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1. INTRODUCTION 
 
Modeling of human body walk has been evolved from simple 
models such as an inverted pendulum model [1, 10, 11] and 
mass-spring model [2, 12] to relatively complicated models 
that include relatively high number of degrees of freedom [5-
8, 13]. Primary goal of those models is to predict the internal 
and external forces during a regular walking cycle. Detailed 
human body models can include calculations of the most 
important muscle forces for particular types of motion. 
However, for a robot that is actuated via rotational motors, 
calculation of particular muscle forces is not needed, but the 
moments they produce about the corresponding joints. There 
are two main reasons for the calculation of the joint torques: 
 
(a) Based on a walking model one can predict maximum 
torques that are necessary to generate particular motion of a 
robotic structure. The maximum torque and maximum power 
are necessary data to choose joint actuators. The procedure of 
the actuators (motors) selection based on the robot dynamic 
model is inherently iterative, since the mass distribution and 
consequently, the static and dynamic forces are significantly 
dependent on the sizes and locations of the chosen actuators. 
 
(b) Torques at relevant joints for particular motion, calculated 
based on a walking model, can be used to generate nominal 
control trajectories for a complex walking robotic architecture. 
Those nominal trajectories can be calculated offline or in real-
time using an inverse plant model. The advantage of the later 
is that the reference (desired) trajectories can be changed 
online depending on the conditions imposed by environment 
rather than relaying on the pre-calculated reference 
trajectories. This is essential for obstacle avoidance, which 
requires that the reference trajectories are adjusted 
accordingly. 
 
Inclusion of more degrees of freedom in a walking robot 
model normally leads to more precise results, but also it leads 
to more efforts needed to understand the process and what is 
happening with internal variables in the robotic structure. The 
next sections give an overview of the simplified models and 
general features of a more complex model. 
 
This paper presents a reference model based control design for 
a 10 Degrees of Freedom (DOF) bipedal walking robot, using 
nonlinear gain scheduling.  The main goal of this work is to 
show how a concentrated mass model of bipedal walkers can 
be used as a reference model for prediction of the required 
joint torques for a bipedal walking robot. A relatively 
complicated architecture, high DOF, and balancing 
requirements make the control task of these robots very 
difficult. Although traditional linear control techniques, such 
as a PID controller and variants, can be used to control bipedal 
robots, nonlinear control approaches are necessary for higher 
performance requirements.  
 
Nonlinear control systems are based on the error dynamics, 
which requires calculation of nominal values of the control 
inputs and nominal state variables, which can be obtained 

using an inverse (reference system) system. However, the 
problem that arises is that an exact dynamic inverse is 
impossible to obtain in the general case.  Instead a 
pseudoinverse is used. The second problem is that the 
dynamic pseudoinverse regularly requires stabilization [14].   
 
The main contribution of this work is to show that the 
reference model can be a bipedal walking model with 
concentrated mass at the center of gravity, which removes the 
problems related to design of a pseudoinverse system. Another 
significance of this approach is the reduced calculation 
requirements due to a simplified procedure of nominal joint 
torques calculation. 
 
Since a concentrated mass model is used as a reference model 
for obtaining the nominal torques, a comparable overview of 
walking models is given by grouping them into two overall 
groups: models with the concentrated mass and models with 
distributed mass. Specifically, the mass-spring inverted 
pendulum model is described with emphasis on how to adjust 
this model to be used for the torques/forces prediction in 
complex bipedal walking architectures. Finally, simulation of 
the concentrated mass model based control is shown in the 
case of a 10 DOF walking robot model, including kinematics, 
dynamics, and controls accompanied with numerical solutions 
for particular desired joint trajectories, recorded from real 
human walking cycle data.  
 
Kinematic and dynamic analysis is discussed including results 
for joint torques and ground force necessary to implement the 
prescribed walking motion. This analysis is accompanied with 
a limited comparison with available experimental data.  
Finally, an inverse plant and tracking error linearization based 
controller design approach is described accompanied with 
results analysis and conclusions about the controller 
performance. 
 
To our knowledge, the nonlinear gain scheduling based on a 
concentrated mass model has not been applied to control a 
bipedal robot. Moreover, it is difficult to find any sources 
covering the nonlinear gain scheduling for a bipedal robot 
control. This should not be confused with a PID gain 
scheduled controller. The nonlinear gain scheduled controller 
specifically designed for the bipedal robot has the gains 
scheduled based on the nonlinear model and provides 
significantly better performance than a PID gain scheduled 
controller. The drawback side of this approach is extremely 
difficult design process since the system is a MIMO system 
(Multiple Inputs, Multiple Outputs) and there are significant 
couplings between the control paths from different control 
inputs (joints torques) to different outputs (the joints angles 
and corresponding derivatives).   
 
Despite the complicated controller design, there are several 
significant advantages of using this method that justify using 
the nonlinear gain scheduling method instead of a simple PID 
controller. The most important advantages of this approach are 
the high tracking performance (low trajectories tracking 
errors) which cannot be achieved using traditional PID 



 3  

techniques and higher maximum velocities of a bipedal robot 
accompanied with better balancing. Moreover, traditional 
control techniques, such as PID, treat each joint separately, 
and cross coupling between different inputs-output paths is 
considered as disturbances, which limits achievable 
performance of such control systems. That is, by treating the 
system as a full MIMO system, the controller performance can 
be significantly better than assuming decoupling and hoping 
that the disturbances will be sufficiently small, such that the 
control system can still track the desired trajectories. 
 
In this article we propose a novel combination of a nonlinear 
gain scheduling with a concentrated mass model for the 
MIMO bipedal robot system. 
 
 
1.1 Models with Concentrated Mass 
 

The group of relatively simple walking models is based 
on the inverted pendulum structure with variations combining 
a spring or two springs and dampers. The simple models 
include one or two variables with overall mass concentrated 
into a point, a center of mass (COM).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Mass and spring inverted pendulum 
walking gait representation: (a) single support, (b) 

double support represented by two springs, (c) 
double support represented by a single spring. 

 
The Six Determinants model [1] has been used in the past to 
analyze the human gait cycle. Due to inconsistency with 
theoretical and experimental results, this model has been 
replaced by the Inverted Pendulum model, which gives results 
much closer to those obtained experimentally. One of the 
major inconsistencies of the regular Inverted Pendulum model 
results with the experimental results is the zero energy input, 
which means that the model does not consider the energy lost 
during the gait cycle.  
 
A more advanced, but still one of the simplest models for 
human gait analysis is Mass and Spring Inverted Pendulum 

(MSIP) model [2]. The point mass is equal to the total mass of 
the body concentrated into the center of gravity. The spring 
connects the ground contact point (the center of pressure CP) 
and the center of gravity (CG) and its deflections include all 
changes of the distance between the CP and the CG points due 
to flexions/extensions of the hip, knee and ankle joints. Figure 
1 shows the concept of representing a complex human body 
(or a bipedal robot) by a mass and spring model. 
 
The spring connects the center of pressure (CP) and the center 
of mass (COM) (a). The COM point can be considered as very 
close to the hips since its position varies relatively close to the 
hip joint during the walking cycle. The double support period 
(b) can be modeled using mass and two springs connecting the 
COM and centers of pressures CP1 and CP2. However, double 
support period is relatively short compared to the duration of 
the gait cycle and frequently can be considered as 
instantaneous. Besides this case, a single spring model can 
cover a double support period in the way of interpreting the 
spring-ground connection as a zero moment (ZM) point (c). In 
other words, the total moment of 1yF and 2yF  forces for ZM 
point is equal to zero. A state space representation of the 
simple mass-spring inverted pendulum, shown in Figure 2, is: 
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Figure 2. Mass-spring inverted pendulum model 
 
where 1x  represents the radial distance of the COM from the 

ground contact point, 2x  is the radial velocity, 3x  is the 
angular velocity of the link between the ground contact and 
the COM, which is approximately equal to the angular 
velocity of the stance leg during the single support phase of 
the walking, and 4x is the corresponding angular acceleration.  
 
The state space differential equation (1) can be used to solve 
for the trajectory of the center of mass, as well as the ground 
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reaction and the spring forces.  The trajectory obtained using 
this model approximates the trajectory of a real bipedal 
system’s center of mass. Similarly, force plate measurements 
[9] show that the ground reaction force of a real bipedal 
system can be approximated by the force calculated using (1).  
 
Besides use of this model for studying different parameters of 
the walking cycle mechanical energy optimization by 
biological systems, the significance of this result is reflected in 
the fact that this model with concentrated mass can be used as 
an approximate reference model for complex robotic bipedal 
systems control.  
 
The idea is to construct a mathematical model based on the 
equation set (1) to calculate the reaction force repeatedly at 
specified time steps and use that result to calculate required 
torques for a complex architecture bipedal robotic system such 
that total reaction force is equal to the one obtained by the 
concentrated mass model. The block diagram of this control 
system concept is shown in Figure 3.  One of the main 
advantages of this reference model is the possibility for 
dynamic system inversion without facing the issues of the 
inverse system stabilization [14].  
 
Namely, the main problem of using dynamic inversion system 
to calculate the nominal control input vector is the difficulty of 
designing the exact causal inversion resulting in replacing the 
a pseudoinverse system that very often needs to be stabilized. 
In this case of the inverse system, when the model with 
concentrated mass is used for nominal input prediction, there 
is no need for stabilization.  
 

 
 
 
Figure 3. Control system architecture based on the 

torque prediction using the concentrated mass 
reference model 

 
In Figure 3, nomτ  is the nominal torque vector calculated 
based on the ground force provided by the reference model 
(mass-spring model), corrτ  is the correction calculated based 
on the measurements of the robot joints angles and 

acceleration vector, and τ  is the commanded torque signal 
that is sent to the actuators. 
 
The model includes damping represented by the coefficient b 
and a torque τ  for the case when the center of pressure at a 
foot is not taken as a spring - ground contact point. The 
ground contact force that occurs during human walking can be 
predicted using the mass-spring model.  
 
Potential energy accumulated in the spring and the 
gravitational potential energy interchange with the kinetic 
energy of the point mass. A portion of the mechanical energy 
is lost during the walking half-cycle due to the inelastic 
collision of the foot with ground [3], and the rest of the 
accumulated energy continues to interchange between kinetic 
and potential energy in the next half-cycle which is described 
by the percentage of recovery parameter [4].  
 
Although those models are simplified representations of the 
real human body anatomy, they provide a convenient way to 
interpret and analyze majority of relevant parameters of the 
gait cycle. Integral features of the human gait cycle, such as 
the overall kinetic energy, potential energy, angular 
momentum with respect to the ground contact point, center of 
mass trajectory and laws of motion, and ground force in 
sagittal plane, can be considered using a simplified model (e.g. 
MSIP).  
 
Using the state space model (1), the ground force can be 
obtained (Figure 4) and can be used to qualitatively predict the 
real ground reaction force which occurs during bipedal 
walking.  
 

 
Figure 4. Ground reaction force (vertical component) 
obtained using the mass-spring inverted pendulum 

model (including a damper) compared to the real 
ground reaction force occurring during a single leg 

stance phase, measured using force plates [9] 
 
Besides the ground reaction force, the mass-spring model can 
predict qualitatively potential, kinetic and total mechanical 
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energy of walking. Figure 5 shows the energy change during 
walking predicted by the mass-spring model. 
 

 
Figure 5. Potential, kinetic and total mechanical 

energy change (relative energy with respect to the 
initial energy level) 

 
 
1.2 Models with Distributed Mass and Multiple DOF 
 
Complex bipedal walking models and their practical 
implementation to bipedal robots are generally based on 
human body anatomy [5, 6, 7]. However, all those models and 
implementations include fewer degrees of freedom (DOF) of 
motion than the DOF existing in the human body. The spinal 
region of the body has a high number of DOF. The motion 
within the spinal region influences the walking cycle behavior, 
but this motion can be neglected and the majority of models 
with distributed mass represent the trunk region as a rigid 
body or as two rigid bodies with a single revolute joint in the 
trunk. The human body symmetry plane is called the sagittal 
plane. Dominant accelerations of the body segments centers of 
gravity occur parallel to the sagittal plane which results in 
dominant inertial forces and moments due to the motion 
parallel to this plane. Unless there is a sharp change in the 
walking direction, relatively negligible inertial forces occur 
due to accelerations perpendicular to this plane during the 
walking cycle.  
 
Due to the dominance of the inertial forces parallel to the 
sagittal plane and for the sake of the model simplification, the 
analysis and control design shown in this paper is restricted on 
the planar motion of the model/bipedal robot. 
 
 
2. Bipedal Robot Model with 10 DOF 
 
The model shown in Figure 6 is a bipedal structure with 10 
internal rotational degrees of freedom. Three additional 
degrees are an absolute (external) rotational degree, which is 
chosen to be the angle of the trunk with respect to the vertical 
direction, and two translational degrees with a reference point 

which is chosen to be at the hip joint. Human joints allow 
much more freedom than just a rotation about a single axis (a 
revolute joint). Generally, human ankle and hip joints can be 
considered as spherical (ball and socket) joints. The knee joint 
can be approximately considered as a revolute joint (one 
DOF). However, the model shown in Figure 6 includes only 
revolute joints, since the analysis is restricted to sagittal plane 
motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Model with distributed mass: (a) absolute 

angles, (b) generalized coordinates (angles are 
relative - joint coordinates) 

 
As described earlier, the spinal region, including the neck and 
had, is considered as a rigid body, since there is no significant 
bending during the gait cycle and, consequently, the joint 
trajectories and generalized forces are not affected 
significantly.  
 
External coordinates of the hip joint are dependent (assuming 
no-slip condition) on the other generalized coordinates 
(angles) of lower extremities within a walking cycle. 
However, they are still needed to cope with possibility of the 
walking - running transition.  
 
Two types of coordinates are shown in Figure 6: absolute and 
relative. Generally, it is easier to work with the absolute 
coordinates (angles) when we consider the mathematical 
description of the model’s behavior and response to the input 
torques and forces. However, the joint sensors (e.g. encoders, 
potentiometers) measure relative angles, which are then 
directly used in a feedback fashion to guide and control the 
robot.  
 
Special attention is given in the model to the foot design 
(Figure 7) in such way that the transition phase between the 
walking cycles becomes as smooth as possible. A walking 
robot flat foot design requires that the foot is always parallel to 
the ground during the stance phase, which is significantly 
different than the human walking stance phase. Although a flat 
foot design is commonly used in walking robotics, it causes 
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certain discontinuities in the kinematic relations and sudden 
changes in the nominal generalized forces, required to mimic a 
human-like walking. Besides that, the stabilization of the 
walking cycle becomes difficult, since the contact is 
theoretically at the edge of the foot during the significant part 
of the cycle time. Consequently, the zero moment point (ZMP) 
is then tied to the foot edge, which complicates the control 
operations.  
 
 
 
 
 
 
 
 
 
 

Figure 7. Foot design: (a) two cylindrical surfaces 
with different radii, (b) ellipsoidal cylinder (the ankle 

joint is marked by A). 
 
 
2.1 Kinematic and Dynamic Analysis of the Model 
Forward kinematics calculates Cartesian coordinates of any 
point of the structure for a given set of the joint and the 
external variables. The kinematic relations are necessary to 
close the set of differential equations that describes the robot 
dynamics.  
 
The forward kinematics of the robot model can be expressed 
as follows: 
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where CiP  (i=1, ..., 11) are position vectors of the center of 

gravity of the ith segment and has the form [ ]Tyx 0CiCi .  
Generalized coordinates in right hand-side of (2) can be the 
absolute angles of the segment and external coordinates, or 
they can represent the joint angles and external coordinates. 
Besides the equation (2), complete kinematic analysis includes 
the first and second time derivative of (2). Since the expanded 
equations in (2) and its first two time derivatives are too long 
to be shown in this paper, they are omitted and we proceed 
with the dynamic analysis. 
 
Since the control law, which is discussed in the following text, 
is based on an inverse model and an error dynamics, it is 
necessary to analyze both forward and inverse dynamic 
equations. The derivation of those equations is done using the 
Lagrange energy based method. The inverse model has to 
provide the nominal generalized forces (the joint torques), 

based on the nominal joint angular trajectories, which is, by 
definition, the inverse dynamics. On the other hand, the error 
based controller uses the differential equations of motion to 
generate a correction value/signal for the input torques. The 
differential equations are also needed for numerical simulation 
of the robot and evaluation of the controller performance.  
 
Figure 8 shows a partial free-body diagram, which includes 
the right standing leg only.  

 
Figure 8. Planar partial free-body diagram for the 

right standing leg 
 
Besides the reaction forces/torques from the rest of the system, 
the set of external forces/torques for the subsystem of the 
support leg during the single support phase includes the 
torques at the joints, since they perform work and influence 
the mechanical energy distribution. Such approach is 
convenient for application of the Lagrange method which 
provides the way to analyze the relevant forces/torques, 
without necessity to calculate the internal forces, such as the 
internal forces at the joints.  
 
The Lagrange equations for the walking robot model have the 
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where Civ  is the ith segment center of gravity velocity 

magnitude, CiI  is the ith segment moment of inertia for the 

center of gravity Ci and iω  is the angular velocity of the ith 
segment. The centers of gravity velocity can be expressed in 
terms of the joint angular velocities using the kinematic 
relations (2). The potential energy is basically the gravitational 
potential energy since no springs are included in the model.  
 
An alternative way to derive the model dynamics is to apply 
the combination of the Newton’s and Euler-D’Alembert’s law 
for the translation and rotation, respectively. In either way, the 
following form of dynamic equations is obtained 
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gravity influence vector, [ ]τ  is the control torque vector, and  

[ ])(ϕD  represents the matrix of the control torques 
distribution. 
 
 
Although the equations are implemented in the simulation 
model for the full model (10 DOF), the equations and analysis 
that are shown here are for the reduced model, for which the 
arms are considered sufficiently light such that their dynamics 
is not significant for the system stability. Similarly, the 
dynamics of the swing leg foot is neglected and the mass is 
considered lumped at the ankle.  
 
The kinetic energy function for the model is  
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where )cos( jiijc ϕϕ −= , (i, j =1,2,4,5,6), im  is the ith  

segment mass, '
2m  is the foot-lower leg combined mass, iul  

and idl  are the ith segment center of gravity position lengths 
with respect to the neighboring upper and lower joints, 
respectively,  il  is the ith segment length, iI  is the ith segment 
moment of inertia with respect to the axis perpendicular to the 
sagittal plane. 
 
The potential energy function is 
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where )cos( iic ϕ= , (i=1,2,4,5,6). 
 
Rayleigh’s dissipation function reflects the energy lost due to 
the viscous friction in the joints and has the following form for 
the model 
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where ib  (i=1,2,3) are the friction coefficients for the ankle, 
knee and hip joints, respectively. 
 
The final equations in the form (5) are obtained using the 
energy based method and the matrices/vectors denoted in (5) 
are as follows. 
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The matrix ),( ϕϕ C  is given in segments as follows: 
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where )sin( jiijs ϕϕ −= , (i, j=1,2,4,5,6). 
 
The gravity vector )(ϕG  is as follows: 
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where )sin( iis ϕ= , (i=1,2,4,5,6), and g is the gravity 
acceleration. 
 
The torques distribution matrix )(ϕD  is, actually, a constant 
matrix as follows: 
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Finally, the joints torques vector is  
 

[ ]T65421 ττττττ = , that has components 
corresponding to joints torques in the following order: right 
ankle, right knee, right hip, left knee, left hip, respectively. 
Again, the swing leg ankle torque is neglected, as well as the 
dynamics of the swing leg foot. 
 
The equations of the form (5) will be used to derive the control 
law for each actuated joint of the robot model. This is shown 
in the following controller design section. 
 
2.2 Controller Design 
 
The controller design is based on a nonlinear system control 
approach. A combination of the inverse plant with modified 
gain scheduling is applied.  
 
 
2.2.1 Desired Robot Motion 
 
Based on typical human walking, the corresponding angular 
trajectories for the hip, knee and ankle joints can be recorded 
using cameras and markers positioned on human body 
segments. In this way, following trajectories are obtained and 
used for the desired robot motion (Figure 9).  
 
The figure shows that the trajectories do not vary on the left 
side of the interval as much as they vary on the rest of the 
walking cycle. The subinterval (the swing phase) contains 
relatively high derivatives and it is very important to 
determine precisely the toe off instant, since any variation the 
toe off instant would cause significant change in the nominal 
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torques and the calculated ground reaction force. From the 
mechanical structure basis, there is a configuration change 
since the structure changes from the double support, which 
represents the structure with a closed loop, to the single 
support configuration, which is an open chain configuration. 
 

 

Figure 9. The robot joint trajectories based on a 
human walking cycle (positive angles denote 

flexion/dorsiflexion) 
 
Therefore, the when the configuration change occurs it 
triggers the control law change. Basically, the instant of this 
configuration change can be determined based on the ground 
force reaction which is measured using pressure pads 
positioned at the feet.  
 
The first two derivatives of the desired trajectories are shown 
in Figure 10 and Figure 11, respectively. Relatively high 
derivatives are noticeable in the swing phase of the cycle. The 
nominal trajectories recorded based on human motion usually 
have significant noise embedded due to errors during the 
measurements.  
 
Since the control system input requires nominal angular 
velocity and nominal angular acceleration per each actuated 
joint, it is necessary to smooth out the nominal trajectories.  

 

 
Figure 10. The hip, knee and ankle joint angular 

velocities 
 

 
Figure 11. The hip, knee and ankle joint angular 

accelerations 
 
Although the amplitude of the noise is usually small relative to 
the nominal signal, its derivatives can dominate the nominal 
angular velocities and accelerations, which would cause 
significant errors in the desired motion (errors in the reference 
input vector).  
 
 
This problem can be solved using filtering of the recorded 
signal. The cut-off frequency should be set-up such that the 
steepest parts of the nominal trajectory can pass through the 
filter without significant change. In this case, the low-pass 
filter cut-off frequency was 30 rad/s, for the joint trajectories 
and their first derivatives.   

The nominal trajectories are used for the inverse dynamics to 
generate nominal torques at the joints, which is discussed next. 
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2.2.2 Inverse System 
 
The inverse plant (Figure 12) takes the desired joint 
trajectories and corresponding derivatives and provides the 
nominal torques, based on the inverse dynamics equation 
formed using (5) 
 

[ ] [ ] [ ][ ] [ ][ ] [ ]{ })(),()()( 1 qGqqqCqqMqD ++= −
τ .  (6) 

 
One significant problem with the inverse plant design is that 
the derivatives of the desired trajectories (desired output) 
include the points placed at future time instants, which makes 
the control system non-causal. A possible solution to this 
problem is to use an estimator by setting up a Hurwitz 
polynomial. However, the inverse plant may become unstable 
using this predictor. In the frame of this work, back-stepping 
method has been used to stabilize the inverse plant. 
 
 
 
2.2.3 Error Dynamics 
 
The nominal inputs to the plant (nominal torques), generated 
by the inverse plant, are sufficient to drive an ideal system 
precisely to follow the desired joint trajectories. However, a 
mathematical representation has always more or less errors 
with respect to the system which is represented by that model. 
 
 Disturbances can appear due to: 
- initial conditions, 
- effects which are not included in the model, since their way 

of action and the system response on them is unknown, 
- unavoidable delay in sensors (encoders, potentiometers and 

A/D conversion),  
- intentionally simplifying the model mathematical 

description, since we rely on the control law to minimize the 
error, (e.g. leaving some friction effect not modeled), etc. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The robot model architecture in the anatomical position has a 
vertical plane of symmetry (sagittal plane). Due to this 
symmetry, and cyclic nature of the nominal trajectories, the 
leg and arm joints on one side of the body have same nominal 
torques over the walking cycle, just shifted in phase, when the 
motion is restricted to the planar motion.  
 
Then, the control design of two single support phases and a 
double support phase completing a walking cycle can be 
narrowed down to a single support and a double support 
phase. 
 
Moreover, for the sake of the simplicity of this discussion, the 
influence of the arms relative dynamics with respect to the 
trunk will be neglected and considered as a disturbance whose 
effect has to be minimized by the controller. The system 
(walking robot mathematical model) can be represented as 
follows. The state space representation of the three joint 
variables on the one leg of the robot model is  
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, (7) 

 
or in simplified notation  
 
  [ ] [ ] [ ][ ]τξξξ )()( bf += ,    (8) 
 
where ξ  is the state space vector related to the three joint 
angles and it’s derivative, as shown in (7). Although the 
torques distribution functions )(j i ξb  (i=1, ... , 6; j=1, 2, 3) are 
shown to depend on entire state vector, precisely they depend 
on just even components of the state vector (on the angles of 

Figure 12. The nonlinear system control based on a gain scheduling approach and the inverse plant 
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the structure, not angular velocities). Further on, (8) will be 
used instead of (7) for the sake of simplicity. 
 
The real state space vector of the system is ξ , which 

generally deviates from the nominal state vector ξ . The 
difference of the two vector is denoted as the error vector 

ξξξ −=
~

. Using the time derivative of the error vector and 
(8), following is obtained 
 

=−= ξξξ 





~ τξξτξξ )()()()( bfbf −−+ = 
 
= τξξττξξξξ )()()~)(~()~( bfbf −−++++ = 
 
= ( ) ( )≈−+++−+ τξττξξξξξ )()~)(~()()~( bbff  
 

τξτξ
ξ
ξξ

ξ
ξ
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~)(~)(~)(

===
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∂

∂
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∂
∂

≈ bbf  , i.e. 

 

≈ξ~ τξτξξξξ ~)(~)(~)( d bbA ++ .    (9) 
 
Equation (9) is used for the linearization based controller 
design, where the matrices )(ξA  and )(ξdb  contain the 
derivatives which are used for the scheduled gains of the 
controller.  The gain scheduled controller, based on (9) alone, 
cannot cope with the steady state errors. This is the reason 

why the state space vector ξ~  is augmented with three 
integrators (they integrate the angle error for the ankle, knee 
and hip joint, respectively) as follows 
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Stability of the gain scheduling controller is limited by the 
maximum allowed time derivatives of the desired joint angle 
trajectories, which are used as the scheduling variables 
 
   µ≤)(des tq ,           (11) 
 
where )(des tq  is the vector of desired joint angles trajectories 
and µ  is a positive constant  (Theorem 12.1 in [14]). This is a 
serious limitation of the controller as a result of the “frozen 
time” concept application. However, application of the inverse 
system (Figure 12) significantly improved the controller 
capabilities, since the inverse system (plant) includes the time 

derivatives of the desired joint trajectories and the limitation 
(11) on the time derivatives of the scheduling variables 
(desired joint angles) is replaced by the limitation on the time 
derivatives of the error vector. For this design, µ  is about 6 
rad/s. 
 
The performance of the gain scheduled controller, combined 
with the inverse plant, are discussed in the following. 
 
3.  Simulation Results 

Using the gain scheduling based controller in the way shown 
in the block diagram of Figure 12, the following results are 
obtained. Figure 13 shows the nominal torques at the hip, knee 
and ankle joint, which are obtained using the inverse plant 
system. 
 

 
 

Figure 13. Nominal torques at the ankle, knee and 
hip joint obtained via the inverse plant of the 

controller system 
 
These nominal inputs to the controlled system are normalized 
with respect to the body weight (BW) multiplied by the total 
leg length (LL), such that the results are scalable with respect 
to the body mass (if the proportion of the body segments 
lengths and mass is maintained constant). The tracking 
performance of the controller for the ankle joint is shown in 
Figure 14. 
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Figure 14. Controller tracking performance for the 
ankle joint 

 
The controller tracking performance for the knee joint angle is 
shown in Figure 15. 
 

 
 

Figure 15. Controller tracking performance for the 
knee joint angle 

 
For the hip joint, the goal of the controller was a regulation of 
the trunk angle with the respect to the vertical direction. The 
controller performance of keeping this angle relatively small 
during the walking cycle is shown in Figure 16. 
 

 
Figure 16. The controller tracking performance of the 

hip joint angle and regulation performance of the 
trunk angle via the hip torque 

 
Finally, the ground force from the robot model is calculated 
and shown in Figure 17. Besides the ground force of the model 
with distributed mass. 
 
The controller design performance with results shown in the 
Figures 14 through 17, are discussed next.  
 

 
Figure 17. Ground reaction force calculated using 
the distributed mass model and compared to the 
measured force using the force plates method [9] 

 
4. Results Discussion 
 
Initial system response with a zero initial conditions (zero 
angles, which means the standing anatomical position, and 
zero angular velocities) looked a bit worse than the system 
response for the second cycle, whose results are shown in the 
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figures. However, the steady walking cycle response is 
achieved very fast after the (zero) initial conditions and the 
second cycle is shown in the figures. 
 
The tracking error for the ankle and knee joints angles is not 
significant as shown in Figures 14 and 15. Although the time 
derivatives are very high in a couple of subintervals of the 
cycle period, the gain scheduled controller succeeds to keep 
the response angle close to the desired path. The high time 
derivatives is the always a questionable issue with gain 
scheduled controllers, since gain scheduled controllers are 
based on the frozen time concept. Accepting that the time 
derivatives are relatively high for this type of the control, the 
successful control performance can be justified in this case by 
the usage of the inverse plant such that the error dynamics 
based controller has to correct just a small deviation from the 
nominal torques provided by the inverse plant.  
 
Although the desired angle trajectories (Figure 9) showed that 
there is a small variation of the trunk angle with respect to the 
vertical direction, the control goal for the hip joint was set-up 
to maintain (regulate) a zero trunk angle. The results shown in 
the figure indicate a good regulation performance, since the 
angle variation remains within a 1° range. 
 
Finally, the ground force, calculated based on the centers of 
gravity acceleration, shows relatively good agreement with the 
experimentally measured data. Small deviations can be 
partially explained by eventual deviations of the segmental 
lengths of the walking model from the real human segments, 
accompanied with some deviations of the recorded joints angle 
versus time functions from the real joint angle trajectories.  
 

5. Conclusion  
 
Advanced bipedal robot control techniques rely on an inverted 
dynamics of the bipedal robot model (reference model). 
Therefore, it is essential to create a precise but still relatively 
simple model that will provide accurate calculation of the 
relevant forces and torques needed to obtain particular set of 
desired joint trajectories.  
 
Two main groups of the bipedal walking models can be used 
for this purpose. The first group, concentrated mass at the 
center of gravity, consists of relatively simple models useful 
for ground force analysis, kinetic, potential and total energy 
balance analysis, energy recovered from potential to kinetic 
and vice-versa. The second group of models consists of 
models with distributed mass, which allow more detailed 
analysis such as torques at the walking structure joints (which 
cannot be measured directly in a human body), inertial effects 
due to the segmental motion with respect to the center of 
gravity, and control law design used to guide a bipedal robot. 
 
As a significant simplification of walking models with respect 
to the human body structure, one can consider the entire spinal 
region as a rigid body, since there is no significant bending 
and no significant contribution of the trunk bending dynamics 

to the overall walking structure dynamics. Other 
simplifications can be related to the types of the joints and the 
foot shape. 
 
A walking robot tracking control can be based on human body 
joint trajectories. Those time-angle functions can be recorded 
for each joint using cameras, segmental markers and image 
processing. The control system input requires nominal angular 
velocity and nominal angular acceleration per each actuated 
joint. Therefore, it is necessary to smooth the nominal 
trajectories and pass the trajectories through a low-pass filter, 
since any discontinuity or a sudden change in the recorded 
data generates high derivatives and can make the control 
system unstable. 
 
The cut-off frequency should be setup such that the steepest 
parts of the nominal trajectory can pass through the filter 
without significant change. In this case, the low-pass filter cut-
off frequency was 30 rad/s, for the joint trajectories and their 
first derivatives.   
 
A control system can be successfully designed and 
implemented in a form of a combination of an inverse plant 
model and a linearization based controller with gain scheduled 
according to the nominal state space vector change. This is the 
novel contribution of the current article.  The inverse plant 
generates the nominal control inputs (the joint torques). 
However, the inverse plant becomes non-causal if precise 
values of time derivatives of the reference input (desired 
output) are necessary. Alternatively, the derivatives can be 
predicted by the inverse plant. A disadvantage of this approach 
is the fact that the system can become unstable and need to be 
stabilized. In this work, a back stepping method was used. 
 
The gain scheduled error dynamics controller successfully 
made the system output follow the desired joint trajectories. 
Although gain scheduling is a frozen time concept, which 
means that the absolute values of the time derivatives must 
stay within a certain range in order to maintain controller 
performance and stability of the system, the simulation results 
showed remarkable tracking performance, which can be 
explained as a good prediction of the nominal torques via the 
inverse plant.  
 
The comparison of the model results for the ground force 
shows a satisfactory agreement between the model results and 
measured data from the literature. 
 
The main problem with traditional control techniques for a 
bipedal robot is that MIMO systems such as bipedal robots are 
controlled joint by joint independently and the cross coupling 
of different input-output pairs is treated as disturbances. These 
techniques are convenient in the cases when it is difficult to 
develop a reasonable model of the controlled system, but 
generally cannot provide high performance in MIMO systems. 
 
Bipedal robots require precise desired trajectories tracking in 
order to balance during walking steps. The idea proposed in 
this paper is that those cross couplings can be modeled 
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precisely, rather then treat them as disturbances, and 
significantly improve the overall system performance. This 
article showed a novel nonlinear gain scheduled controller 
design combined with a concentrated mass reference model.  
 
Modeling the bipedal robot as a MIMO system, rather then 
considering the system as a number of independent joints with 
disturbances, means that we consider how the ith 
actuator/torque influences the jth joint motion, in order to 
adjust the combination of the torques (inputs), such that the 
joints follow prescribed joint trajectories.  
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