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ABSTRACT
Cable-suspended robots and haptics interfaces are appealing

because of their structural simplicity, high stiffness, and high exerted
wrench-to-weight ratio.  A major drawback is that cables cannot push
but can only exert tension.  Therefore, actuation redundancy is
required; even so, certain configurations and wrenches will fail since
they would require one or more cables to push.  The objective of this
paper is to present the best design for a planar cable-suspended haptic
interface with regard to largest workspace with general wrench
exertion in light of this cable tension problem.  There are infinite
designs with infinite wrenches to apply; therefore, the best and worst
designs are found by extensive computer simulation given a
reasonable quantification of the problem parameters.

INTRODUCTION
A haptic interface is a device which can exert wrench

(force/moment) and/or tactile feedback to the human from virtual
reality and/or remote environments.  The current paper focuses on
wrench feedback.  The Cable-Suspended Haptic Interface (CHSI)
studied in this paper is an extension of two recently-developed
technologies in cable-suspended robots (CSRs) and stringed haptic
interfaces.  An early CSR is the Robocrane developed by NIST for use
in shipping ports (Albus, et. al., 1993).  This device is similar to an
upside-down six-dof Stewart platform (Stewart, 1966), with six cables
instead of hydraulic-cylinder legs. In this system, gravity is an implicit
actuator which ensures cable tension is maintained at all times.
Another CSR is Charlotte, developed by McDonnell-Douglas
(Campbell, et. al., 1992) for use on International Space Station.
Charlotte is a rectangular box driven in-parallel by eight cables, with
eight tensioning motors mounted on-board (one on each corner). Four
stringed haptic interfaces have been built and tested, the Texas 9-string
(Lindemann and Tesar, 1989), the SPIDAR (Ishii and Sato, 1994), the
7-cable master (Kawamura and Ito, 1993), and the 4-cable planar
CSHI (Fig. 1, Williams, 1998).  Cable-suspended robots and haptic
interfaces can be made lighter, stiffer, safer, and more economical than
traditional serial robots and haptic interfaces since their primary
structure consists of lightweight, high load-bearing cables.  One major
disadvantage is that cables can only exert tension and cannot push on
the single moving link.  All of the devices discussed above are
designed with actuation redundancy, i.e. more cables than wrench-
exerting degrees-of-freedom (except for the Robocrane, with
tensioning by gravity) in attempt to avoid configurations where certain

wrenches require an impossible compression force in one or more
cables.  Despite actuation redundancy, there exist subspaces in the
kinematic workspace where some cables can lose tension.  Roberts et
al. (1997) developed an algorithm for CSRs to predict if all cables are
under tension in a given configuration while supporting the robot
weight.  None of these previous papers have presented CSR or CSHI
design for optimal wrench exertion.

Figure 1.  Four-Cable Planar CSHI Prototype

The objective of the current paper is to present the best design for
the 4-cable planar CSHI considering general wrench exertion in
general configurations.  This work equally applies to CSRs which
exert general wrenches on their environment (not just supporting the
robot weight).  This paper begins with a description of CSHIs,
followed by CSHI statics modeling and tension optimization, and then
design for wrench exertion.

CABLE-SUSPENDED HAPTIC INTERFACE (CSHI)
This section describes the 4-cable planar CSHI and the 8-cable

spatial CSHI, including a brief discussion on CSHI kinematics.  The
design focus in this paper is the planar case.

Planar and Spatial CSHIs
The CSHI consists of a hand-grip supported in-parallel by n-cables

controlled by n-independent tensioning actuators; Fig. 2 shows the 4-
cable planar case (Fig. 2a shows crossed cables and Fig. 2b shows
non-crossed cables) and Fig. 3 shows the 8-cable spatial case
(Williams, 1998).  Each cable actuator system includes a torque motor,
cable reel, tensioning mechanism, plus cable length and force sensors.
For 3-dof planar operation, there must be at least 3 cables and for 6-
dof spatial operation, there must be at least 6 cables.  Since cables can
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only exert tension on the hand-grip, there must be more cables to
avoid configurations where the hand-grip can go slack and lose
control.  Figures 2 and 3 show 4 and 8 cables independently controlled
by 4 and 8 actuators mounted to the frame.  This scenario represents
actuation redundancy but not kinematic redundancy.  That is, for the
planar case there is 1 extra motor which provides infinite choices for
applying 3-dof wrench vectors, but the hand-grip has only 3 Cartesian-
dof (x, y, φ).  For the spatial case, there are 2 extra motors which
provide infinite choices for applying 6-dof wrench vectors, but the
hand-grip has only 6 Cartesian-dof (x, y, z, roll , pitch, yaw).

Figure 2a.  Planar CSHI Diagram    Figure 2b.  Non-Crossed Cables

Figure 3.  Spatial CSHI Diagram

CSHI Kinematics
Haptic interfaces are used for both input and output.  The pose

(position and orientation) of the hand-grip may be calculated via cable
length sensing and forward kinematics and used to command the pose
or velocity of objects in the virtual/remote world.  The device is used
as output when reflecting wrenches to the human user via statics
modeling and tension optimization in attempt to ensure all cables are
in tension.  Simulated object weight, mass moment of inertia, stiffness,
dynamics loads, and environment contact forces may thus be felt.

Assuming all cables always remain in tension, CSHI kinematics is
similar to in-parallel-actuated robot kinematics (e.g. Gosselin, 1996).
In CSHI simulation for design, the inverse pose kinematics solution is
required and is straight-forward (given the pose, calculate the cable
lengths).  The forward kinematics problem requires the solution of
overconstrained coupled nonlinear equations and is more difficult.  A
Newton-Raphson numerical solution is employed, where the
overconstrained Moore-Penrose pseudoinverse is used in the iteration.
The CSHI inverse Jacobian matrix is closely related to the Newton-
Raphson Jacobian matrix and the statics Jacobian matrix.

These kinematics solutions are all presented in (Williams, 1998).
In that article it was discovered that symmetry is not a good attribute
in CSHI design.  For the planar case, if the ground link is of the same
shape as the hand-grip (i.e. both squares or both rectangles of identical

aspect ratio) there are two problems:  1) Kinematic singularities exist
for all configurations in the nominal horizontal angle φ = 0;  and  2)
Uncertainty exists due to multiple solutions in the forward pose
kinematics solution (the Newton-Raphson iteration yields a single
answer but in certain cases it can branch between multiple solutions).
When CSHI design does not use this symmetry, the CSHI is
singularity-free and a unique solution exists to the forward pose
kinematics (due to the overconstrained equations), assuming consistent
cable length inputs.  These results also hold for the spatial case
(Williams, 1998).

The next section presents statics modeling and tension
optimization for the CSHI.

CSHI STATICS
In this paper, the subspace of the kinematic workspace where all

cables are under tension given various applied wrenches is called the
static workspace.  We assume human accelerations on the hand-grip
are small and thus the device may be controlled in a pseudostatic
manner.  Statics modeling and tension optimization in attempt to
ensure all cables are in tension are presented in this section.  This is
required in the design process presented in the following section.

Statics Modeling
This section presents statics modeling for CSHIs.  For static

equilibrium the sum of external forces and moments exerted on the
hand-grip by the cables and gravity must equal the external wrench
exerted on the human hand.  Roberts et al. (1997) Presented statics
equations for CSRs.  Figure 4 shows the statics free-body diagram for
the planar CSHI (crossed cables).

Figure 4.  Planar CSHI Statics Diagram

The statics equations are:
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h3 is shown in Fig. 4), CG
H P  is the vector to the hand-grip center of

mass from the origin of {H}, and RF and RM  are the vector force and

moment (taken together, wrench) exerted on the human hand.
Moments are summed about the origin of {H} and all vectors are
expressed in frame {0}.  Substituting the above expressions into Eq. 1
yields:

[ ]{ } { }GWFA R −= (2)

where { } { }T
nFFFF �21=  is the vector of scalar cable forces,

{ } { }TCG
H

H gmPRgmG ×= 0  is the vector of gravity loading,

{ } { }TRRR MFW =  is the external wrench vector exerted on the
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From the duality of force and velocity, this matrix [A] is closely related

to the CSHI inverse velocity Jacobian matrix [M]:  [ ] [ ]TMA −= .  In
this paper gravity is assumed to be perpendicular to the CSHI plane so
G={0} in Eq. 2.

The statics equations can be used in two ways.  Given the cable

tensions {F} and each iL̂  from kinematics analysis, forward statics

analysis calculates the external wrench { }RW  applied, using Eqs. 2.

Inverse statics analysis (calculate the required cable tensions {F}

given the commanded external wrench { }RW  and each iL̂ ) is required

for tension optimization control so the human can feel { }RW  at the

hand-grip.  This is presented in the next subsection.

Tension Optimization
For CSHIs with actuation redundancy, Eq. 2 is underconstrained

which means that there are infinite solutions to the cable force vector
{ F} to exert the given wrench.  In this paper, the process of choosing
{ F} so that Eq. 2 is satisfied and all cable forces are positive is called
tension optimization.  Roberts et al. present an elegant method for
determining if a vector of only positive cable forces exists for CSRs
under gravity loading only.  This algorithm could be extended to
CSHIs with general wrench exertion, but for the planar 4-cable case
(also, the spatial 7-cable master of Kawamura and Ito, 1993) with only
one degree of actuation redundancy, a simpler method is developed in
this section.

The CSHI cable tension optimization problem is stated: minimize
{ F} subject to constraints Eq. 2 and fFi ≥  where f is a small positive

value.  Given the desired external wrench { }RW  applied by the hand-

grip and each iL̂  from kinematics analysis, the required cable forces

{ F} are calculated by inverting Eq. 2.  Since cables can only exert
tension (and cannot push on the hand-grip), generally actuation
redundancy will be required to exert { }RW  with no slack cables.  That

is, we require n > m, where n is the number of cables and m is the
dimension of the Cartesian space.  The general solution is:

{ } [ ] { } [ ] [ ] [ ]( ){ }zAAIGWAF nR
++ −+−= (4)

where [In] is the identity matrix of order n, {z} is an arbitrary n-vector,

and [ ] [ ] [ ][ ]( ) 1−+ = TT AAAA  is the underconstrained Moore-Penrose
pseudoinverse.  The first term of Eq. 4 is the particular solution to
achieve the desired wrench, and the second term is the homogeneous
solution which maps {z} to the null space of [A].  An equivalent
expression for Eq. 4 is:

{ } [ ] { } { }∑
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where the homogeneous solution is expressed as the sum of n-m
independent null vectors {Nj} of [ A], multiplied by scalars aj.  For the

4-cable planar CSHI, { } [ ] { } { }11 NaGWAF R +−= +  since n-m=1.  The

tension optimization algorithm is presented below, with reference to
the specific form of Eq. 5:
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where PiF  is the i th component of the particular solution and in is the

i th component of the null vector { }1N .

Tension Optimization Algorithm:
• Calculate the inverse pose kinematics and Jacobian [A].

• Calculate the particular solution { } [ ] { }GWAF RP −= + .

• All 0>PiF ?  If YES, within Statics Workspace, QUIT.

• If NO, calculate { }1N ; then, only for those 0<PiF :

• Calculate iPi nFa /−= to make 0=iF

• Choose maximum of these to be 1a

• Calculate total solution { } [ ] { } { }11 NaGWAF R +−= +

• All 0>iF ?  If YES, within Statics Workspace.  If NO, not

within Statics Workspace.
• QUIT

Example: Boundary of Static Workspace
Given a = 0.1, b = 0.3, c = 1, crossed cables, x = 0.2, y = 0.2,

$18=φ , and the wrench { } { }T
RW 001= , the tension algorithm

yields the solution:
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A relatively large negative 1a  is required to change the third particular

force solution component (originally negative) to zero.  For the

identical example, incrementing the angle by one degree, $19=φ , the
tension algorithm yields the solution:
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The null vector { }1N  and the particular solution { }PF  are steady, but

the third component of { }1N  has changed sign.  This causes scalar

correction 1a  and total cable force solution {F} to have high

sensitivity.  In order to change the third particular solution component
to zero, now the other three {F} components become negative and
hence infeasible.  If a smaller 1a  is chosen, the third component will

remain negative.  Thus, we have found the boundary of the statics

workspace for this example at this configuration: $18=φ  is the
maximum feasible angle, even exploiting the actuation redundancy.

The next section uses the above tension optimization algorithm to
determine the best 4-cable planar CSHI design for general wrench
exertion in general configurations.

CSHI DESIGN FOR WRENCH EXERTION

This section presents the parameters, design process, and results
for determining the best 4-cable planar CSHI design with regard to
wrench exertion.  The design approach involves extensive CSHI
computer simulation.

Parameters

Assuming a square ground link, there are only three design
parameters for the 4-cable planar CSHI: hand-grip rectangular
dimensions a and b, plus square ground link side c (see Fig. 2a).  If we
normalize with c=1 (the results may be scaled as needed), we have two
design parameters a and b.  In early statics and tension optimization
computer simulation, it was discovered that crossed cables (Fig. 2a)
are greatly preferable to non-crossed cables (Fig. 2b), particularly in
exerting moments.  Therefore, this design search focuses on the
crossed cable case.

Since there are an infinite number of [a, b] designs possible, plus
an infinite number of wrenches to exert, these issues were made finite
for design searches as follows.  The design parameters were allowed to
vary as a = [0,0.1,0.2,0.3] and b = [0.1,0.2,0.3,0.4].  Note a=b=0 is
not a feasible design, hence b starts from 0.1.  This yields a design
search space of 16 members; a finer search is possible if warranted, but
“infinite” wrenches must be considered for each design case.

For the planar case, a general wrench to reflect to the human hand

is { } { }T
ZYXR MFFW = .  Our definition of “infinite” wrenches for

the purpose of design is as follows.  We consider single wrenches (2
elements of { }RW  are zero) XF± , YF± , and ZM± ; we also consider

combined wrenches of two components YX FF ±± , ZX MF ±± , and

ZY MF ±± ; also combined wrenches of three components

ZYX MFF ±±± .  We consider only values of 1±  for each non-zero

wrench component.  This is fine for single wrenches since the results
scale for different magnitudes.  However, this is a limitation for the
combined wrenches.  There are six permutations for the single
wrenches, twelve permutations for the combined wrenches of two

components, and eight permutations for the combined wrenches of
three components.  Therefore, for each of the 16 [a, b] designs, we
have 26 wrenches to consider (416 computer simulations – searching
over all X, Y, φ generally takes more than one minute each).

For each simulation, we consider φ rotation at a grid of XY points
covering [ ]85.015.0∈X  and [ ]80.020.0∈Y , determined by

fitting the largest design [a, b] = [0.3, 0.4] in the ground link c=1.
Considering pitch ranges of the human wrist (when the hand

grasps a cylindrical hand-grip mounted perpendicular to the
rectangular [a, b] hand-grip link center), a nominal desired rotation

range is $45±=φ .  We wish to satisfy this statics workspace design
requirement at all XY points for all applied wrenches.

Design Process
This subsection presents the numerical design search process for

determining the best 4-cable planar CSHI for wrench exertion.

For a given [a, b] design.
For a given commanded wrench, find the maximum angle φ (called

max φ) for which the tension optimization algorithm yields positive
cable forces at each XY workspace point.  Repeat for all XY points.  An
example result for a = 0.1, b = 0.3, c = 1, crossed cables, and the

wrench { } { }T
RW 001=  is shown in the surface (and related

contour) plots of Figs. 5.  The -φ results are always flipped about the X
direction compared with the +φ results (as shown) so we need only
consider the +φ motion for design purposes.  For each individual
wrench simulated, record the biggest possible angle MAX(max φ),  the
smallest possible angle MIN(max φ), and the average of all max
φ angles AVG(max φ), over all XY locations.  The MAX and MIN
results are for single XY points, while the AVG results are for all XY.

For the example in Fig. 5, MAX(max φ) = $82 ,  MIN(max

φ) = $12 , and AVG(max φ) = $3.56  for the +φ direction, and

MAX(max φ) = $82− ,  MIN(max φ) = $12− , and AVG(max

φ) = $3.56−  for the -φ direction.
Repeat this procedure for all commanded wrenches for the given

[a,b] design.  Summarize the limiting conditions,
minimum{MAX(max φ)},  minimum{MIN(maxφ)}, and
minimum{AVG(maxφ)} over all wrenches for the given [a, b] design.

For all [a, b] designs.
Repeat the above procedure for all [a, b] designs.  Plot MAX(max

φ),  MIN(max φ), and AVG(max φ) for all [a, b] designs.  Choose the
best and worst designs.  To find the best design, one could fit surface
functions to the MAX, MIN, and AVG data over all [a, b], write an
objective function dependent on MAX(max φ),  MIN(max φ), and
AVG(max φ) , and then perform an optimization technique to
maximize this objective function.  However, for a small number of
design candidates (16 here), the best and worst designs can be chosen
manually.  MIN and AVG are more important than MAX in choosing
the best design since we desire good angle dexterity at all XY
locations.
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a.  max +φ Surface b.  max +φ Contour

c.  max -φ Surface d.  max -φ Contour

Figure 5.  Example max φ results

Summarize.
For the best (and worst) designs determine the minimum value of

max φ considering ALL wrenches at each XY location.  Plot these
results over XY to demonstrate the minimum extent of the statics
workspace for the best (and worst) designs in exerting all wrenches.
Repeat for the uncrossed cable cases, for best and worst designs
determined above.

Results
Figures 6 present contour plots for the MAX(max φ),  MIN(max

φ), and AVG(max φ) for all [a, b] designs.  These results are the
limiting cases, i.e. the minimum MAX(max φ),  MIN(max φ), and
AVG(max φ) for all wrenches at each [a, b] design.  The plot range for
these figures is the design space [a,b], rather than the physical CSHI
XY space of Fig. 5.  For certain design candidates in certain
configurations with certain wrenches, there was no limit in terms of
statics workspace.  That is, the tension optimization algorithm yielded
all positive cable forces for all angles φ.  Therefore, an artificial limit

of $180=φ  was imposed, as evident in the MAX results, Fig. 6a.  The
results in Figs. 6 are for 16 discrete design points with a =
[0,0.1,0.2,0.3] and b = [0.1,0.2,0.3,0.4].  Units are deg.

Figure 6a.  minimum MAX(max φ) Design Results

Figure 6b.  minimum MIN(max φ) Design Results

Figure 6c.  minimum AVG(max φ) Design Results

Figures 6 summarize the results from the 416 computer
simulations (16 designs with 26 wrenches each).  In Fig. 6a the

smallest MAX values are all $45  along a=0, for all b values; the

largest MAX values are the artificial limit of $180  in the plateau

shown to the right.  In Fig. 6b the smallest MIN values are all $5

along a=0.3, for all b values; all MIN values are all $15  along a=0, for

all b values; the largest MIN value is $40  at the single design point [a,

b] = [0.2  0.1].  In Fig. 6c the smallest AVG values are all $1.32  along
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a=0, for all b values; the largest AVG values are greater than $100
along the a=b ridge.  This a=b ridge also yields high MAX results but
not the best MIN results.

As mentioned earlier, the a=b designs are to be avoided because
square ground link / square hand-grip symmetry leads to kinematic
singularities for all XY when 0=φ  and uncertainty in the forward
kinematics solution.  However, a=b with a square ground link
generally leads to a good statics workspace.  The MIN and AVG
results are more important in choosing the best design.  Therefore,
there is one clear choice: the best design for general wrench exertion

is [a,b] = [0.2  0.1].  Its MIN value of $40  is far better than other

choices.  Its AVG value of $70  does not match the a=b ridge, but is

relatively high.  In secondary consideration, Its MAX value of $90  is
not as high as possible, but is relatively high.

In a similar manner, the worst design for general wrench exertion

is [a,b] = [0  0.4].  The MIN value is $15 , the AVG value is $1.32 ,

and the MAX value is $45 .  Other candidates for the worst design are

any b value along a=0.3 since these MIN values are $5 ; however, their
AVG and MAX values are higher than the chosen worst design.

To better summarize results we now demonstrate the minimum
extent of the statics workspace for the best (and worst) designs in
exerting all wrenches.  Figure 7 shows the minimum{ MIN(max φ)}
contour plot results for all wrenches, plotted over the physical CSHI
XY space for the best design.  Figure 8 shows the same for the worst
design.  These figures show the smallest angles attainable by the CSHI
considering positive cable tension for exerting all wrenches over the
XY workspace area.

Figure 7.  minimum MIN(max φ) for Best Design

Figure 8.  minimum MIN(max φ) for Worst Design

Figures 7 and 8 are for the +φ case;  the -φ  results are flipped about
the X direction, as demonstrated in Figs. 5b and 5d.

In Fig. 7 we see that the MIN value of $40  is only the limiting

case in a small subsection of the workspace.  This MIN value is $65

for a large portion of the useful statics workspace, and it exceeds $75

in more area than it falls below $45 .  The design requirement of a

statics workspace with $45±=φ  is nearly satisfied with this best
design.

In Fig. 8 the MIN value of $15  is also only the limiting case in a
small subsection of the workspace.  However, this MIN value falls

below $45  for the entire useful statics workspace when exerting all

wrenches so the design requirement of $45±=φ  is always violated
with this worst design.

Now we return to the subject of crossed- vs. non-crossed-cables.
For the best and worst designs from above, results similar to those of
Figs. 7 and 8 are given in Figs. 9 and 10.  As seen in these results, the
non-crossed cable case is very poor for statics workspace when
exerting all wrenches.  Note the “Best” design (highest values along a

small ridge of $15  in Fig. 9) is actually worse than the “Worst” design

(much of the workspace has the highest values of $20 ).  The reason is
that best and worst were determined specifically for the crossed-cable
case and obviously do not apply to the best and worst non-crossed-
cable case.  However, judging from Figs. 9 and 10, we need only
pursue the crossed-cable case (the focus of this paper before this
point).

Figure 9. “Best” Design Non-Crossed Cables

Figure 10. “Worst” Design Non-Crossed Cables
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CONCLUSION
This paper presented design of a planar cable-suspended haptic

interface with regard to best statics workspace with general wrench
exertion.  The results equally apply to a planar cable-suspended robot
which must exert various wrenches on its environment.  Statics
workspace is defined as the subspace of the kinematics workspace in
which any wrench may be applied with only positive cable forces.
Since cables can only exert tension, actuation redundancy is generally
required for cable-suspended robots and haptic interfaces.  A tension
optimization algorithm was presented to determine the limits of the
statics workspace via extensive computer simulation.  The best and
worst designs were found given the constraints of the study; the
difference between best and worst was quite dramatic.  There were
limitations: only 16 designs were considered and 26 wrenches made
up the definition of applying general wrenches.  Symmetry in design
(i.e. square hand-grip and square ground link) was found to be good
for statics workspace but it is not good regarding kinematic
singularities and the forward kinematics solution.

The spatial case is of interest for cable-suspended robots and
haptic  interfaces.  Since there is a large increase in the parameters for
spatial design (three angles instead of one, six wrench components
instead of three, inclusion of the Z coordinate) an attempt was made to
extend these planar design results to the spatial case.  While it was not
clear exactly how to extend the best and worst results into three
dimensions, it was clear that every attempt failed.  Therefore,
determining the best design for spatial cable-suspended devices is the
subject of on-going work.
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