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ABSTRACT 

 
A novel simplified analytical three-spheres intersection 

algorithm is presented for use with forward pose kinematics 
solutions of a four-cable-suspended robot (the method is 
applicable to various other cable-suspended robots with equal 
pole heights and three cables intersecting in one point).  It is 
required that the vertical center heights of all three spheres are 
equal (otherwise one can use the existing more-complicated 
algorithm).  We derive this new algorithm and show that the 
multiple solutions, algorithmic singularity, and imaginary 
solutions do not cause any trouble in practical implementation.  
The algorithmic singularity of the original three-spheres 
intersection algorithm regarding equal Z heights is eliminated 
with the new algorithm.  The new algorithm requires 
significantly less computation compared with the original 
algorithm.  Examples are presented to demonstrate the new 
three-spheres intersection algorithm for a 4-cable robot. 
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1.  INTRODUCTION 

 
Cable robots have been used for a variety of applications, 

including material handling (Albus et al., 1993; Kawamura et 
al., 1993; Gorman et al., 2001), haptics (Bonivento et al., 1997; 
Williams, 1998), International Space Station (Campbell et al., 
1995), and large outdoor construction (Bosscher et al., 2007).  

One of the better known cable robots is the Skycam, which is a 
cable robot that dynamically positions a video camera for use in 
stadiums and indoor arenas (Cone, 1985). 

 
Cable-suspended robots (or tendon-driven robots or wire-

driven robots), referred to here as cable robots, are a type of 
robotic manipulator that has attracted interest for large 
workspace manipulation tasks.  Cable robots are relatively 
simple in form, with multiple cables attached to a mobile 
platform or end-effector.  The end-effector is manipulated by 
motors that can extend or retract the cables.  In addition to large 
workspaces, cable robots are relatively inexpensive and are 
easy to transport, disassemble and reassemble. 

 
Based on the degree to which the cable lengths alone 

determine the pose (position and orientation) of the 
manipulator, cable robots can be classified into two categories: 
fully-constrained and underconstrained. In the fully-constrained 
case the pose of the end-effector can be completely determined 
given the current lengths of the cables.  An example of a fully-
constrained cable robot is the FALCON-7 (Kawamura et al., 
1995), a small-scale, seven-cable, high-speed manipulator able 
to achieve accelerations up to 43g.  In underconstrained cable 
robots, statics and/or dynamics constraints are required in 
addition to kinematics constraints to solve the forward pose 
kinematics problem.  Carricato and Merlet (2013) present this 
complex and interesting problem. 

 
Forward pose kinematics (FPK, given the cable lengths 

calculate the position and orientation of the end-effector 
platform) can be a very challenging problem for cable robots.  
The NIST RoboCrane (Albus et al., 1993) has the geometry of 
an inverted Stewart/Gough Platform and the attendant 
complexity of FPK, even with symmetry in design.  Therefore, 
Williams, Albus, and Bostelman (2004a and 2004b) designed, 
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analyzed, and implemented cable robot systems wherein the 
FPK can be solved easily analytically by using a series of three 
cables meeting in one point and repeated applications of the 
presented three-spheres intersection algorithm.  Unfortunately, 
that algorithm has an artificial singularity in the nominal case 
of many cable robots, i.e. where the cable support poles are all 
at equal heights in the vertical Z axis.  Bosscher and Williams et 
al. (2007) applied this three-spheres intersection algorithm to 
translation-only cable robots whose cables do not intersect in 
one point, introducing the virtual cables concept. 

 
The current paper presents a simplified three-spheres 

intersection algorithm suitable for easy analytical FPK 
solutions of cable robots whose groups of three intersecting 
spheres have the same Z-height centers, i.e. at least three fixed 
cable support points lie in a horizontal plane above the ground.  
The ground support points need not lie on a plane.  Presented 
are the simplified three-spheres intersection algorithm plus 
analysis of the multiple solutions, algorithmic singularity, and 
imaginary solution cases, and computation requirement 
(compared with the general three-spheres intersection 
algorithm) followed by some examples, including a trajectory 
example. 

 
2.  EXAMPLE FOUR-CABLE-SUSPENDED ROBOT 

 
This section presents a four-cable-suspended robot to 

demonstrate the new algorithm developed in this paper.  It must 
be emphasized that many other practical cable-suspended robot 
designs can also benefit from this new three-spheres 
intersection algorithm.  The three main assumptions are: 1. At 
least three cables meet in a single point (for complicated robots 
it is necessary to solve multiple stages of three cables meeting 
in a single point); 2. All support cable heights are at the same Z 
coordinate; 3. All cables remain in tension for all motion. 

 
The fourth cable is redundant since only 3-dof (XYZ) of the 

end-effector point are controlled.  It is included for tension-
optimization purposes, to better avoid slack cables. 

 
Figure 1 shows the four-cable-suspended robot kinematic 

diagram.  The base Cartesian reference frame is {A} in the 
center of the base rectangle and the moving Cartesian control 
point is P.  Each tensioning torque motor/cable reel is fixed to 
the ground.  Each of the four active drive cables runs from 
fixed cable reel point Ai over pulleys at cable support points Pi 
to moving Cartesian control point P.  All four cables meet in a 
single point P and hence there is no rotation possible in this 
problem.  For the new FPK algorithm of this paper, the support 
tower heights hi are such that cable support points Pi lie in the 
same horizontal plane, i.e. all Pi have the same Z coordinate. 

 
As seen in Figure 1, the active cable lengths are 

 1 2 3 4

T
L L L LL .  The vector  TA

P x y zP  (not 

shown) gives the position of moving Cartesian control point of 

interest P with respect to the {A} origin, expressed in {A} 
coordinates. 

 
The fixed-base cable connection points Bi are constant in 

the base frame {A}: 
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where L and W are the rectangular dimensions (length and 
width) of the desired workspace footprint, and hi are the 
telescoping support pole heights (all equal in this paper, 
assuming a planar arrangement of base locations). 
 
 
3.  FORWARD POSE KINEMATICS SOLUTION 
 

In general, the inverse pose kinematics (IPK) problem 
(given the desired end-effector pose, calculate the active cable 
lengths) is straight-forward for cable robots, even without 
common cable intersection points, so this solution is not 
presented here. 
 

Again, the new FPK algorithm of the current paper is 
applicable to a variety of cable-suspended robots subject to the 
basic three assumptions mentioned earlier.  The forward pose 
kinematics (FPK) problem for the specific example robot in this 
paper is stated: Given the four active cable lengths 

 1 2 3 4

T
L L L LL , calculate the Cartesian position of the 

end-effector control point P. 
 
The FPK solution for cable-suspended robots and other 

parallel robots is generally very difficult.  It requires the 
solution of multiple coupled nonlinear (transcendental) 
algebraic equations, from the vector loop-closure equations.  
Multiple valid solutions generally result.  However, for cable-
suspended robots meeting the three assumptions of this paper, 
the FPK is straightforward. 
 

In this paper, the generally-complicated coupled 
transcendental FPK solution simplifies to that of finding the 
intersection point of three given spheres, all with known centers 
and given radii (cable lengths).  Finding the intersection point 
of three given spheres may be solved analytically, with two 
possible solutions. 

 
The approach for the specific robot example in Figure 1 is 

to use any three of the four given spheres and find their 
intersection point P.  It does not matter which three spheres are 
chosen.  The fourth given sphere not used in the FPK 
calculation may be used to check the FPK solution, i.e. using 
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IPK on cable 4 to ensure that its correct cable length L4 results 
after the FPK solution is complete. 
 

The original three-spheres intersection algorithm was 
presented in Williams, Albus, and Bostelman (2004a and 
2004b) for general spheres.  For support poles yielding equal Z 
heights for three spheres, this previous algorithm is 
unnecessarily complicated and results in an artificial 
singularity.  To overcome these issues, next we present the new 
simplified three-spheres intersection algorithm, assuming all 
three sphere centers are at the same vertical height. 
 
 
4.  SIMPLIFIED THREE-SPHERES INTERSECTION 
ALGORITHM 
 

We now derive the equations and solution for the 
intersection point of three given spheres (see Figure 2), 
assuming all three spheres have identical vertical center 
heights.  Assume that the three given spheres are ( 1c ,r1), ( 2c

,r2), and ( 3c ,r3).  That is, center vectors  1 1 1 1
T

x y zc , 

 2 2 2 2
T

x y zc ,  3 3 3 3
T

x y zc , and radii r1, r2, and 

r3 are known.  The three sphere center vectors must be 
expressed in the same frame, {A} here, and the answer will be 
in the same coordinate frame.  The equations of the three 
spheres to intersect are (choosing the first three spheres): 
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Since all Z sphere-center heights are the same, we have 

1 2 3 nz z z z   . (in Figure 1 terms, 1 2 3 4 nh h h h z    , 

assuming a planar support ground).  The unknown three-

spheres intersection point is  TA
P x y zP .  Expanding (1-

3) yields: 
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    (4-6) 

 
 
Subtracting (6) from (4) and (6) from (5) yields: 

 
2 2 2 2 2 2
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All non-linear terms of the unknowns x and y cancelled out 
in the subtractions above.  Also, all z-related terms cancelled 
out in the above subtractions since all sphere-center Z heights 
are identical.  Equations (7-8) are two linear equations in the 
two unknowns x, y, given in the following form. 
 

a b x c

d e y f
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where: 
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The unique solution for two of the unknowns x, y is: 
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   (10) 

 
Returning to (1) to solve for the remaining unknown z: 

 
2 0Az Bz C     (11) 

 
where: 
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Knowing the unique values x and y, the two possible 
solutions for the unknown z are found from the quadratic 
formula: 
 

 
2

,
4

2p m
B B C

z
  

   (12) 

 
For the cable-suspended robot, ALWAYS choose zm, i.e. 

the z height solution with the negative sign since that is the 
physically-admissible solution, below the plane of the four zn 
support pole heights.  The zp solution is physically-impossible 
since the end-effector point P would be above the plane of the 
four zn support pole heights, requiring impossible pushing 
forces on all four cables. 
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This simplified three-spheres intersection algorithm 
solution for x, y, z fails in two cases: 
 
i) When the determinant of the coefficient matrix in the x, y, 

linear solution (10) is zero. 
 

3 1 3 2 3 1 3 22( )2( ) 2( )2( ) 0ae bd x x y y y y x x           (13) 

 
This is an algorithmic singularity whose condition can be 

simplified as follows.  (13) becomes: 
 

3 1 3 2 3 1 3 2( )( ) ( )( )x x y y y y x x      (14) 

 
If (14) is satisfied there will be an algorithmic singularity.  

Note that the algorithmic singularity condition (14) is only a 
function of constant terms.  Therefore, this singularity can be 
avoided by design, i.e. proper placement of the support pole 
locations in the XY plane.  For instance, for a rectangular 
placement of the support poles with a centrally-located {A} 
frame, we have: 
 

1 2

1 3

1 2

2 3

x x

x x

y y

y y


 

 


  (15) 

 
and (14) simplifies to: 

3 3 0x y    (16) 

 
which is only satisfied if 3 0x   and/or 3 0y  .  This is 

impossible for a rectangular pole arrangement with the base 
frame {A} in the middle, and so in that design this algorithmic 
singularity does not exist.  Similarly, for non-rectangular base 
designs, one can avoid this algorithmic singularity by design. 
 
 
ii) When the discriminant in (12) is negative, the solution for 

z will be imaginary.  The condition 2 4 0B C   yields: 
 

2 2 2
1 1 1( ) ( )x x y y r      (17) 

 
When this inequality is satisfied, the solution for z will be 

imaginary, which means that the cable-suspended robot will not 
assemble for that configuration.  Note that (17) is an inequality 
for a circle.  That is, consider cable 1 from a top view.  If (17) 
is satisfied, this means that cable length r1 is too short to 
assemble at that configuration.  This will NEVER occur if valid 
inputs are given for the FPK problem, i.e. assuming the cable-
length sensing is adequate. 
 
 

5.  SIMPLIFIED THREE-SPHERES INTERSECTION 
COMPUTATIONAL REQUIREMENT 
 

Not only does the new three-spheres intersection algorithm 
for equal z-heights avoid the artificial singularity present in the 
original three-spheres intersection algorithm, but the 
computation requirement is significantly reduced too, as shown 
in the table below. 
 
 

Computational Requirement for the Two Algorithms 
 

Algorithm Add/ 
Subtract 

Multiply/ 
Divide 

Square 
Root 

Original 48 62 1 
New 25 31 1 
Reduction 48% 50% 0% 

 
 
 
6.  SIMPLIFIED THREE-SPHERES INTERSECTION 
EXAMPLES 
 

This section presents examples (two snapshot and one 
trajectory) to demonstrate the new simplified three-spheres 
intersection algorithm for equal-height spheres.  The following 
constants are used for this simulation: 1 acre desired workspace 
with a rectangular shape using the golden ratio, with W = 50.0 
m and L = 80.9 m.  An acre is about one American football field 
without endzones, that is, somewhat smaller than a standard 
soccer pitch.  The four support poles each have the same height 
hi = 7.62 m. 
 

a. Given three spheres (c,r), the new three-spheres 
intersection algorithm yields one valid solution. 

 

 
 
 

( 40.46 25 7.62 , 48)

( 40.46 25 7.62 , 48)

( 40.46 25 7.62 , 48)

T

T

T

 





 

 

     0 0 1.16
T TA

P x y z P  

 
For checking purposes, the fourth cable length is identical, L4 = 
48 m. 
 

b. Given three spheres (c,r), the new three-spheres 
intersection algorithm yields one valid solution. 

 

 
 
 

( 40.46 25 7.62 ,38)

( 40.46 25 7.62 , 48)

( 40.46 25 7.62 ,58)

T

T

T

 




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     6.55 8.60 2.63
T TA

P x y z   P  

 
For checking purposes, the fourth cable length is L4 = 50.04 m. 
 
 

c. A circular trajectory is specified with radius 20 m, 
centered in the middle of the workspace (with x = y = 
0) and at a constant height of 2 m (see Figure 3).  In 
this example, the IPK solution was calculated at each 
of 72 steps; given those cable lengths inputs (Figure 
4), the FPK solution was calculated using the new 
three-spheres intersection algorithm.  The FPK results 
are shown in Figure 5. 

 
 
7.  CONCLUSION 

 
A novel simplified analytical three-spheres intersection 

algorithm was presented in this paper.  It is useful in forward 
pose kinematics solutions of cable-suspended robots whose 
design includes at least three spheres that meet in one point.  It 
can be applied to a variety of cable robots that were identified.  
The vertical center heights of all three spheres must be equal; 
otherwise the existing more-complicated algorithm three-
spheres algorithm may be used.  It was shown that the multiple 
solutions, algorithmic singularity, and imaginary solutions 
never interfere with practical implementations of this 
algorithm.  The algorithmic singularity of the original three-
spheres intersection algorithm regarding equal Z heights was 
eliminated.  The new algorithm requires about 50% less 
computation compared with the original algorithm.  Examples 
were presented to demonstrate the new three-spheres 
intersection algorithm. 
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Figure 1.  Four-Cable-Suspended Robot Diagram 
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Figure 2.  Three-Spheres Intersection Diagram 
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Figure 3.  Final (and Initial) Circular Trajectory Configuration 
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Figure 4.  Cable Length Inputs, Circular Trajectory 
 

 
 

Figure 5.  FPK Cartesian Circular Trajectory Results 
 


