

Dynamic Obstacle Avoidance for an
Omni-Directional Mobile Robot

Robert L. Williams II and Jianhua Wu

Ohio University, Athens, OH 45701

Final Manuscript
Journal of Robotics

Hindawi Publishing Corporation
September, 2010

Keywords: mobile robot, dynamic obstacle avoidance, moving obstacles, global deliberate approach,

local reactive approach, coupled nonlinear dynamic model.

Abstract:

We have established a novel method of obstacle-avoidance motion planning for mobile robots in
dynamic environments, wherein the obstacles are moving with general velocities and accelerations and
their motion profiles are not pre-known. A hybrid system is presented in which a global deliberate
approach is applied to determine the motion in the desired path line (DPL), and a local reactive approach
is used for moving obstacle avoidance. A machine vision system is required to sense obstacle motion.
Through theoretical analysis, simulation, and experimental validation applied to the Ohio University
RoboCup robot, we show the method is effective to avoid collisions with moving obstacles in a dynamic
environment.

Corresponding author:
 Robert L. Williams II, Professor
 Department of Mechanical Engineering
 259 Stocker Center, Ohio University
 Athens, OH 45701-2979

Phone: (740) 593-1096
 Fax: (740) 593-0476
 E-mail: williar4@ohio.edu
 URL: oak.cats.ohiou.edu/~williar4

 2

1. INTRODUCTION

 An omni-directional robot is a holonomic robot that can move simultaneously in rotation and

translation (Pin et al., 1994). Most work on omni-directional robots is in robot development; the few

studies on dynamic models are Watanabe et al. (1998), Moore and Flann, (2000), Williams et al. (2002),

and Kalmar-Nagy et al. (2004). These models all have decoupling between the wheels, which is not

complete; thus, we first briefly summarize a new coupled non-linear dynamics model for three-wheeled

omni-directional robots.

The potential field method was first suggested by Andrews and Hogan (1983) and Khatib (1985)

for obstacle avoidance of manipulators and mobile robots. Obstacles exert a virtual repulsive force,

while the goal applies a virtual attractive force to the robot. Koren and Borenstein (1991) identify

potential field limitations (robot trapped by local minima, oscillation in presence of obstacle, the lack of

passage between closely-spaced obstacles). To overcome these problems they developed the vector

field histogram. Ge and Cui (2000) mentioned an additional shortcoming, a non-reachable goal with

an obstacle nearby, and presented a new repulsive function to overcome it, increasing complexity and

computation. Adams (1999) presented a simulation study using the potential field method considering

low-level robot dynamics, with static obstacles. Guldner and Utkin (1995) proposed a method that

took the gradient of the potential field as the desired vector field for path planning. Tsourveloudis et al.

(2001) proposed an electrostatic potential field for an autonomous mobile robot in a planar dynamic

environment; their method depends on obstacle prediction accuracy, and slow environment changes.

The velocity space method to deal with moving obstacle avoidance in a pre-known environment

was suggested by Fiorini and Shiller (1998), who discussed the velocity obstacle concept. This method

lacks potential field simplicity, and is effective only if the obstacle moves with constant speed.

Chakravarthy and Ghose (1998) and Tsoularis and Kambhampati (1998) proposed methods which use

relative speed to detect collisions. Fujimura and Samet (1989), and Conn and Kam (1998) presented

studies of motion planning in a dynamic environment, but in both of their studies the dynamic

 3

environments need to be completely pre-known.

 Chang et al. (1994) presented a two-phase neural-network-based deliberate path-planning and

reactive motion-planning hybrid navigation system for static obstacles. Xu et al. (2003) proposed a

reactive motion planner that uses local rather than global environment information for static obstacles.

Recently other authors have presented works on moving obstacle avoidance for robots. Leng,

et al. (2008) presented an improved artificial potential field method by introducing an

Anisotropic-Function. The motion ability of an Omni-directional robot in different directions was

considered to improve the motion planning and the moving obstacle velocity was pre-set. Belkhouche

(2009) presented reactive path planning for a dynamic environment. der Berg and M. Overmars (2007)

presented kinematic and dynamic motion planning roadmaps for dynamic environments.

The potential field method is normally used for path planning and obstacle avoidance in a static

environment; still relatively few papers deal with moving obstacle avoidance. The velocity space

method applies relative robot/obstacle speed and position to detect a possible collision and plan a motion

and normally requires pre-known constant obstacle and robot speeds. No fixed time motion is found in

literature on obstacle avoidance. In the current article we present a new dynamic obstacle avoidance

method with a hybrid (globally deliberate and locally reactive) navigation system and the concept of

using relative velocity to detect possible collisions. We have established a novel method of

obstacle-avoidance motion planning for mobile robots in dynamic environments, wherein the obstacles

are moving with general velocities and accelerations and their motion profiles are not pre-known. A

hybrid system is presented in which a global deliberate approach is applied to determine the motion in

the desired path line (DPL), and a local reactive approach is used for moving obstacle avoidance.

This article first summarizes a new coupled non-linear dynamics model for wheeled holonomic

omni-directional mobile robots, followed by development of the novel dynamic obstacle avoidance

algorithm, with simulation examples and experimental validation.

 4

2. THREE-WHEELED OMNI-DIRECTIONAL ROBOT MODELING SUMMARY

 This section presents a brief summary of kinematic and dynamic modeling, plus controller

development. For more details, see Wu (2004). Figure 1 shows a bottom view of the Ohio University

RoboCup robot. In Figure 2, {w} is the fixed world coordinate frame and {m} is the moving frame, with

the same origin as {w} but rotating with the robot. The xm axis is set to always be perpendicular to

traction force 1T , and  is defined as the angle of xm with respect to xw. 1 2 3[]t TT T TF is the traction

force of the ground on the wheels and []m m m m T
x y ZF F TF is the Cartesian force and moment on the

robot in the moving frame. L is the radial distance to the wheels from the robot center.

 Figure 1. RoboCup Robot (Bottom) Figure 2. Omni-Directional Robot Geometry

r is the radius of the wheels; []w T

w w wx y X    and []m T
m m mx y X    are the robot Cartesian

velocity in {w} and {m}, and 1 2 3[]T
L L L Lq q qq    are the wheel angular velocities. The velocity

kinematics equations in {m} or {w} are (1) and (2) is the acceleration kinematics equation.

m
Lr    

-1TX B q  w w m w
m m Lr     

-1TX R X R B q   (1)

 w w w
m L m Lr        

-1 -1T TX R B q R B q    (2)

where w
m R is the orthonormal rotation matrix which rotates vectors in {m} to {w} (Craig, 2005).

 5

 Without derivation our coupled nonlinear dynamics model is (Wu, 2004):

31 2 4

1 0 0 0 1 1 1 0 0 0 1 1

0 1 0 1 0 1 () 0 1 0 1 0 1

0 0 1 1 1 0 0 0 1 1 1 0
m m E m m

lr M lr M lr M lr M

kk k k
k

k k k k k k k k


       

                   
              

E q q q q


   

(3)
where:

 22

22

21 9

)4(

nL

rJmL

n

J
Jk L

m


 22

22

2 9

)2(

nL

rJmL
k


 23 n

c
ck L

m 
2

2

4 9

32

n

mr
k  (4)

1 2 3 1 2 3() ()

3 3
L L L m m mr q q q r q q q

L nL
    
 

      (5)

J and m are the rotational inertia and mass of the robot, 1 2 3[]T
m m m mq q qq    are the motor angular

velocities, cm and cL are the motor and load rotational damping coefficients, Jm and JL are the motor and

load rotational inertias, n is the gear ratio, 1 2 3[]TE E EE where Ei is the ith motor voltage input, Ek

and Mk are the motor back emf and torque constants, and lrk is the inverse of the motor terminal

resistance R.

 In simulation and hardware we have implemented a two-level closed-loop controller (Figure 3).

The outer loop is a Cartesian pose controller based on machine vision and the inner loop is a wheel

velocity controller based on motor encoder feedback. For each level we use independent linear PI

controllers where the gains were obtained through trial and error in simulation; the same gains worked

well for the hardware. For many straight-line, triangular, and circular motion commands, the

simulation and experiment agrees well with the commanded motion indicating that our model is good

and the controller is effective to compensate for the wheel coupling and nonlinearity in (3). See Figure

4 for one sample experimental motion without obstacles, comparing desired and actual position and

orientation of the robot. The robot is commanded to move in a straight line between two points, dwell

for 2 seconds, and return to the original point, with constant orientation. The robot follows the desired

path smoothly and closely.

 6

Figure 3. Two-Level Control Architecture

Figure 4. Robot Motion Test

 7

We have developed novel Velocity and Acceleration Cones to characterize the practical

kinematic and dynamic constraints for holonomic three-wheeled omni-directional mobile robots.

These are applied to ensure the path planner does not request more velocity than the robot is capable of

kinematically nor excessive acceleration that causes actuator saturation or wheel slippage. Though we

have no space to present this, our obstacle avoidance method in this article is subject to these practical

constraints (see Wu et al., 2006, for details).

 8

3. DYNAMIC OBSTACLE AVOIDANCE

3.1 Problem Statement and Approach

As shown in Figure 5, a mobile robot at point A must reach goal point B in a fixed time tB – tA,

while avoiding collisions with static and moving obstacles. Line AB is a given desired path line (DPL).

The obstacles’ motions are not pre-known, but will be sensed in real-time via machine vision. We

assume the speed and acceleration capacity of all obstacles are similar to that of the mobile robot.

Figure 5. Mobile Robot in Dynamic Environment with Moving Obstacles

We present a hybrid approach wherein a global deliberate approach is applied to motion along

the DPL while a local reactive approach is used to avoid collisions with obstacles. This obstacle

avoidance in a non-pre-known environment is not necessarily optimal (when reviewed at a later time),

because the obstacles’ motions are not pre-known. Obstacle-avoidance decisions made by the robot are

based only on past and current obstacle motion data from the vision system to estimate the current

velocity of the obstacle. No further prediction about the future obstacle motion is made because smart

obstacles may change motion according to our robot motion. All obstacle avoidance robot motions

will be restricted to a fixed time motion problem: along the direction of the DPL, the motion of the robot

is a nearly constant speed motion (ramping up from and down to zero velocity and the start and end,

according to the robot acceleration capacity). Obstacle avoidance is realized by changing the robot

speed in the direction perpendicular to the DPL. This means if the obstacle is on the line between the

 9

robot and target, the robot will change the speed in the direction perpendicular to the DPL while keeping

the same speed in the direction along with DPL to reach the target in the fixed time period.

3.2 Moving Obstacle Avoidance

In Figure 5, {w} is the fixed world coordinate system. The local, or DPL, coordinate system {l}

has the same origin as {w} and lx is parallel to the DPL. In our obstacle avoidance algorithm, the

starting and destination points and other robot motion conditions are transformed to DPL coordinates

and then transformed back to {w} for the robot path. The motion along the lx direction is

pre-determined (due to the fixed-time requirement), while the motion in the ly direction will be

determined in DPL coordinates for obstacle avoidance, subject to kinematics and dynamics constraints.

atan2(,)DPL B A B Ay y x x    is the angle of lx with respect to wx where  Tw
A A Ax yX and

 Tw
B B Bx yX are the vector position of points A and B in {w}, and atan2 is the

quadrant-specific inverse tangent function. The Cartesian position and translational velocity (of the robot

or obstacles) in DPL coordinates are found from (6), where w X is the Cartesian velocity in {w} and

l
w R is the inverse (transpose) of the orthonormal rotational matrix w

l R :

l l w
wX R X l l w

wX R X 
cos sin

sin cos
DPL DPLl

w
DPL DPL

 
 

 
   

R (6)

3.2.1 Motion in lx Direction. In DPL coordinates, we assign the robot motion along the DPL (xl) as

shown in Figure 6:

 10

Figure 6. Motion of Robot in lx Direction

Equations (7) are for the intermediate time points where s is the distance between points A and B,

and x and x are the velocity and acceleration of the robot in the lx direction.

Ct x x   Dt s x  Bt s x x x    DCt s x x x     (7)

From kinematics we can find the motion in time periods CAt , DCt and BDt :

 21

2lx xt 
x

t
x





2

()
2l

x x
x x t

x x
  
 
 

x s

t
x x
 

 

 (8)

2

21
() ()

2 2l

x s s
x s x t x t

x x x
     

  
  

s s x

t
x x x
  


  

 lx s
s x

t
x x

 


 

The robot starts from point A , constantly accelerates by x to velocity x then moves with

constant velocity x in DCt , then constantly decelerates by x , and stops at point B . During time

period
x s

t
x x
 

 

, the speed of the robot in the lx direction is the constant x . The total time to move

from points A to B is tB from (7), assuming tA is reset to zero for each motion. x can be assigned as

the maximum achievable robot acceleration in the lx direction. If the motion time and x are given,

x is determined from tB of (7). The robot velocity and acceleration must remain within their practical

 11

kinematic and dynamic constraints (Wu et al., 2006).

3.2.2 Basic Strategy of Obstacle Avoidance. We can simplify by expanding the obstacle radius to

o r oRR R R  (Figure 7) where Rr is the robot radius and Ro is the obstacle radius. The robot then

becomes a point which must avoid the expanded obstacle.

Robot

o wx

Obstacle

wy
o r oRR R R 

Figure 7. Expanded Obstacle Figure 8. Basic Concept of Moving Obstacle Avoidance

Figure 8 shows the vectors used in the moving obstacle avoidance algorithm. In DPL

coordinates, vector rolX shows the relative position between the point robot and an expanded obstacle

(from the robot to the obstacle). From vector loop closure rol obl rbl X X X , where oblX and rblX are

position vectors of the obstacle and the robot. The distance between the robot and obstacle is

rol roldis  X . If the robot and obstacle velocities are rblX and oblX , the relative velocity of the

robot to the obstacle is orl rbl obl X X X   . Angle  is between the tangent line from the expanded

obstacle circle to the point robot and relative the position vector rolX :

 2 2atan2(,)obst rol obstRR dis RR   (9)

 is the angle between the relative position vector rolX and the relative velocity vector orlX . If

  while the robot passes an obstacle, there will be no collision (Figure 8 pictures the opposite case,

i.e.   , where there will be a collision). The strategy for moving obstacle avoidance is to check

angles  and  in each time step and command the motion of the robot in the yl direction (while the

planned xl motion continues) to keep the relative velocity vector orlX away from the possible collision

 12

range determined by angle .

Whether to increase or to decrease the velocity of the robot in the yl direction depends on which

is the easier way to turn the relative velocity orlX away from the collision range. In the case of single

obstacle avoidance, if we start checking the relationship between  and  early enough (0ly at the

start), we can simply choose to increase or decrease ly of the robot by comparing vectors of orlX and

rolX . Two unit vectors vl orl orlu X X  and pl rol rolu X X are compared to determine the

direction of ly (Figure 9). If () ()vl ply yu u , we choose increasing ly of the robot, and choose

decreasing ly (increasing ly in the negative direction) in the reverse case. In the case shown in

Figure 9,)(yuvl is more negative than ()pl yu , thus we increase ly in the negative ly direction

until   . The original orlX is changed to
modorlX .

Forwarding to the DPL is also considered in our algorithm as choosing the easier way to turn

away the obstacle results moving less in the direction perpendicular to the DPL, consequently robot can

move back to DPL faster and easier. The “easier way” is judged not only by the relative velocity but

also the relative position between the robot and the moving obstacle, both in DPL coordinates. In Fig 8

for example, if the robot turns left to avoid moving obstacle instead of turning right, the robot has to

either start moving right earlier or faster to avoid the collision with the moving obstacle.

Figure 9. Changing ly in Obstacle Avoidance

 13

It will be more complicated in cases where there is not enough distance between the robot and

obstacle when a robot starts to turn off the DPL, or a robot already has a velocity in the ly direction.

This is the multiple-obstacle avoidance case (Section 3.2.6).

3.2.3 Range of Checking Collision. An important issue is how to determine when the robot should

start to leave the DPL. It will be easier to avoid collisions if the robot starts to turn off the DPL earlier

and thus get more time to turn the relative velocity orlX out of the collision range. On the other hand,

velocities of obstacles are not constant; it might not be necessary to turn off the DPL if obstacles change

their velocity in later time steps. Therefore, we should keep the robot moving along the DPL as long as

possible, especially for multiple moving obstacles.

Assume the maximum velocity maxoblX of an obstacle is the same as the maximum speed of the

robot rblX . We consider the special worst case when the obstacle moves towards the robot along the

DPL, both at their maximum speed as shown in Figure 10.

Figure 10. Worst-Case Collision Scenario

_ max2 2orl rbl obl rbl m lx   X X X X     is the relative speed between the robot and obstacle in this

case. If the maximum velocity and acceleration of the robot in the yl direction is maxly and maxly , the

time needed to move the robot a distance oRR in the yl direction to avoid the collision is:

2
max max max

2
max max max max max

(2) 2

2 2
o l o l l

o l l l o l l

RR y RR y y
t

RR y y y RR y y

   
 

  
    

 (10)

The distance between the robot and obstacle at which the robot should start checking collision is then

 14

Disov from (11). The relative distance in this worst-case scenario is greater than the distance for all

other cases, in which the relative speed along the relative distance will be smaller.

2
max max max max

2
max max max max max max

2 (2) 2

2 (2) 2
l o l o o l l

ov

l o l l l o o l l

x RR y RR RR y y
Dis

x RR y y y RR RR y y

   
  

   
     

 (11)

Since an obstacle can change velocity it is reasonable to use the relative distance Disov to set a

range that the robot starts to check possible collisions. When the relative distance with an obstacle is

longer than Disov, the possibility of collision with an obstacle is not checked, and the robot will keep

moving on the DPL until its relative distance with the obstacle is less than or equal to Disov.

3.2.4 Position for Returning to DPL. After passing by the obstacle, the robot must return to the DPL.

Figure 11 shows the robot passing by an obstacle. Points A, B and C represent three typical situations.

At point A, the robot has not yet passed by the obstacle, and it has to keep its velocity in the ly

direction, or possibly increase speed if the obstacle increases its velocity. Point B is the critical point

wherein the relative velocity vector orlX is perpendicular to the relative position vector rolX and the

robot is just passing the obstacle. The robot cannot start to turn back to the DPL at point B because

decreasing speed here may result in a collision with the obstacle in the next time step. Point C is the

intersection of two tangent lines of the obstacle circle, one parallel to the relative velocity orlX and the

other parallel to the yl axis. Point C is safe since changing the speed of the robot in the yl direction at

point C does not cause a collision with the obstacle. The  angle between orlX and rolX at point C is:

3 / 4 atan2(| () |,| () |) / 2c orl orly x   X X  (12)

 15

Figure 11. Position for Returning to DPL

It is possible for the robot to start returning to the DPL at any point between B and C. The

robot can still collide with the obstacle if ly changes too fast, or if the obstacle changes velocity. The

relative velocity vector orlX from the point robot should not intersect the obstacle circle when the robot

returns to the DPL. The robot has to keep moving with the same velocity in the yl direction until

c  .

3.2.5 Motion in yl Direction. The robot motion in the yl direction is classified into three categories:
1. Increase (or decrease) ly to achieve  

2. Keep ly when c 

3. Decrease (or increase) ly to return to the DPL after it passes the obstacle.

When the relative distance with an obstacle is within Disov, the robot starts to check collisions. It

starts to increase (or decrease) the speed in the yl direction if   . The velocity in the yl direction is

conditionally calculated as:

max max

max max

max

& () () &

& () () &

| | | |

l l l l vl pl

l l l l vl pll

l l l c

y y t y y u y u y

y y t y y u y u yy

y y y or

 
 

  

    
      
   

   
   
  

 (13)

If   but c  , the robot will maintain its speed in the yl direction until it reaches the

position of returning to the DPL (c ). The robot will not decrease its speed before that because the

obstacle might change its velocity in the next step; this avoids zigzag motions in the yl direction.

After reaching the position of returning to the DPL (c ), the robot starts to decrease (or

 16

increase) its velocity in the yl direction to return to the DPL. ly is accelerated in the direction of

returning to DPL. The direction of acceleration will be reversed when a robot is near the DPL so that ly

can end at zero when the robot reaches the DPL (0ly). The velocity in the yl direction after the robot

reaches the position of returning to the DPL is conditionally calculated as follows:

2
max max

2
max max

2 2
max

0 & | | / 2

0 & | | / 2

/ 2() | | / 2

l l l l lA l l

l l l l l lA l l

l l l lA l lA l l

y y t y y y y y

y y y t y y y y y

y y y y y y y y

     


     
    

    
     

   
 (14)

From Figure 11 we can see that angle  is changed from less than 2 to greater than 2

when the robot passes by an obstacle. The value of the dot product of rolX and orlX will change

from positive to negative when the robot passes by the obstacle.

3.2.6 Multiple Obstacle Avoidance. Multiple obstacle avoidance can be categorized into (1) avoiding

collisions with obstacles one-by-one and (2) avoiding collisions at the same time. Group (1) cases can be

handled sequentially with the above method. For Group (2) when the robot is avoiding an obstacle,

other obstacles move within Disov. The strategy used in multiple-obstacle avoidance is to determine

the robot motion by checking all obstacles that are within Disov. The position of leaving the DPL and

robot motion in the ly direction is determined by the obstacle that first appears within Disov, with

  . When the second obstacle also has   , the robot will modify its motion, trying to avoid

collisions with both obstacles. The position of returning to the DPL is also affected by all obstacles

within Disov of the robot.

As an example, obstacle 1 is assumed to enter within Disov first. The robot starts to increase the

velocity in the yl direction to force the relative velocity with obstacle 1 1orlX out of collision range

determined by 1 . Then obstacle 2 enters within Disov. At the moment shown in Figure 12, though

1orlX is already out of the collision range, as 2orlX is still in the collision range determined by 2 , the

 17

robot will keep increasing its velocity in the yl direction until 2orlX is out of the collision range.

Robot

o lx

ly

1_#orlX

2_#orlX

ly
Obstacle#1

Obstacle#2

Figure 12. Multiple-Obstacle Avoidance

The multiple-obstacle avoidance algorithm is summarized as follows:

1. The xl motion along the DPL is the same as that from single obstacle avoidance.

2. Checking collision range: For all moving obstacles with 0rol orl X X , if the relative robot/

obstacle distance is less than Disov, the robot starts checking collisions.

3. Leaving DPL position: The robot leaves the DPL if any of the obstacles within the checking

collision range meets the condition   . The robot will increase ly when

)()(yuyu plvl  relative to that obstacle, and decrease ly in the opposite case.

4. If any of the obstacles within the checking collision range satisfies the condition   , the

robot will keep increasing (or decreasing) ly until   .

5. The robot will keep its velocity in the ly direction if c  for all the obstacles

within the check collision range.

6. Returning to DPL: When c  (for all the obstacles within the check collision range),

and 0||  lAl yy , the robot will decrease (or increase) ly to return to the DPL according

to (14).

 18

4. OBSTACLE AVOIDANCE SIMULATIONS AND EXPERIMENTS

4.1 Simulation and Experimental Setup

 We developed a Simulink model for dynamic obstacle avoidance simulation. The methods of

this article were used in conjunction with the developed controller (Figure 3) and coupled nonlinear

dynamics model (3). Some details are missing in this article due to lack of space: all motions are

subject to practical kinematic and dynamic constraints via novel Velocity and Acceleration Cones (Wu et

al., 2006); these were implemented in Simulink to avoid velocities beyond the robot kinematic

capabilities and to avoid accelerations leading to actuator saturation or wheel slippage.

The same Simulink model was then used to control the experimental mobile robot, using a PC

with a Quanser MultiQ-3 board and Wincon 3.1 software, with cables for communication. The coupled

nonlinear dynamics model (3) is replaced by the real robot hardware, but the same controller is used. A

machine vision system senses in real time the position of the robot and obstacles (from which the

translational velocities are derived from previous steps). Our three-wheeled omni-directional robot

moves on a carpeted field as shown in Figure 13. A colored ball serves as the obstacle, moved by hand

(via a long darkened handle, not shown) in the robot field. The hardware control diagram is Figure 14.

Figure 13. Experimental Setup with Omni-Directional Robot and Obstacle

 19

ISA MultiQ3 terminal board

Personal Computer (PentiumIII, Windows98)
Wincon 3.1, Simulink, Real-time workshop

Servo Amplifier
25A8

Cognachrome 2000
Vision System

CCD camera
 YC-100

Carpeted Miniature field 1.2(m) ×1.2(m)

Magnetic Encoder
IE-512

DC MicroMotors
2224012SR20/1

Mobile robot Obstacle
Colored ball

ISA MultiQ-3 (ISA slot) Serial Port COM1

Figure 14. Hardware Control Diagram

The velocity of an obstacle is required as an input for the moving obstacle-avoidance algorithm.

One way to obtain the velocity signal is to use a numerical differentiation formula or the Simulink

differentiation block, but this leads to a noisy signal. Instead we applied a low-pass filter velocity

estimation algorithm. As seen in Figure 15, this estimation method yields much smoother velocity for

feedback than the differentiation block; this is an experimental result where the obstacle was moved by

hand in a sinusoidal pattern.

Figure 15. Experimentally-Sensed Obstacle Velocity

 20

 Next we present simulation and experimental validation examples for static and moving obstacle

avoidance; we also present a simulation of multiple moving obstacle avoidance. For more examples

and simulation/experimental validation, see Wu (2004).

4.2 Example 1: Static Obstacle Avoidance

 In the simulation, the circular robot and obstacles are approximated by octagons to decrease the

calculation requirement. Static obstacle avoidance is a special case of moving obstacle avoidance with

zero obstacle velocity. Table I shows the static obstacle avoidance simulation data (in SI units).

Table I. Static Obstacle Avoidance Simulation Data

rbA
w x rbA

w y rbB
w x rbB

w y rb
l x rb

l x ob
w x ob

w y

0.95 0.05 0.05 0.9 0.6 1.5 0.44 0.6

Figure 16a shows the static obstacle avoidance simulation results with the conditions of Table I.

The obstacle is placed at constant position 0.44, 0.6w wx y  . The robot is commanded to move from

starting point (0.95, 0.05w wx y ) to destination point (0.05, 0.9w wx y ) along a straight line with a

motion pattern in which the robot accelerates to 0.6v  m/s with 1.5a  m/s2, maintain that speed for

2.5 seconds (by Equation 7), and decelerate to stop at the destination point.

Figure 16a Simulated Static Obstacle Avoidance Figure 16b Experimental Static Obstacle Avoidance

A hardware static obstacle avoidance experiment was performed with the same conditions as the

 21

simulated case. The results are shown in Figure 16b. The actual path is compared with the commanded

path (generated by the algorithm in real-time, not pre-planned), and the vision signal of the obstacle is

displayed. We see that the simulated and experimental mobile robot paths are similar and both

successfully avoided the static obstacle. In Figure 16b we also see that the actual path follows the

commanded path well, indicating that our hardware controller development is effective to compensate

for the wheel coupling and nonlinear dynamics effects. Also, the static obstacle position signal is

steady from the machine vision system.

4.3 Example 2: Moving Obstacle Avoidance

 Table II shows the data (in SI units) for moving obstacle avoidance simulation.

Table II. Moving Obstacle Avoidance Simulation Data

rbA
w x rbA

w y rbB
w x rbB

w y rb
l x rb

l x ob
w x ob

w y w
obv w

vob

0.95 0.05 0.05 0.9 0.6 1.5 0.88 0.88 0.20 3 4

Figure 17a shows the moving obstacle avoidance simulation results with the conditions of Table

II. The robot is commanded to move from starting point (0.95, 0.05w wx y ) to destination point

(0.05, 0.9w wx y ) along a straight line with the motion pattern in which the robot accelerates to

0.6v  m/s with)/(5.1 2sma  , maintains that speed for 2.5 seconds (by Equation 7), and decelerates

to stop at the destination point. The obstacle starts at (0.88wx  , 0.88wy ) at At t , with speed 0.2

(/)m s and direction 3 4 rad with respect to the wx axis. The robot effectively avoids the moving

obstacle by increasing the speed in the ly direction. After the robot passes by the obstacle, it returns to

the DPL and continues motion along it until the destination point. Sequential robot and obstacle

positions in Figure 17a represent different snapshots in time, so we see there were no collisions in

simulation (robot and obstacle motion is right to left in Figure 17a).

 22

Figure 17a Simulated Moving Obstacle Avoidance Figure 17b Experimental Moving Obstacle Avoidance

 A hardware moving obstacle avoidance experiment was performed with the same conditions as

the simulated case; the results are shown in Figure 17b. The actual experimental path on the right

(generated by the algorithm in real-time, not pre-planned) compares well with the simulated path on the

left. Since the experimental obstacle is moved by hand, it is difficult to exactly match the simulated

obstacle motion; the vision signal of obstacle motion is displayed on the right. We see that the

simulated and experimental mobile robot paths both successfully avoided the moving obstacle.

4.4 Example 3: Multiple Moving Obstacles Avoidance

 As a final example we present a simulation of the mobile robot avoiding multiple obstacles. No

experimental results are given in this case since our experimental obstacles are guided by hand. Three

obstacles are arranged to get close to the DPL when the robot travels to a destination point on the field.

We focus on a Group (2) case wherein more than one obstacle is in the check collision range at once.

Figure 18 is an example of multiple-obstacle avoidance simulation, in which the robot effectively

avoids collisions with multiple obstacles. The data for simulation are in Table III (SI units).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
w
 (m)

y w
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
w
 (m)

y w
 (

m
)

1

2
3

4

5

6

7

8
1

2

3

4

5

6

8
7

1

2
3

4

5

6

7

8
1

2

3

4

5

6

8
7

 23

Table III. Multiple-Obstacle Avoidance Simulation Data

rbA
w x rbA

w y rbB
w x rbB

w y rb
l x rb

l x 1ob
wv 1vob

w 2ob
w x 2ob

w y 3ob
wv 3vob

w

0.65 0.1 2.8 1.9 0.62 1.2 0.48 78.0 1.8 1.1 0.3 34.1

Figure 18. Multiple-Obstacle Avoidance Simulation

Obstacles 1 and 3 are moving, while obstacle 2 is static. As shown in Figure 18, the motion of

the robot in the yl direction is first determined by obstacle 1 (snapshots 5 and 6). Instead of returning to

the DPL, the robot maintains its velocity after it passes obstacle 1 as obstacle 2 has already entered the

checking collision range with   (snapshots 7, 8, and 9). The robot returns to the DPL after

passing the static obstacle (snapshots 10 and 11). Instead of slowing down to return to the DPL, the

robot passes through the DPL, as obstacle 3 enters the checking collision range with   . The

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 24

robot maintains the speed (snapshots 12 and 13) until it passes obstacle 3 (snapshots 14 and 15).

Snapshot numbering is left-to-right and top-to-bottom.

This example is among those that the robot avoids collisions with multiple moving and static

obstacles. However, successful obstacle avoidance is not always possible. Under some conditions, the

robot is not able to realize multiple-obstacle avoidance by the developed algorithm; this is discussed in

the next section on limitations of our methods.

 25

5. LIMITATIONS OF THE DYNAMIC OBSTACLE AVOIDANCE METHOD

Assuming the obstacle is not so large as to violate the practical robot kinematic and dynamic

constraints (or placed too close to the destination point) and that the experimental system is functioning

properly, the static obstacle avoidance algorithm should work in all cases. In this section, we discuss the

limitations of our moving obstacle avoidance algorithm. The algorithm is real-time, the obstacles’

motions are not pre-known (we assume the obstacle motion limits are similar to the robot’s), and

obstacles can change velocities during motion.

5.1 Velocity and Acceleration Limits of the Obstacle

 With the developed algorithm, it is possible that robot cannot avoid collisions if the velocity and

the acceleration of the obstacle in the yl direction are higher than those of the robot.

Figure 19. Limitation of the Obstacle Avoidance Algorithm

As shown in Figure 19, 1l and 2l are two tangent lines of the obstacle circle parallel to the yl

axis in DPL coordinates. Point A is the intersection of the DPL and 1l , and B is a point on the DPL

between 1l and 2l . Suppose that the velocity of the obstacle in the yl direction is zero when the robot is

at point A. The robot moves along the DPL as   at point A. When the robot is at point B, if the

obstacle starts to increase its velocity in the yl direction with an acceleration higher than the maximum

acceleration of the robot, and maximum velocity in the yl direction higher than that of the robot, the

robot is not able to avoid a collision with the obstacle.

Failure of avoiding collisions with the obstacle is because the obstacle yl motion ability is higher

than that of the robot, and the motion of the obstacle is not pre-known. If the motion of the obstacle is

 26

pre-known, it is still possible to plan a path to let the robot reach the destination point within a fixed

time while avoiding the collisions with the obstacle.

From the above discussion, we conclude that for single obstacle avoidance, the maximum

velocity and maximum acceleration of the obstacle in the yl direction should be lower than (or equal to)

that of the robot, max maxobl ly y  and maxobl ly y  . Since the robot moves with constant x velocity for

most of the time along the DPL (except near starting or destination points), the acceleration condition is

rewritten as maxayobl  , where maxa is the maximum robot acceleration.

The first condition is rewritten as 2 2
max maxobl ly v x   , where maxv is the maximum robot

velocity and the planned robot velocity in the lx direction is lx . If the obstacle moves perpendicular

to the DPL, we have 2 2
maxob lv v x   and maxaaob  , which can be considered as the limitation of the

acceleration and velocity of the obstacle for algorithm success. In our simulation and experimental study

(Section 4), we used max max max(2 2)ob l lv x y v    . In real applications, if it is necessary to avoid

collisions with obstacles having higher velocities than the robot, we must decrease the velocity of the

robot in the xl direction (thus extending the motion time period).

5.2 Failure Cases in Multiple-Obstacle Avoidance

If the velocity and acceleration of the obstacle are limited as in Section 5.1, the developed

algorithm can effectively avoid collisions with single obstacles. However, for multiple obstacles, there

are still some cases in which the robot cannot avoid collisions with the obstacle. One case is that the

robot increases its velocity in the yl direction to avoid collisions with one obstacle. When the robot is at

its maximum velocity in the yl direction, a second obstacle appears in the checking collision range. In

order to avoid collisions with the second obstacle, the robot has to increase its velocity in the yl direction,

but the robot has already reached its maximum velocity. Another case is that when the robot has to

increase its velocity in the yl direction for avoiding the first obstacle, the second obstacle appears in the

 27

checking obstacle range, which requires the robot to decrease its velocity in the yl direction. This also

results in the failure of collision avoidance with the second obstacle. These failures are due to the fact

that obstacles’ motions are not pre-known and the robot motion along xl is fixed due to the fixed time

requirement. A path to the destination point in fixed time is not guaranteed when there are more than

one obstacle within the checking collision range near the DPL. In such collision avoidance failures, the

robot must halt, waiting until it can try for point B again, with a new starting point A.

5.3 Failure Cases Observed in the Experiment

Four failure modes were observed in the experiment. First, sometimes the robot cannot react to

the motion of the moving obstacle; later we found (by monitoring the vision signal) this is because the

vision system did not give the correct signal of the moving obstacle, as the hand and arm moving the

obstacle is sometimes visible. This was largely eliminated after we paid attention to the vision range.

Secondly, if we move the obstacle too fast, the robot will try to avoid the collision with the obstacle

behind the motion of the obstacle. This is a correct reaction in the developed algorithm. However, the

tethered wires of the robot interrupt the vision signal or sometimes interfere with a static obstacle, which

results in failure cases. This is not an issue for untethered mobile robots. Thirdly, if we move the

obstacle too fast (exceeding the velocity limitations discussed in Section 5.1), the robot could not

completely avoid collisions. However, we still can see that the robot correctly reacts to the motion of the

moving obstacle as best it can. Fourthly, if we move the obstacle differentially to hinder the robot for a

relatively long time, the robot could possibly get no chance to reach the destination position, as the field

is relatively small.

Because the experimental study for moving-obstacle avoidance was only performed for a single

moving obstacle (the method handles any number of moving obstacles; up to eight have been simulated

(not shown in this article)), few failure cases were observed. Certainly additional failure cases would

arise in experimental multiple moving obstacle avoidance, which is planned for the near future.

 28

6. CONCLUSION

 A novel hybrid real-time approach has been developed for mobile robot motion planning

focusing on moving obstacle avoidance. A global deliberate approach has been applied to the motion

along the desired path line (DPL) while a local reactive approach is used to avoid the collisions with

obstacles. The motions were subject to kinematic and dynamic constraints expressed by novel velocity

and acceleration cones to avoid velocities and accelerations the robot cannot achieve due to kinematics,

actuator saturation, and wheel slippage (these were not presented, see Wu et al., 2006). A coupled

nonlinear dynamics model and controller were summarized for holonomic three-wheeled

omni-directional mobile robots.

The reactive approach applied to local motion planning used relative velocity between the robot

and obstacles to detect and avoid collisions. In addition, instead of using all the global information in the

field, the collision detection only uses local information within a range surrounding the robot.

Furthermore, with the developed approach, there is no trapping of the robot by local minima and no

undesired influence by the obstacle when the robot passes by (these drawbacks are characteristic of the

widely-applied potential field method of obstacle avoidance).

 A fixed time problem has been implemented, i.e. the robot strives to reach its goal in a given

time, while avoiding obstacles. The method generally handles any obstacle motions (as long as the

motion characteristics of the obstacles are similar to the robot), which are not pre-known, and obstacle

motion can change during the process. A machine vision system senses the obstacles’ motions for use

in the algorithm. We have identified limitations of our method, both algorithmic and experimental.

Simulation with experimental validation have shown the effectiveness of the developed approach for

moving obstacle avoidance by a mobile robot in an unknown changing environment.

 29

REFERENCES

M.D. Adams, 1999, “High Speed Target Pursuit and Asymptotic Stability in Mobile Robotics,”
IEEE Transactions on Robotics and Automation, 15(2): 230-237.

J.R. Andrews, and N. Hogan N, 1983, “Impedance Control as a Framework for Implementing

Obstacle Avoidance in a Manipulator,” Control of Manufacturing Processes and Robotic Systems, Eds.
Hardt, D.E. And Book, W., ASME, Boston, 243-251.

F. Belkhouche, 2009, “Reactive path planning in a dynamic environment”, IEEE Transactions on
Robotics, 25(4): 902-911

J.V. der Berg and M. Overmars, 2007, "Kinadynamic motion planning on roadmaps in dynamic
environments," Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Diego, CA, October: 4253-4258.

A. Chakravarthy and D. Ghose, 1998, “Obstacle Avoidance in a Dynamic Environment: A
Collision Cone Approach,” IEEE Transactions on System, Man and Cybernetics, 28(5): 562-574.

T. Y. Chang, S.W. Kuo, and Y.J. Hus, 1994, “A Two-Phase Navigation System for Mobile Robots

in Dynamic Environment,” Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Germany.

R.A. Conn and M. Kam, 1998, “Robot Motion Planning on N-Dimensional Star Worlds among

Moving Obstacles,” Transactions on Robotics and Automation, 14(2): 320-325.

J.J. Craig, 2005, Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Prentice

Hall, Upper Saddle River, NJ.

P. Fiorini and Z. Shiller, 1998, “Motion Planning in Dynamic Environments Using Velocity
Obstacle,” The International Journal of Robotics Research, 17(7): 760-772.

K. Fujimura and H. Samet, 1989. “A Hierarchical Strategy for Path Planning among Moving
Obstacles,” IEEE Transactions on Robotics and Automation, 5(1): 61-69.

S.S. Ge and Y. J. Cui, 2000, “New Potential Functions for Mobile Robot Path Planning,” IEEE

Transactions on Robotics and Automation, 16(5): 615-620.

J. Guldner and V.I. Utkin, 1995,”Sliding Mode Control for Gradient Tracking and Robot

Navigation Using Artificial Potential Fields,” IEEE Trans Robotics and Automation, 11(2): 247-254.

T. Kalmar-Nagy, R. D’Andrea, and P. Ganguly, 2004, “Near-Optimal Dynamic Trajectory

Generation and Control of an Omni-directional Vehicle,” Robotics and Autonomous Systems, 46: 47-64.

O. Khatib, 1985, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,”

International Conference on Robotics and Automation, St. Louis, Missouri, 500-505.

Y. Koren and J. Borenstein, 1991, “The Vector Field Histogram-Fast Obstacle Avoidance for
Mobile Robot,” IEEE Transactions on Robotics and Automation, 7(3): 278-288.

C. Leng, C. Cao and Y. Huang, 2008, “A Motion Planning Method for Omni-directional Mobile

 30

Robot Based on Anisotropic Characteristics,” International Journal of Advanced Robotics Systems,
Vol.5, No.4: 327-340

K.L. Moore and N.S. Flann, 2000, “A Six-Wheeled Omnidirectional Autonomous Mobile Robot,”

IEEE Control Systems Magazine, 20(6): 53-66.

F.G. Pin and S. M. Killough, 1994, “A New Family of Omni-directional and Holonomic

Wheeled Platforms for Mobile Robots,” IEEE Transactions on Robotics and Automation, 17(2):
480-489.

A. Tsoularis and C. Kambhampati, 1998, “On-line Planning for Collision Avoidance on the
Nominal Path,” Journal of Intelligent and Robot Systems, 21: 327-371.

N.C. Tsourveloudis, and K.P. Valavanis, and T. Hebert, 2001, “Autonomous Vehicle Navigation

Utilizing Electrostatic Potential Field and Fuzzy Logic,” IEEE Transactions on Robotics and
Automation, 17(4): 490-497.

K. Watanabe, S. Yamamoto, S. G. Tzafestas, J. Tang, and T. Fukuda, 1998, “Feedback Control of

an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and
Robotic Systems, 22: 315-330.

R.L. Williams II, B. Carter, P. Gallina, and G. Rosati, 2002, “Dynamic Model with Slip for
Wheeled Omnidirectional Robots,” IEEE Transactions on Robotics and Automation, 18(3): 285-293.

J. Wu, R.L. Williams II, and J.Y. Lew, 2006, “Velocity and Acceleration Cones for Kinematic

and Dynamic Constraints on Omni-Directional Mobile Robots”, ASME Transactions on Dynamic
Systems, Measurement, and Control, 128:1-12, December.

J. Wu, 2004, “Dynamic Path Planning of an Omni-Directional Robot in a Dynamic

Environment”, Ph.D. Dissertation, Ohio University, Athens OH.

F. Xu, H.V. Brussel, M. Nuttin, and R. Moreas, 2003, “Concept for Dynamic Obstacle Avoidance

and their Extended Application in Underground Navigation,” Robotics and Autonomous System, 42:
1-15.

