nሺۯሻ	is the (nൈn-m) kernel matrix of  ۯ and ોሺ୬ି୫ൈଵሻ ൌ
ሼσଵ,σଶ,⋯ , σ୬ି୫ሽ୘ is an arbitrary vector. 

An optimization procedure can be employed with a proper 
objective function to solve Eqn. (12) with positive and non-zero 
cable tensions. One of the optimization procedures is by using 
linear programming, which is formulated as [11]: 

 

min
ો
୘܎ ો	such	that	

ە
ۖ
۔

ۖ
ۓ
ܜ ൌ ାૌ୴ۯ ൅ Nሺۯሻો

െNሺۯሻો ൑ ାૌ୴ۯ െ ܊

ો௟ ൑ ો ൑ ો୳

 

 
where ܎ is the (n-mൈ1) linear objective function vector, ܊ is the 
(nൈ1) vector that holds minimum allowed positive tensions 
(lower boundary for ܜ) and, ોܔ and ોܝ are respectively the lower 
and upper boundaries for the arbitrary ો vector in Eqn. (12). 
This optimization procedure, when converges to a minimum 
solution, produces point-wise feasible positive cable tensions 
that are equal or higher than the limits specified in ܊. However, 
these feasible cable tensions are not guaranteed to be 
continuous in time during the task. This discontinuity is not 
desirable since it may cause instability during real-time control 
of the robot. Therefore, we introduce a new optimization 
scheme (the continuity algorithm) that will result in cable 
tensions that are both point-wise feasible and continuous in 
time. The proposed optimization scheme makes use of the 
previous solution to be able to choose the current solution to be 
as close to it as possible. This scheme which minimizes the 
norm of the difference between the previous and current 
solution can be formulated as follows: 
 

min
σ౟

୧ܜ‖	 െ ‖୧ିଵܜ 	such	that	

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
୧ܜ				 ൌ ୧ۯ

ାૌ୴୧ ൅ Nሺۯ୧ሻો୧

୧ିଵܜ ൌ ୧ିଵۯ
ା ૌ୴୧ିଵ ൅ Nሺۯ୧ିଵሻો୧ିଵ

଴ܜ				 ൌ ܊

െNሺۯ୧ሻો ൑ ୧ۯ
ାૌ୴୧ െ ܊

	ો௟ ൑ ો୧ ൑ ો୳

 

 
In order to minimize this constrained nonlinear 

multivariable objective function, a numerical method can be 
applied. In this study, the built-in MATLAB® (The MathWorks, 
Inc.) function fmincon() is used for that purpose. The effect of 
using the previous solution on the acquisition of positive cable 
tensions with above formulation is discussed after the control 
problem is addressed. 
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3.3 Trajectory Control with Feedback Linearization 
In this section, we solve the control problem for the RLS 

by using feedback linearization technique. Feedback 
linearization control, also known as computed-torque control, 
aims to cancel the nonlinearities of a system and reduce it to a 
linear system to be controlled by a linear servo law. 
Decomposing the controller design into model-based and servo-
based portions helps solve the control problem in a more 
systematic way. Model-based portion contains a model of the 
nonlinearity and includes system parameters. Servo-based 
portion includes only the control law and is independent of the 
model-based portion and, therefore, system parameters [12]. 
The dynamics equation for the RLS is: 

 
ሷܙሻܙሺۻ ൅ ,ܙሺ܄ ሶܙ ሻ ൅ ۵ሺܙሻ ൌ ૌ୴ (13) 

where ૌ୴ ൌ  is the virtual input to the system which was ,ܜۯ
previously introduced as an intermediate variable. This virtual 
input is utilized to be able to find positive and non-zero cable 
tensions. The model-based portion of the controller is defined 
as: 

 
ૌ୴ ൌ હૌ୴ᇱ ൅ ઺ (14) 

where: 
હ ൌ  ሻܙሺۻ
઺ ൌ ,ܙሺ܄	 ሶܙ ሻ ൅ ۵ሺܙሻ 

(15) 

 
The servo-based portion that includes a PD (Proportional-

Derivative) control law is: 
 

ૌ୴ᇱ ൌ ሷܙ ୢ ൅ ۹୮܍ ൅ ሶ܍۹ୢ  (16) 

where ܙሷ ୢ is the desired accelerations,  ۹୮ and ۹ୢ are 
respectively proportional and derivative control gain matrices. 
The control gains are both 15x15 and diagonal matrices which 
implies that the PD control law is implemented independently 

for each degree of freedom (i.e., angle of rotation).  ܍ ൌ ୢܙ െ  ܙ
is the servo error between desired and actual trajectory. The 
error dynamics of the proposed control law can be found by  
first plugging Eqn. (16) into Eqn. (14) and the resulting 
equation into the dynamics equation. 
 

ሷܙ ൌ ሷܙ ܌ ൅ ۹୮܍ ൅ ሶ܍۹ୢ  (17) 

Noting that ܍ሷ ൌ ሷܙ ୢ െ ሷܙ  above equation written in error space 
becomes: 
 

ሷ܍ ൅ ሶ܍۹ୢ ൅	۹୮܍ ൌ ૙ (18) 

The equation above is a second-order differential equation 
and the coefficients now can be chosen to shape the dynamic 
response of the system. It should also be noted that the left hand 
side of the equation must be a Hurwitz polynomial to provide a 
stable closed-loop response. 

Controller architecture for the RLS is shown in Figure 3. It 
is composed of a trajectory generator, PD controller, virtual to 
real calculation and the forward dynamics blocks. Trajectory 
generator provides the desired angles (ୢܙ) at every time step 
based on a quintic polynomial in order to control first and 
second derivatives (ܙሶ ሷܙ	,ୢ ୢ) of the desired angles at the 
beginning and end of a path segment or trajectory. These 
derivatives are generally set to be zero to be able to obtain 
smooth movement of the robot. PD controller, as discussed 
previously, is needed to control the robot to follow the 
trajectory with a diminishing error between actual and desired 
angles of rotation. Controller gains can be chosen to obtain 
desired dynamic response and they affect the error dynamics, 
i.e. how fast the robot can recover from an error at any given 
time during the task. Virtual to real calculation is necessary in 
order to acquire positive non-zero cable tensions (ܜା). The inner 
workings of this block were detailed previously in the section 
that describes the cable tension optimization.

 

 
 

Figure 3. RLS Controller Schematic 
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4.  SIMULATION RESULTS 
The simulations were run for six different motion types 

(flexion/extension, right/left lateral bending and right/left 
torsion). Due to space considerations, however, the results for 
only (right) lateral bending motion are presented. The results 
for remaining motion types can be found in Karadogan [7]. 
Lateral bending is one of the most involved motion types in 
terms of the existence of coupled movements. Coupled 
movement of vertebrae occurs when the motion to the lumbar 
spine is induced in one specific plane (in frontal plane for 
lateral bending) causes vertebrae to move in more than one 
plane. The desired angles of rotations (Table 1) for the RLS are 
acquired from experimental data [5] which were obtained after 
applying 2.5 Nm pure moment about z-axis of the freshly-
frozen lumbo-sacral spine specimens. The mass of the vertebrae 
from L5 to L1 are 0.0125, 0.0132, 0.0123, 0.0113 and 0.0100 
kg, respectively. The trajectory generator starts at 0.1 sec, and 
simulation is run for a total of 1.5 sec. The control gains used 
are 5 and 6 for K୮ and K୴, respectively. 

 
Table 1 Desired Angles of rotation for Right Bending [5]. 

Motion Segment α (°)† β (°)† γ (°)† 

L5-S1 0.50 1.00 2.60 

L4-L5 1.00 1.00 3.00 

L3-L4 0.75 0.75 3.10 

L2-L3 0.75 0.50 3.50 

L1-L2 0.25 0.00 2.75 

† α, β and γ are the angles of rotations about x-, y- and z-axis, respectively. 

 
In order to test the effectiveness of the new method for 

solving positive continuous cable tensions, the cable tensions 
are solved with and without implementing the proposed 
continuity algorithm. Figure 4 shows the cable tensions without 
the continuity algorithm. Even though all tensions are solved to 
be positive discontinuity is apparent. Figure 5 shows the results 
of the simulation with the same parameters before but with the 
continuity algorithm. It is seen that the solved tensions are all 
positive and continuous in time. 

 
5.  DISCUSSION 

Conceptually, the RLS was designed to support some 
apparent needs that the instructors and the students of 
institutions that teach palpatory diagnosis are currently facing. 
These needs can be collected under three main items:  

 
1. Limited variation of dysfunctions that can be practiced 

in a lab environment, 
2. Repeatability issues due to the inherent characteristics 

of tissues to change properties due to repetitive 
manual manipulation, 

3. Lack of an objective assessment tool to evaluate the 
transfer of practical knowledge from the instructor to 
the students. 

With the RLS, there would be virtually no limit to the 
abnormal movement patterns to practice. These abnormal 
movement patterns could be programmed easily if the data are 
readily available, i.e. if experimental data or accurate models 
exist. If no data are available, experience of professional 
experts may be utilized to generate the required data for 
abnormal movement patterns by trial and error until a general 
consensus among the experts is reached. The RLS, as any other 
robot, would be repeatable (to a certain degree that needs to be 
calculated and validated experimentally) by configuring itself 
correctly according to the user’s input from the joystick/haptic 
device. As mentioned previously, there exists no assessment 
device for instructors to objectively evaluate progress and 
success of the students in real-life situations. By means of the 
RLS, all students can be objectively tested on identifying the 
normal/abnormal movement patterns of the lumbar spine. Since 
the RLS is also repeatable, any number of students may be 
tested for the same or different dysfunctions as needed. 

The equations of motion were complex and highly 
nonlinear. This is expected due to the number of degrees of 
freedom considered (15 DOFs) and the actuation redundancy. 
Note that, for systems the links of which are actuated at the 
joints, ૌ in Eqn. 1 is independent of the generalized coordinates 
(q) when they are defined to be the joint variables (angle of 
rotation for revolute and distance for prismatic joints). 
However, as shown in the text, ૌ for the robotic lumbar spine is 
a function of the generalized coordinates since the actuation is 
not performed at the spherical joints. This adds to the 
complexity of the equations. 

The simulations for the control of the RLS showed that the 
tracking errors were less than 0.005 degrees for all degrees of 
freedom during the entire range of motion which implied that 
the designed controller performed as expected. The results of 
the simulations also showed that the new method proposed to 
solve for positive cable tensions was very effective in 
eliminating the spikes in the cable tensions.  

The results for all motion types, when the effect of the 
continuity algorithm was tested, were very similar to the results 
of the right lateral bending as presented here.  

The RLS was designed to change configuration by a force-
feedback joystick or an affordable haptic device (such as 
Falcon® from Novint Technologies Inc.). By moving the 
joystick, the angles of rotations will be commanded to the RLS, 
therefore representing a normal lumbar spine movement. A 
static model of the human lumbar spine was derived to obtain 
these normal movement patterns of the lumbar spine for six 
different types of motion. It is also planned that some 
abnormalities consistent with known dysfunctional movement 
patterns (vertebral fusion, rotational resistance of vertebra 
about an axis etc.) could be mimicked based on these normal 
movement patterns.
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Figure 4. Cable tensions solved without the Continuity Algorithm (Right Bending) 
 

 
 

Figure 5. Cable Tensions solved with the Continuity Algorithm (Right Bending) 
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6.  CONCLUSION 
 
The dynamic model and nonlinear control of a 15-degree-

of-freedom cable-actuated robotic lumbar spine were presented. 
A new method was proposed that enables the solution of 
positive and continuous cable tensions for cable-actuated 
robots. The simulation results confirmed that the tracking errors 
during the simulated motion were small and the proposed 
continuity algorithm proved to be very effective in obtaining 
positive cable tensions that are also continuous in time.  
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