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ABSTRACT 
This paper presents extension of the triangular 6-cable NIST RoboCrane to a rectangular 8-cable-
suspended robot, motivated by an application in the ARGOS (Active Response Gravity Offload 
System) Laboratory at NASA Johnson Space Center.  Six candidate cable/platform design 
arrangements are considered and evaluated in MATLAB simulation, based on all-eight-cable-
positive tensions workspace, singularities, magnitude and slope of cable tensions during 
trajectories, translational/rotational stiffness, and cable interference.  As ever in engineering 
design, there are tradeoffs, and recommendations are made as to the most suitable design out of 
the six candidates. 
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1.  INTRODUCTION 
The Active Response Gravity Offload System (ARGOS, Figure 1) is used at NASA’s Johnson 
Space Center for experimental simulations of reduced gravity on humans and vehicles for 
planetary exploration.  This paper analyzes the potential use of a cable-suspended robot system in 
place of the current single cable system, providing the system with additional capabilities for 
gravity simulation not possible with its current design.  The potential of using this cable-suspended 
robot system is evaluated by kinematic and pseudostatic MATLAB simulation. This project is to 
serve as the groundwork for future work in testing and evaluating a cable-suspended robot system 
as a replacement to the current ARGOS system.  The current cable is 1-dof-controlled and so it 
can swing freely, being quite underconstrained.  The NASA JSC ARGOS Laboratory invited us to 
collaborate on a project updating ARGOS with the triangular 6-cable NIST RoboCrane [1]; we 
then suggested a rectangular, 8-cable extension of the RoboCrane since this would fit in the 
ARGOS rectangular workspace much more naturally. 
 

 
Figure 1. NASA JSC ARGOS Laboratory 

er.jsc.nasa.gov/ER5 
 
Cable robots have been used for a variety of applications, including material handling, e.g. [1], [2], 
[3], haptics [4], [5], International Space Station [6], demining [7], and large outdoor construction 
[8]. 
Based on the degree to which the cables determine the pose (position and orientation) of the 
manipulator, cable robots can be put into one of two categories: fully-constrained and 
underconstrained.  In the fully-constrained case the pose of the end-effector can be completely 
determined given the current lengths of the cables.  An example of a fully-constrained cable robot 
is the FALCON-7 [2].  Fully constrained cable robots have been designed for applications that 
require high precision, high speed/acceleration or high stiffness.  Underconstrained cable robots 
have been proposed for contour crafting construction [9].  However, because of the need for large 
workspace manipulation that has both precise motion and high stiffness, a fully-constrained cable 
robot is preferable (such as the robot system in this document, i.e. 8 active cables to control 6-dof 
spatial pose). 
The robot previously mentioned for International Space Station application [6], has been used 
more recently at NASA Johnson Space Center, as a large-satellite-simulating haptic device for VR-



   

based astronaut training.  Charlotte has 8 cables, 4 attached to the ceiling and 4 to the floor; cable 
crossing is employed for better moment feedback.  The proposed 8-cable robot in this document 
is more like an 8-cable rectangular extension of the 6-cable triangular NIST RoboCrane [1], with 
all 8 cables attaching to the ceiling. 
The ARGOS Laboratory occupies a relatively large space (a footprint of 12.5 m x 7.3 m and a 
height of 7.6 m), but it is indoors, and so ideal, massless, tensioned, straight-line cable models 
were used throughout, rather than the complicated cable sag models available wherein the 
kinematics and statics problems are coupled [10].  The main benefit of our 8-cable RoboCrane 
extension is that is naturally fits a rectangular room better than the original.  The cost is extra 
motors, cables, and sensors. 
This paper presents the 8-cable RoboCrane extension concept, followed by methods, results and 
discussion, then conclusions, including future work plans. 
 
2.  EIGHT-CABLE-SUSPENDED ROBOT CONCEPT 
This paper presents an eight-cable cable-suspended robot concept (Figures 2a and 2b).  It is 
essentially an 8-cable rectangular extension of the 6-cable triangular RoboCrane.  Six design 
candidates are considered, shown in Figure 3. 
 

    
Figure 2a.        Figure 2b. 
Eight-Cable-Suspended Robot Diagram  Top-View Kinematic Diagram   
(Design Candidate 1)    (Design Candidate 3) 
 
This section describes the Eight-Cable-Suspended Robot concept.  Figure 2b shows the robot 
kinematic diagram, from the top view.  The base Cartesian reference frame is {0}, attached at the 
ground surface, in the center of the base rectangle, with fixed 0 0 0

ˆ ˆ ˆ, ,X Y Z  coordinate axis directions.  
The control point is the origin of frame {P}, in the center of the moving platform, as shown.  Frame 
{P} has moving coordinate axis directions ˆ ˆ ˆ, ,P P PX Y Z .  The pose (position and orientation) of {P} 
is controlled with respect to {0} by coordinating the eight cables. 
Each of the eight active cables runs from a fixed overhead-cable-pulley point iB , 1, 2,3, 4i  , to a 
moving platform-fixed vertex jP , 1, 2,3, 4j  , as shown.  Each of the eight tensioning torque 

motors/cable reels is fixed to the base at overhead points iB .  Alternatively, the motors and cable 
reels could be mounted to the floor, with each drive cable passing over pulleys at iB .  As another 
alternative, the motors and cable reels could be mounted to the moving platform at vertex points 



   

jP  (as in the RoboCrane design [1]).  This alternative would increase portability but add significant 

moving dynamic inertia.  The eight cable lengths are iL , 1,2, ,8i   .  The position vector 

   0 T

P x y zP  gives the position of control point P with respect to the {0} origin, expressed in 

{0} coordinates.  The 3D orientations of the platform with respect to the base are expressed by Z-
Y-X Euler Angles , ,  [11].  The platform orientation shown in Figures 2a and 2b is for all three 
Euler angles equal to zero.  As is standard, here Euler angles indicate rotations about the moving 
axes. 
 

 

 
Figure 3. The Six Robot Design Candidates 

 
Design Candidate 1: in-line platform, non-crossed cables  (Orientation 1 – Uncrossed Cables) 
Design Candidate 2: in-line platform, crossed cables  (Orientation 1 – Crossed Cables) 
Design Candidate 3: rotated platform, non-crossed cables  (Orientation 2 – Uncrossed Cables) 
Design Candidate 4: rotated platform, crossed cables  (Orientation 2 – Crossed Cables) 
Design Candidate 5: square platform, non-crossed cables  (Square End-Effector – Uncrossed Cables) 
Design Candidate 6: square platform, crossed cables  (Square End Effector – Crossed Cables) 

 
This cable-robot system has actuation redundancy since there are eight active cables for six 
Cartesian motion components.  The actuation redundancy will be used to ensure all cables maintain 
tension at all times, since cables can only exert tension on the moving platform.  The gravity 
loading on the moving platform due to the platform mass will also help to maintain cable tensions 
for all motions.  Despite the actuation redundancy and gravity loading, positions are still possible 
where one or more cable tensions can go slack, which must be avoided in practical applications.  
For instance, the moving platform vertices cannot move outside the footprint of the base rectangle.  
Rotations are even more limited.  Positive cable tensions must be ensured for all motion control. 
The fixed overhead-cable-pulley points iB  are constant in the base frame {0} and the moving 
platform vertices jP  are constant in the platform frame {P}.  The ARGOS workspace has 

rectangular dimensions L x W x H, and the moving platform has rectangular dimensions l x w x h. 
We consider six candidate designs cases for the eight-cable-suspended robot, with in-line vs. 
rotated platform, and uncrossed vs. crossed cables, and rectangular vs. square end-effector 
platform.  Figure 3 shows the six design candidates.  For now we only consider an end-effector 
platform with the same aspect ratio as the base rectangle (1/8 of the base rectangular size), or a 
square platform with identical area to the rectangular platform. 
  



   

3.  METHODS 
The MATLAB simulations developed to compare the six 8-cable robot design candidates for the 
purpose of choosing the best one require: 1. Inverse pose kinematics (IPK); 2. Pseudostatics; 3. 
Stiffness calculations; and 4. Cable interference detection. 
 
IPK.  The inverse pose kinematics (IPK) problem is stated: Given the desired end-effector pose 

   0 T

P x y zP  and Euler Angles , , , calculate the required eight active cable lengths iL , 

1, 2, ,8i   .  This IPK solution is required for the simulated trajectories presented later.  Like most 
cable-suspended robots and other parallel robots, the inverse pose kinematics solution is straight-
forward since the cable lengths are simply the Euclidean norms of the cable vectors connecting 
each upper support point with the known platform cable connection points.  The cable vertices for 
the base are known and fixed, while the moving cable vertices for the platform are easily calculated 
from the given Cartesian pose and the known platform vertices locations in the moving frame.  
One must express all vectors in the same frame, e.g. {0} for success. 
 
Pseudostatics.  In pseudostatics analysis we assume that all moving platform velocities and 
accelerations (translational and rotational) are sufficiently small to ignore dynamic inertial effects 
and use the conditions of static equilibrium for all motion snapshots.  This analysis is necessary to 
calculate the cable tensions in each of the eight cables for all motion for all designs considered.  
Given the platform mass and any external forces/ moments (the external forces/ moments are 
assumed to be zero in later results), the cable tensions can be calculated and compared with 
maximum allowable tensions in design.  More crucially, this analysis is also required in attempt to 
maintain only positive cable tensions for all motion, for each design. 
The pseudostatics equations and Jacobian matrix are presented below.  This was derived from the 
moving platform free-body diagram and enforcing conditions of translational and rotational static 
equilibrium at any general pose. 

 
    0 0

EXT  S t W G       (1) 
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where  0

S  is the statics Jacobian matrix in {0},    0 0 P
j j P j    P P R P , 1, 2,3, 4j  , 0

P  R  is the 

orthonormal rotation matrix giving the orientation of {P} with respect to {0} [11], ˆ
iL  is the unit 

vector along the ith cable, directed from the platform towards the base,     1 2 8

T
t t tt   is the 

vector of eight cable tensions,    T

EXT EXT EXT EXT EXT W F M r F  is the external wrench vector, EXTr  

is the moment arm vector from the moment center to the point of application of the external force, 
and     0 TP

P CGm m G g R P g  is the gravity wrench vector, where P
CGP  is the moment arm vector 

from the platform control point P to the platform CG, expressed in frame {P} coordinates.  This 
set of pseudostatics equations is expressly for Design Candidate 3, shown in Figure 2b (and Figure 
3); it is easily modified for the other 5 design candidates. 
Considering six-dof are controlled for the platform (3 translations and 3 rotations) using eight 
independent cables, there are two actuation-redundant cables, which can be used for cable tension 



   

optimization (minimizing the least squares measure of all 8 cable tension, while enforcing the 
constraint of non-negative tensions).  MATLAB function lsqnonneg is used for this purpose. 
 
Stiffness calculations.  Stiffness analysis for cable-suspended robots was developed by [12], not 
shown due to space limitations.  These calculations require the pseudostatics Jacobian matrix for 
configuration-dependent translational and rotational stiffness calculations, plus assumptions of 
cable diameters and Young’s Modulus.  By using equal parameters amongst the six design 
candidates, conclusions may be drawn regarding the designs with the highest translational and 
rotational stiffness, a desired characteristic for ARGOS. 
 
Cable Interference Detection.  In general all 6 eight-cable robot designs presented in this paper 
have the possibility of unwanted cable interference during regular motions, especially for the 
crossed-cable cases.  This section presents an analytical method to detect cable interference 
between any two of the eight active cables.  This method is adapted from [13]. 
The basic idea is that the common normal between two spatial cables gives the shortest distance 
between them.  The common normal direction is simply found from the cross product between the 
two cable length vectors.  The common normal distance will be found using a vector loop-closure 
equation.  If this distance goes to zero, that is the moment of interference (ignoring the cables’ 
diameter).  More practically, if the sign of this distance changes during a trajectory, this identifies 
cable interference has occurred and the normal IPK solution will not be valid after the sign switch.  
Figure 4 shows two spatial cables that can interfere with each other. 
 

 
Figure 4.  Two-Cable Interference Diagram 

 
mB  and nB  are the two involved fixed base overhead cable reel points; mP  and nP  are the two 

involved moving platform cable connection points; iL  and jL  are the two total cable lengths, 

between mB , nP  and nB , mP , respectively; il  is the length along iL  to the common normal and jl  is the 

length along jL  to the common normal; and ijl  is the length along the common normal between 

cables i and j.  Absolute vectors to points mB , nB , mP , and nP , plus the cable lengths iL  and jL  are 

already known from kinematics analysis and the IPK solution.  The applicable vector loop-closure 
equation is (we choose to use {0} as the basis for all vectors): 
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The vector loop-closure equation yields three linear equations to solve for the three unknowns il , 

jl , and ijl : 
ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ix jx ijx i mx nx

iy jy ijy j my ny

ij mz nziz jz ijz

l l l l P P

l l l l P P

l P Pl l l

               
         

     (5) 

 
and the solution is: 

1
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ˆ ˆ ˆ

ˆ ˆ ˆ
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
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          

     (6) 

 
Assuming none of the cable pairs are collinear (nor parallel), the above 3 x 3 matrix is guaranteed 
to be non-singular and thus invertible.  Again, if the common-normal distance ijl  goes to zero, that 

defines the onset of interference.  When the sign of this shortest distance ijl  changes during a 

trajectory, this means cable interference has occurred between those two cables. 
A special case has 0ijl   for all motion; this occurs for non-crossed cables meeting at the same 

moving platform vertex.  In this case there is no cable interference and we also have 0i jl l   in 

this situation. 
In general amongst 8 active cables, there are a total of 28 cable pairs to check for cable interference 
at each snapshot in a trajectory.  In practice, many of these 28 cable pairs will never intersect by 
design; therefore, it is possible to check a small subset of these for each robot design. 
 
 
 
  



   

4.  RESULTS AND DISCUSSION 
The methods of this paper were implemented in MATLAB simulation, using dimensions of the 
current ARGOS laboratory at NASA Johnson Space Center.  Comparing the translational 
workspaces, with horizontal platforms ( 0     ) showed all 6 candidate robot designs were 
able to maintain positive cable tensions for all eight cables throughout the entire ARGOS 
workspace.  The MATLAB function lsqnonneg was used for positive-only cable tensions 
optimization. A representative workspace (for Design 1) is shown in Figure 5 where each green 
marker represents an end effector position in the robot workspace where all 8 cable tensions are 
positive.  All six designs yielded an equivalent good result regarding positive cable tensions, so 
this is not a measure to choose a best design.  For all six design candidates, this translational 
workspace shown in Figure 5 also presents the singularity-free workspace; as long as the planes 
bounding the cable-suspended robot borders are not approached nor exceeded, no singularities 
exist. 
 

 
Figure 5. All-Positive-Cable-Tension Workspace 

 
The ARGOS Laboratory is a 3D rectangular space with the base frame composed of length L = 
12.50, width W = 7.32, and height H = 7.62 m.  The rectangular moving platform dimensions of 
length l = 1.56 and width w = 0.91 m were chosen to be 1/8 of the ARGOS base frame footprint.  
These terms are easily changeable according to specific design needs.  The moving platform 
thickness h can be much smaller and is design-dependent.  The assumed platform mass m is 100 
kg. 
The base frame {0} and the moving platform frame {P} were shown in Figure 2b.  The base frame 
is fixed to the center of the ARGOS footprint, on the floor.  The moving frame is fixed to the center 
of the top of the moving platform. 
Now two general trajectories are presented to exercise the robot in MATLAB simulation, for all 
six designs. 
 
  



   

Trajectory 1. Straight-line translation on a diagonal covering most of the reachable workspace, 
plus rotations about three axes.  The initial and final poses  x y z     for this first 

trajectory are: 
 
 

 4.834 1.596 0.500 0 0 0  

 
 4.834 1.596 6.000 20 20 20  

 
Where the position vector    0 T

P x y zP  gives the position of control point P with respect to 

the {0} origin, expressed in {0} coordinates, and the Z-Y-X Euler Angles are , , . 
These initial and final moving platform poses are divided into equal Cartesian steps to ensure 
smooth motion from start to finish, using IPK, pseudostatics, stiffness, and cable-interference-
detection calculations at each step.  The final pose for Trajectory 1 is shown in Figure 6, for Design 
3. 
 

 
Figure 6. Final Pose, Trajectory Example, Design 3 
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Trajectory 2. The translational trajectory follows an XY circle, with an oscillatory sine wave for 
Z motion.  At the same time, the Euler Angles are also varying in an oscillatory manner.  The 
motion data for this second trajectory are: 
 
 circle center   0 0 4

T  m 

circle radius  2 m 
Z amplitude  1  m 
Z frequency  3 cycles 
     amplitude  15 10 5      

     frequency  1 2 3  cycles 

 
Again, the circular moving platform poses are divided into equal Cartesian steps to ensure smooth 
motion from start to finish, using IPK, pseudostatics, stiffness, and cable-interference-detection 
calculations at each step.  Trajectory 2 is shown in Figure 7, for Design 3. 
 

 
Figure 7. Circular Trajectory Example, Design 3 
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The cable tension norms for each robot design during the two simulated trajectories are shown in 
Figures 8 and 9. Figure 8 shows the square platform with uncrossed cables (Design 5), and the 
rotated rectangular platform with crossed cables (Design 4) were the best suited to the linear 
trajectory while the rotated rectangular platform with either uncrossed or crossed cables (Designs 
3 and 4, respectively), and the square platform with uncrossed cables (Design 5) were best suited 
to the circular trajectory. These design candidates were best suited to their respective trajectories 
due to their relatively low magnitude of cable tensions norms as well as their smooth plot shape 
corresponding to small overall changes in cable tensions over the course of the simulated 
trajectory. 
 

 
Figure 8. Cable Tension Norms during Linear Trajectory for each Robot Design 

 

 
Figure 9. Cable Tension Norms during Circular Trajectory for each Robot Design 

  



   

It was concluded by visual inspection of the motion animations that the uncrossed cable 
orientations (Designs 1, 3, and 5) were not subject to cable interference in either of the two 
simulated trajectories. Figures 10 and 11 present the distance between cables 2 and 3, plus 6 and 7 
for all robot designs that have crossed cables (Designs 2, 4, and 6). It can be seen that all 3 crossed 
cable designs encounter cable interference while performing the circular trajectory, while avoiding 
cable interference during the linear trajectory (after the start). Design 4 had the smallest distance 
between both cables 2 and 3 and 6 and 7, corresponding to the smallest range of motion before 
cable interference occurs. 
 

 
Figure 10. Distances between Cables 2-3 and 6-7, Linear Trajectory 

no cable interference after start 
 

 
Figure 11. Distances between Cables 2-3 and 6-7, Circular Trajectory 

cable interference occurs 
 
Standard stiffness analysis was performed for all 6 design candidates a ‘la Unger et al. (1988), not 
shown.  Generally, all 6 designs performed similarly with regards to translational stiffness, hence 
not giving a means to choose the best design.  However, the rotational stiffness is far superior for 
the cross-cable Designs 2, 4, and 6, compared to that of the uncrossed cable Designs 1, 3, and 6.  
This is a tradeoff in design; the better rotational stiffness is offset by the unacceptable performance 
with regards to cable interference. 
The results from the cable tension norms and cable interference plots for the generated trajectories 
show that while some of the crossed cable configurations are better for cable tension optimization 
and rotational stiffness, their susceptibility to cable interference ultimately eliminate them as a 



   

viable option for an improved ARGOS system. The orientation that performed best considering 
the tested parameters was the square platform with uncrossed cables (Design 5). 
 
5.  CONCLUSIONS AND RECOMMENDATIONS 
This paper has presented an extension of the triangular 6-cable NIST RoboCrane to a rectangular 
8-cable-suspended robot, for use in the ARGOS (Active Response Gravity Offload System) 
Laboratory at NASA Johnson Space Center.  Six candidate cable/platform design arrangements 
were considered and evaluated in MATLAB simulation, based on all-eight-cable-positive tensions 
workspace, singularities, magnitude and slope of cable tensions during trajectories, 
translational/rotational stiffness, and cable interference. Ideal, massless, tensioned, straight-line 
cable models were used throughout, rather than the quite complicated cable sag models available.  
Tradeoffs were noted in the design evaluation measures amongst the six candidate 8-cable-
suspended robot designs. The overall recommendation based on this work is Design 5 (square 
platform with uncrossed cables).  This is based on only two trajectories, however, the authors 
expect this to be a general design recommendation result for more general ARGOS trajectories. 
The main benefit of our 8-cable RoboCrane extension is that is naturally fits a rectangular room 
better than the original.  The cost is extra motors, cables, and sensors.  Additional benefits may be 
discovered with future work. 
Future work plans include: 1. Extending our designs to include 4 down-pulling cables; this may 
have stiffness benefits and will allow downward accelerations in excess of 1-Earth-G (not 
necessary for standard ARGOS reduced-gravity experiments), but cable interference may be 
worse.  2. Based on NASA feedback, focus solely on pure translational motion trajectories as 
Cartesian rotations with the cable-suspended robot are of less importance to ARGOS. 3. Modeling 
and simulating dynamics for cases where pseudostatics analysis is not sufficient.  4. Implementing 
project results in scale-hardware prototypes at Ohio University and NASA JSC. 5. Supporting 
development and implementation of the full-size hardware in ARGOS at NASA JSC, including 
safe and effective positive-cable-tension-only controller and cable interference avoidance. 
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