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Abstract: 

We have established a novel method of obstacle-avoidance motion planning for mobile robots in 
dynamic environments, wherein the obstacles are moving with general velocities and accelerations and 
their motion profiles are not pre-known.  A hybrid system is presented in which a global deliberate 
approach is applied to determine the motion in the desired path line (DPL), and a local reactive approach 
is used for moving obstacle avoidance. A machine vision system is required to sense obstacle motion.  
Through theoretical analysis, simulation, and experimental validation applied to the Ohio University 
RoboCup robot, we show the method is effective to avoid collisions with moving obstacles in a dynamic 
environment. 
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1.  INTRODUCTION 

 An omni-directional robot is a holonomic robot that can move simultaneously in rotation and 

translation (Pin et al., 1994). Most work on omni-directional robots is in robot development; the few 

studies on dynamic models are Watanabe et al. (1998), Moore and Flann, (2000), Williams et al. (2002), 

and Kalmar-Nagy et al. (2004). These models all have decoupling between the wheels, which is not 

complete; thus, we first briefly summarize a new coupled non-linear dynamics model for three-wheeled 

omni-directional robots. 

The potential field method was first suggested by Andrews and Hogan (1983) and Khatib (1985) 

for obstacle avoidance of manipulators and mobile robots.  Obstacles exert a virtual repulsive force, 

while the goal applies a virtual attractive force to the robot. Koren and Borenstein (1991) identify 

potential field limitations (robot trapped by local minima, oscillation in presence of obstacle, the lack of 

passage between closely-spaced obstacles).  To overcome these problems they developed the vector 

field histogram.  Ge and Cui (2000) mentioned an additional shortcoming, a non-reachable goal with 

an obstacle nearby, and presented a new repulsive function to overcome it, increasing complexity and 

computation.  Adams (1999) presented a simulation study using the potential field method considering 

low-level robot dynamics, with static obstacles.  Guldner and Utkin (1995) proposed a method that 

took the gradient of the potential field as the desired vector field for path planning.  Tsourveloudis et al.  

(2001) proposed an electrostatic potential field for an autonomous mobile robot in a planar dynamic 

environment; their method depends on obstacle prediction accuracy, and slow environment changes. 

The velocity space method to deal with moving obstacle avoidance in a pre-known environment 

was suggested by Fiorini and Shiller (1998), who discussed the velocity obstacle concept.  This method 

lacks potential field simplicity, and is effective only if the obstacle moves with constant speed.  

Chakravarthy and Ghose (1998) and Tsoularis and Kambhampati (1998) proposed methods which use 

relative speed to detect collisions.   Fujimura and Samet (1989), and Conn and Kam (1998) presented 

studies of motion planning in a dynamic environment, but in both of their studies the dynamic 
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environments need to be completely pre-known.  

  Chang et al. (1994) presented a two-phase neural-network-based deliberate path-planning and 

reactive motion-planning hybrid navigation system for static obstacles.  Xu et al. (2003) proposed a 

reactive motion planner that uses local rather than global environment information for static obstacles. 

Recently other authors have presented works on moving obstacle avoidance for robots.  Leng, 

et al. (2008) presented an improved artificial potential field method by introducing an 

Anisotropic-Function.  The motion ability of an Omni-directional robot in different directions was 

considered to improve the motion planning and the moving obstacle velocity was pre-set.  Belkhouche 

(2009) presented reactive path planning for a dynamic environment.  der Berg and M. Overmars (2007) 

presented kinematic and dynamic motion planning roadmaps for dynamic environments. 

The potential field method is normally used for path planning and obstacle avoidance in a static 

environment; still relatively few papers deal with moving obstacle avoidance.  The velocity space 

method applies relative robot/obstacle speed and position to detect a possible collision and plan a motion 

and normally requires pre-known constant obstacle and robot speeds. No fixed time motion is found in 

literature on obstacle avoidance.  In the current article we present a new dynamic obstacle avoidance 

method with a hybrid (globally deliberate and locally reactive) navigation system and the concept of 

using relative velocity to detect possible collisions.  We have established a novel method of 

obstacle-avoidance motion planning for mobile robots in dynamic environments, wherein the obstacles 

are moving with general velocities and accelerations and their motion profiles are not pre-known.  A 

hybrid system is presented in which a global deliberate approach is applied to determine the motion in 

the desired path line (DPL), and a local reactive approach is used for moving obstacle avoidance.  

This article first summarizes a new coupled non-linear dynamics model for wheeled holonomic 

omni-directional mobile robots, followed by development of the novel dynamic obstacle avoidance 

algorithm, with simulation examples and experimental validation. 
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2.  THREE-WHEELED OMNI-DIRECTIONAL ROBOT MODELING SUMMARY 

 This section presents a brief summary of kinematic and dynamic modeling, plus controller 

development.  For more details, see Wu (2004).  Figure 1 shows a bottom view of the Ohio University 

RoboCup robot. In Figure 2, {w} is the fixed world coordinate frame and {m} is the moving frame, with 

the same origin as {w} but rotating with the robot. The xm axis is set to always be perpendicular to 

traction force 1T , and  is defined as the angle of xm with respect to xw.  1 2 3[ ]t TT T TF  is the traction 

force of the ground on the wheels and [ ]m m m m T
x y ZF F TF  is the Cartesian force and moment on the 

robot in the moving frame.  L is the radial distance to the wheels from the robot center.   

   
 Figure 1. RoboCup Robot (Bottom)   Figure 2. Omni-Directional Robot Geometry 
 
r  is the radius of the wheels; [ ]w T

w w wx y X     and [ ]m T
m m mx y X     are the robot Cartesian 

velocity in {w} and {m}, and 1 2 3[ ]T
L L L Lq q qq     are the wheel angular velocities.  The velocity 

kinematics equations in {m} or {w} are (1) and (2) is the acceleration kinematics equation. 

m
Lr    

-1TX B q    w w m w
m m Lr     

-1TX R X R B q     (1) 

 w w w
m L m Lr        

-1 -1T TX R B q R B q           (2) 

where w
m R is the orthonormal rotation matrix which rotates vectors in {m} to {w} (Craig, 2005). 
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 Without derivation our coupled nonlinear dynamics model is (Wu, 2004): 

31 2 4

1 0 0 0 1 1 1 0 0 0 1 1

0 1 0 1 0 1 ( ) 0 1 0 1 0 1

0 0 1 1 1 0 0 0 1 1 1 0
m m E m m

lr M lr M lr M lr M

kk k k
k

k k k k k k k k


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J and m are the rotational inertia and mass of the robot, 1 2 3[ ]T
m m m mq q qq     are the motor angular 

velocities, cm and cL are the motor and load rotational damping coefficients, Jm and JL are the motor and 

load rotational inertias, n is the gear ratio, 1 2 3[ ]TE E EE  where Ei is the ith motor voltage input, Ek  

and Mk  are the motor back emf and torque constants, and lrk  is the inverse of the motor terminal 

resistance R. 

 In simulation and hardware we have implemented a two-level closed-loop controller (Figure 3). 

The outer loop is a Cartesian pose controller based on machine vision and the inner loop is a wheel 

velocity controller based on motor encoder feedback.  For each level we use independent linear PI 

controllers where the gains were obtained through trial and error in simulation; the same gains worked 

well for the hardware.  For many straight-line, triangular, and circular motion commands, the 

simulation and experiment agrees well with the commanded motion indicating that our model is good 

and the controller is effective to compensate for the wheel coupling and nonlinearity in (3).  See Figure 

4 for one sample experimental motion without obstacles, comparing desired and actual position and 

orientation of the robot. The robot is commanded to move in a straight line between two points, dwell 

for 2 seconds, and return to the original point, with constant orientation. The robot follows the desired 

path smoothly and closely. 
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Figure 3.  Two-Level Control Architecture 

 
Figure 4.  Robot Motion Test 
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We have developed novel Velocity and Acceleration Cones to characterize the practical 

kinematic and dynamic constraints for holonomic three-wheeled omni-directional mobile robots.  

These are applied to ensure the path planner does not request more velocity than the robot is capable of 

kinematically nor excessive acceleration that causes actuator saturation or wheel slippage.  Though we 

have no space to present this, our obstacle avoidance method in this article is subject to these practical 

constraints (see Wu et al., 2006, for details). 
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3.  DYNAMIC OBSTACLE AVOIDANCE 

3.1  Problem Statement and Approach 

As shown in Figure 5, a mobile robot at point A must reach goal point B in a fixed time tB – tA, 

while avoiding collisions with static and moving obstacles.  Line AB is a given desired path line (DPL).  

The obstacles’ motions are not pre-known, but will be sensed in real-time via machine vision.  We 

assume the speed and acceleration capacity of all obstacles are similar to that of the mobile robot. 

 
Figure 5.   Mobile Robot in Dynamic Environment with Moving Obstacles 

We present a hybrid approach wherein a global deliberate approach is applied to motion along 

the DPL while a local reactive approach is used to avoid collisions with obstacles.  This obstacle 

avoidance in a non-pre-known environment is not necessarily optimal (when reviewed at a later time), 

because the obstacles’ motions are not pre-known.  Obstacle-avoidance decisions made by the robot are 

based only on past and current obstacle motion data from the vision system to estimate the current 

velocity of the obstacle. No further prediction about the future obstacle motion is made because smart 

obstacles may change motion according to our robot motion.  All obstacle avoidance robot motions 

will be restricted to a fixed time motion problem: along the direction of the DPL, the motion of the robot 

is a nearly constant speed motion (ramping up from and down to zero velocity and the start and end, 

according to the robot acceleration capacity).  Obstacle avoidance is realized by changing the robot 

speed in the direction perpendicular to the DPL.  This means if the obstacle is on the line between the 
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robot and target, the robot will change the speed in the direction perpendicular to the DPL while keeping 

the same speed in the direction along with DPL to reach the target in the fixed time period. 

 

3.2  Moving Obstacle Avoidance 

In Figure 5, {w} is the fixed world coordinate system.  The local, or DPL, coordinate system {l} 

has the same origin as {w} and lx  is parallel to the DPL.  In our obstacle avoidance algorithm, the 

starting and destination points and other robot motion conditions are transformed to DPL coordinates 

and then transformed back to {w} for the robot path.  The motion along the lx  direction is 

pre-determined (due to the fixed-time requirement), while the motion in the ly  direction will be 

determined in DPL coordinates for obstacle avoidance, subject to kinematics and dynamics constraints. 

atan2( , )DPL B A B Ay y x x     is the angle of lx  with respect to wx  where  Tw
A A Ax yX  and 

 Tw
B B Bx yX  are the vector position of points A  and B  in {w}, and atan2 is the 

quadrant-specific inverse tangent function. The Cartesian position and translational velocity (of the robot 

or obstacles) in DPL coordinates are found from (6), where w X  is the Cartesian velocity in {w} and 

l
w R  is the inverse (transpose) of the orthonormal rotational matrix w

l R : 

l l w
wX R X   l l w

wX R X    
cos sin

sin cos
DPL DPLl

w
DPL DPL

 
 

 
   

R     (6) 

 

3.2.1 Motion in lx  Direction.  In DPL coordinates, we assign the robot motion along the DPL (xl) as 

shown in Figure 6: 
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Figure 6.  Motion of Robot in lx  Direction 

Equations (7) are for the intermediate time points where s is the distance between points A and B, 

and x  and x  are the velocity and acceleration of the robot in the lx  direction. 

Ct x x     Dt s x    Bt s x x x       DCt s x x x      (7) 

From kinematics we can find the motion in time periods CAt , DCt  and BDt : 

   21

2lx xt                   
x

t
x





   

  
2

( )
2l

x x
x x t

x x
  
 
 

           
x s

t
x x
 

 

          (8) 

  
2

21
( ) ( )

2 2l

x s s
x s x t x t

x x x
     

  
  

       
s s x

t
x x x
  


  

    

  lx s              
s x

t
x x

 


 
    

  
The robot starts from point A , constantly accelerates by x  to velocity x  then moves with 

constant velocity x  in DCt , then constantly decelerates by x , and stops at point B . During time 

period 
x s

t
x x
 

 

, the speed of the robot in the lx direction is the constant x .  The total time to move 

from points A to B is tB from (7), assuming tA is reset to zero for each motion.  x  can be assigned as 

the maximum achievable robot acceleration in the lx  direction. If the motion time and x  are given, 

x  is determined from tB of (7). The robot velocity and acceleration must remain within their practical 
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kinematic and dynamic constraints (Wu et al., 2006). 

3.2.2 Basic Strategy of Obstacle Avoidance.  We can simplify by expanding the obstacle radius to 

o r oRR R R   (Figure 7) where Rr is the robot radius and Ro is the obstacle radius. The robot then 

becomes a point which must avoid the expanded obstacle. 

 

Robot 

o  wx  

Obstacle 

wy  
o r oRR R R   

  
Figure 7.  Expanded Obstacle Figure 8.  Basic Concept of Moving Obstacle Avoidance 

Figure 8 shows the vectors used in the moving obstacle avoidance algorithm.  In DPL 

coordinates, vector rolX  shows the relative position between the point robot and an expanded obstacle 

(from the robot to the obstacle). From vector loop closure rol obl rbl X X X , where oblX  and rblX  are 

position vectors of the obstacle and the robot. The distance between the robot and obstacle is 

rol roldis  X .  If the robot and obstacle velocities are rblX  and oblX , the relative velocity of the 

robot to the obstacle is orl rbl obl X X X   .  Angle  is between the tangent line from the expanded 

obstacle circle to the point robot and relative the position vector rolX : 

 2 2atan2( , )obst rol obstRR dis RR           (9) 

 is the angle between the relative position vector rolX  and the relative velocity vector orlX .  If 

   while the robot passes an obstacle, there will be no collision (Figure 8 pictures the opposite case, 

i.e.   , where there will be a collision).  The strategy for moving obstacle avoidance is to check 

angles  and  in each time step and command the motion of the robot in the yl direction (while the 

planned xl motion continues) to keep the relative velocity vector orlX  away from the possible collision 
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range determined by angle . 

Whether to increase or to decrease the velocity of the robot in the yl direction depends on which 

is the easier way to turn the relative velocity orlX  away from the collision range. In the case of single 

obstacle avoidance, if we start checking the relationship between  and  early enough ( 0ly  at the 

start), we can simply choose to increase or decrease ly  of the robot by comparing vectors of orlX  and 

rolX .  Two unit vectors vl orl orlu X X   and pl rol rolu X X  are compared to determine the 

direction of ly  (Figure 9).  If ( ) ( )vl ply yu u , we choose increasing ly  of the robot, and choose 

decreasing ly  (increasing ly  in the negative direction) in the reverse case.  In the case shown in 

Figure 9, )(yuvl  is more negative than ( )pl yu , thus we increase ly  in the negative ly  direction 

until   .  The original orlX  is changed to 
modorlX . 

Forwarding to the DPL is also considered in our algorithm as choosing the easier way to turn 

away the obstacle results moving less in the direction perpendicular to the DPL, consequently robot can 

move back to DPL faster and easier.  The “easier way” is judged not only by the relative velocity but 

also the relative position between the robot and the moving obstacle, both in DPL coordinates.  In Fig 8 

for example, if the robot turns left to avoid moving obstacle instead of turning right, the robot has to 

either start moving right earlier or faster to avoid the collision with the moving obstacle. 

 
Figure 9.  Changing ly  in Obstacle Avoidance 
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It will be more complicated in cases where there is not enough distance between the robot and 

obstacle when a robot starts to turn off the DPL, or a robot already has a velocity in the ly  direction. 

This is the multiple-obstacle avoidance case (Section 3.2.6). 

3.2.3 Range of Checking Collision.   An important issue is how to determine when the robot should 

start to leave the DPL. It will be easier to avoid collisions if the robot starts to turn off the DPL earlier 

and thus get more time to turn the relative velocity orlX  out of the collision range. On the other hand, 

velocities of obstacles are not constant; it might not be necessary to turn off the DPL if obstacles change 

their velocity in later time steps. Therefore, we should keep the robot moving along the DPL as long as 

possible, especially for multiple moving obstacles.  

Assume the maximum velocity maxoblX  of an obstacle is the same as the maximum speed of the 

robot rblX . We consider the special worst case when the obstacle moves towards the robot along the 

DPL, both at their maximum speed as shown in Figure 10.  

 
Figure 10.  Worst-Case Collision Scenario 

_ max2 2orl rbl obl rbl m lx   X X X X      is the relative speed between the robot and obstacle in this 

case.  If the maximum velocity and acceleration of the robot in the yl direction is maxly  and maxly , the 

time needed to move the robot a distance oRR  in the yl direction to avoid the collision is: 

2
max max max

2
max max max max max

(2 ) 2

2 2
o l o l l

o l l l o l l

RR y RR y y
t

RR y y y RR y y

   
 

  
    

        (10) 

The distance between the robot and obstacle at which the robot should start checking collision is then 
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Disov from (11).  The relative distance in this worst-case scenario is greater than the distance for all 

other cases, in which the relative speed along the relative distance will be smaller. 

2
max max max max

2
max max max max max max

2 (2 ) 2

2 ( 2 ) 2
l o l o o l l

ov

l o l l l o o l l

x RR y RR RR y y
Dis

x RR y y y RR RR y y

   
  

   
     

     (11) 

Since an obstacle can change velocity it is reasonable to use the relative distance Disov to set a 

range that the robot starts to check possible collisions. When the relative distance with an obstacle is 

longer than Disov, the possibility of collision with an obstacle is not checked, and the robot will keep 

moving on the DPL until its relative distance with the obstacle is less than or equal to Disov. 

3.2.4 Position for Returning to DPL.  After passing by the obstacle, the robot must return to the DPL. 

Figure 11 shows the robot passing by an obstacle. Points A, B and C represent three typical situations.  

At point A, the robot has not yet passed by the obstacle, and it has to keep its velocity in the ly  

direction, or possibly increase speed if the obstacle increases its velocity.  Point B is the critical point 

wherein the relative velocity vector orlX  is perpendicular to the relative position vector rolX  and the 

robot is just passing the obstacle. The robot cannot start to turn back to the DPL at point B because 

decreasing speed here may result in a collision with the obstacle in the next time step.  Point C is the 

intersection of two tangent lines of the obstacle circle, one parallel to the relative velocity orlX  and the 

other parallel to the yl axis. Point C is safe since changing the speed of the robot in the yl direction at 

point C does not cause a collision with the obstacle. The  angle between orlX  and rolX  at point C is: 

3 / 4 atan2(| ( ) |,| ( ) |) / 2c orl orly x   X X            (12) 
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Figure 11.  Position for Returning to DPL 

It is possible for the robot to start returning to the DPL at any point between B and C.  The 

robot can still collide with the obstacle if ly  changes too fast, or if the obstacle changes velocity. The 

relative velocity vector orlX  from the point robot should not intersect the obstacle circle when the robot 

returns to the DPL. The robot has to keep moving with the same velocity in the yl direction until 

c  . 

3.2.5 Motion in yl Direction.  The robot motion in the yl direction is classified into three categories: 
1. Increase (or decrease) ly  to achieve     

2. Keep ly  when c    

3. Decrease (or increase) ly  to return to the DPL after it passes the obstacle. 

 
When the relative distance with an obstacle is within Disov, the robot starts to check collisions. It 

starts to increase (or decrease) the speed in the yl direction if   .  The velocity in the yl direction is 

conditionally calculated as: 

max max

max max

max

& ( ) ( ) &

& ( ) ( ) &

| | | |

l l l l vl pl

l l l l vl pll

l l l c

y y t y y u y u y

y y t y y u y u yy

y y y or

 
 

  

    
      
   

   
   
  

         (13) 

If    but c  , the robot will maintain its speed in the yl direction until it reaches the 

position of returning to the DPL ( c  ). The robot will not decrease its speed before that because the 

obstacle might change its velocity in the next step; this avoids zigzag motions in the yl direction.   

After reaching the position of returning to the DPL ( c  ), the robot starts to decrease (or 
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increase) its velocity in the yl direction to return to the DPL. ly  is accelerated in the direction of 

returning to DPL. The direction of acceleration will be reversed when a robot is near the DPL so that ly  

can end at zero when the robot reaches the DPL ( 0ly ). The velocity in the yl direction after the robot 

reaches the position of returning to the DPL is conditionally calculated as follows: 

2
max max

2
max max

2 2
max

0 & | | / 2

0 & | | / 2

/ 2( ) | | / 2

l l l l lA l l

l l l l l lA l l

l l l lA l lA l l

y y t y y y y y

y y y t y y y y y

y y y y y y y y

     


     
    

    
     

   
          (14) 

From Figure 11 we can see that angle  is changed from less than 2  to greater than 2  

when the robot passes by an obstacle.  The value of the dot product of rolX  and orlX  will change 

from positive to negative when the robot passes by the obstacle. 

3.2.6 Multiple Obstacle Avoidance.  Multiple obstacle avoidance can be categorized into (1) avoiding 

collisions with obstacles one-by-one and (2) avoiding collisions at the same time. Group (1) cases can be 

handled sequentially with the above method.  For Group (2) when the robot is avoiding an obstacle, 

other obstacles move within Disov.  The strategy used in multiple-obstacle avoidance is to determine 

the robot motion by checking all obstacles that are within Disov. The position of leaving the DPL and 

robot motion in the ly  direction is determined by the obstacle that first appears within Disov, with

  . When the second obstacle also has   , the robot will modify its motion, trying to avoid 

collisions with both obstacles. The position of returning to the DPL is also affected by all obstacles 

within Disov of the robot.  

As an example, obstacle 1 is assumed to enter within Disov first. The robot starts to increase the 

velocity in the yl direction to force the relative velocity with obstacle 1 1orlX  out of collision range 

determined by 1 .  Then obstacle 2 enters within Disov. At the moment shown in Figure 12, though 

1orlX  is already out of the collision range, as 2orlX  is still in the collision range determined by 2 , the 
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robot will keep increasing its velocity in the yl direction until 2orlX  is out of the collision range. 

Robot

o lx

ly  

1_#orlX

2_#orlX

ly
Obstacle#1

Obstacle#2

 
Figure 12.  Multiple-Obstacle Avoidance 

 
The multiple-obstacle avoidance algorithm is summarized as follows:  

1. The xl motion along the DPL is the same as that from single obstacle avoidance. 

2. Checking collision range: For all moving obstacles with 0rol orl X X , if the relative robot/ 

obstacle distance is less than Disov, the robot starts checking collisions.  

3. Leaving DPL position: The robot leaves the DPL if any of the obstacles within the checking 

collision range meets the condition   . The robot will increase ly  when 

)()( yuyu plvl   relative to that obstacle, and decrease ly  in the opposite case. 

4. If any of the obstacles within the checking collision range satisfies the condition   , the 

robot will keep increasing (or decreasing) ly  until   . 

5. The robot will keep its velocity in the ly  direction if c   for all the obstacles 

within the check collision range. 

6. Returning to DPL: When c   (for all the obstacles within the check collision range), 

and 0||  lAl yy , the robot will decrease (or increase) ly  to return to the DPL according 

to (14). 
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4.  OBSTACLE AVOIDANCE SIMULATIONS AND EXPERIMENTS 

4.1  Simulation and Experimental Setup 

 We developed a Simulink model for dynamic obstacle avoidance simulation.  The methods of 

this article were used in conjunction with the developed controller (Figure 3) and coupled nonlinear 

dynamics model (3).  Some details are missing in this article due to lack of space: all motions are 

subject to practical kinematic and dynamic constraints via novel Velocity and Acceleration Cones (Wu et 

al., 2006); these were implemented in Simulink to avoid velocities beyond the robot kinematic 

capabilities and to avoid accelerations leading to actuator saturation or wheel slippage. 

The same Simulink model was then used to control the experimental mobile robot, using a PC 

with a Quanser MultiQ-3 board and Wincon 3.1 software, with cables for communication.  The coupled 

nonlinear dynamics model (3) is replaced by the real robot hardware, but the same controller is used.  A 

machine vision system senses in real time the position of the robot and obstacles (from which the 

translational velocities are derived from previous steps). Our three-wheeled omni-directional robot 

moves on a carpeted field as shown in Figure 13. A colored ball serves as the obstacle, moved by hand 

(via a long darkened handle, not shown) in the robot field.  The hardware control diagram is Figure 14. 

 
Figure 13.  Experimental Setup with Omni-Directional Robot and Obstacle 
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ISA MultiQ3 terminal board

Personal Computer (PentiumIII, Windows98)
Wincon 3.1, Simulink, Real-time workshop 

 

Servo Amplifier
25A8 

Cognachrome 2000 
Vision System 

CCD camera 
 YC-100 

Carpeted Miniature field 1.2(m) ×1.2(m)

Magnetic Encoder
IE-512

DC MicroMotors
2224012SR20/1

Mobile robot Obstacle 
Colored ball

ISA MultiQ-3 (ISA slot) Serial Port COM1

 
Figure 14.  Hardware Control Diagram 

The velocity of an obstacle is required as an input for the moving obstacle-avoidance algorithm. 

One way to obtain the velocity signal is to use a numerical differentiation formula or the Simulink 

differentiation block, but this leads to a noisy signal. Instead we applied a low-pass filter velocity 

estimation algorithm.  As seen in Figure 15, this estimation method yields much smoother velocity for 

feedback than the differentiation block; this is an experimental result where the obstacle was moved by 

hand in a sinusoidal pattern. 

 
Figure 15.  Experimentally-Sensed Obstacle Velocity 
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 Next we present simulation and experimental validation examples for static and moving obstacle 

avoidance; we also present a simulation of multiple moving obstacle avoidance.  For more examples 

and simulation/experimental validation, see Wu (2004). 

4.2  Example 1: Static Obstacle Avoidance 

 In the simulation, the circular robot and obstacles are approximated by octagons to decrease the 

calculation requirement.  Static obstacle avoidance is a special case of moving obstacle avoidance with 

zero obstacle velocity.  Table I shows the static obstacle avoidance simulation data (in SI units). 

Table I.  Static Obstacle Avoidance Simulation Data 

rbA
w x  rbA

w y  rbB
w x rbB

w y rb
l x rb

l x ob
w x ob

w y  

0.95 0.05 0.05 0.9 0.6 1.5 0.44 0.6 
 
Figure 16a shows the static obstacle avoidance simulation results with the conditions of Table I.  

The obstacle is placed at constant position 0.44, 0.6w wx y  . The robot is commanded to move from 

starting point ( 0.95, 0.05w wx y  ) to destination point ( 0.05, 0.9w wx y  ) along a straight line with a 

motion pattern in which the robot accelerates to 0.6v   m/s with 1.5a   m/s2, maintain that speed for 

2.5 seconds (by Equation 7), and decelerate to stop at the destination point. 

   
Figure 16a Simulated Static Obstacle Avoidance    Figure 16b Experimental Static Obstacle Avoidance 

A hardware static obstacle avoidance experiment was performed with the same conditions as the 
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simulated case. The results are shown in Figure 16b.  The actual path is compared with the commanded 

path (generated by the algorithm in real-time, not pre-planned), and the vision signal of the obstacle is 

displayed.  We see that the simulated and experimental mobile robot paths are similar and both 

successfully avoided the static obstacle.  In Figure 16b we also see that the actual path follows the 

commanded path well, indicating that our hardware controller development is effective to compensate 

for the wheel coupling and nonlinear dynamics effects.  Also, the static obstacle position signal is 

steady from the machine vision system. 

4.3  Example 2: Moving Obstacle Avoidance 

 Table II shows the data (in SI units) for moving obstacle avoidance simulation. 

Table II.  Moving Obstacle Avoidance Simulation Data 

rbA
w x  rbA

w y  rbB
w x  rbB

w y rb
l x rb

l x ob
w x ob

w y w
obv  w

vob  

0.95 0.05 0.05 0.9 0.6 1.5 0.88 0.88 0.20 3 4  
 

Figure 17a shows the moving obstacle avoidance simulation results with the conditions of Table 

II.  The robot is commanded to move from starting point ( 0.95, 0.05w wx y  ) to destination point 

( 0.05, 0.9w wx y  ) along a straight line with the motion pattern in which the robot accelerates to 

0.6v   m/s with )/(5.1 2sma  , maintains that speed for 2.5 seconds (by Equation 7), and decelerates 

to stop at the destination point.  The obstacle starts at ( 0.88wx  , 0.88wy  ) at At t , with speed 0.2 

( / )m s  and direction 3 4  rad with respect to the wx  axis.  The robot effectively avoids the moving 

obstacle by increasing the speed in the ly  direction. After the robot passes by the obstacle, it returns to 

the DPL and continues motion along it until the destination point.  Sequential robot and obstacle 

positions in Figure 17a represent different snapshots in time, so we see there were no collisions in 

simulation (robot and obstacle motion is right to left in Figure 17a). 
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Figure 17a Simulated Moving Obstacle Avoidance   Figure 17b Experimental Moving Obstacle Avoidance 

 A hardware moving obstacle avoidance experiment was performed with the same conditions as 

the simulated case; the results are shown in Figure 17b.  The actual experimental path on the right 

(generated by the algorithm in real-time, not pre-planned) compares well with the simulated path on the 

left.  Since the experimental obstacle is moved by hand, it is difficult to exactly match the simulated 

obstacle motion; the vision signal of obstacle motion is displayed on the right.  We see that the 

simulated and experimental mobile robot paths both successfully avoided the moving obstacle. 

4.4  Example 3: Multiple Moving Obstacles Avoidance 

 As a final example we present a simulation of the mobile robot avoiding multiple obstacles.  No 

experimental results are given in this case since our experimental obstacles are guided by hand.  Three 

obstacles are arranged to get close to the DPL when the robot travels to a destination point on the field. 

We focus on a Group (2) case wherein more than one obstacle is in the check collision range at once. 

Figure 18 is an example of multiple-obstacle avoidance simulation, in which the robot effectively 

avoids collisions with multiple obstacles. The data for simulation are in Table III (SI units). 
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Table III.  Multiple-Obstacle Avoidance Simulation Data 

rbA
w x  rbA

w y  rbB
w x  rbB

w y  rb
l x  rb

l x 1ob
wv 1vob

w  2ob
w x 2ob

w y  3ob
wv  3vob

w  

0.65 0.1 2.8 1.9 0.62 1.2 0.48 78.0 1.8 1.1 0.3 34.1
 

 
Figure 18.  Multiple-Obstacle Avoidance Simulation 

Obstacles 1 and 3 are moving, while obstacle 2 is static. As shown in Figure 18, the motion of 

the robot in the yl direction is first determined by obstacle 1 (snapshots 5 and 6). Instead of returning to 

the DPL, the robot maintains its velocity after it passes obstacle 1 as obstacle 2 has already entered the 

checking collision range with    (snapshots 7, 8, and 9). The robot returns to the DPL after 

passing the static obstacle (snapshots 10 and 11). Instead of slowing down to return to the DPL, the 

robot passes through the DPL, as obstacle 3 enters the checking collision range with   .  The 

1 2 3 4

5 6 7 8

9 10 11 12 

13 14 15 16
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robot maintains the speed (snapshots 12 and 13) until it passes obstacle 3 (snapshots 14 and 15).  

Snapshot numbering is left-to-right and top-to-bottom. 

This example is among those that the robot avoids collisions with multiple moving and static 

obstacles. However, successful obstacle avoidance is not always possible. Under some conditions, the 

robot is not able to realize multiple-obstacle avoidance by the developed algorithm; this is discussed in 

the next section on limitations of our methods. 
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5.  LIMITATIONS OF THE DYNAMIC OBSTACLE AVOIDANCE METHOD 

Assuming the obstacle is not so large as to violate the practical robot kinematic and dynamic 

constraints (or placed too close to the destination point) and that the experimental system is functioning 

properly, the static obstacle avoidance algorithm should work in all cases. In this section, we discuss the 

limitations of our moving obstacle avoidance algorithm. The algorithm is real-time, the obstacles’ 

motions are not pre-known (we assume the obstacle motion limits are similar to the robot’s), and 

obstacles can change velocities during motion. 

5.1  Velocity and Acceleration Limits of the Obstacle 

 With the developed algorithm, it is possible that robot cannot avoid collisions if the velocity and 

the acceleration of the obstacle in the yl direction are higher than those of the robot. 

 
Figure 19.  Limitation of the Obstacle Avoidance Algorithm 

As shown in Figure 19, 1l  and 2l  are two tangent lines of the obstacle circle parallel to the yl 

axis in DPL coordinates. Point A is the intersection of the DPL and 1l , and B is a point on the DPL 

between 1l  and 2l . Suppose that the velocity of the obstacle in the yl direction is zero when the robot is 

at point A. The robot moves along the DPL as    at point A. When the robot is at point B, if the 

obstacle starts to increase its velocity in the yl direction with an acceleration higher than the maximum 

acceleration of the robot, and maximum velocity in the yl direction higher than that of the robot, the 

robot is not able to avoid a collision with the obstacle. 

Failure of avoiding collisions with the obstacle is because the obstacle yl motion ability is higher 

than that of the robot, and the motion of the obstacle is not pre-known. If the motion of the obstacle is 
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pre-known, it is still possible to plan a path to let the robot reach the destination point within a fixed 

time while avoiding the collisions with the obstacle. 

From the above discussion, we conclude that for single obstacle avoidance, the maximum 

velocity and maximum acceleration of the obstacle in the yl direction should be lower than (or equal to) 

that of the robot, max maxobl ly y   and maxobl ly y  .  Since the robot moves with constant x velocity for 

most of the time along the DPL (except near starting or destination points), the acceleration condition is 

rewritten as maxayobl  , where maxa  is the maximum robot acceleration. 

The first condition is rewritten as 2 2
max maxobl ly v x   , where maxv  is the maximum robot 

velocity and the planned robot velocity in the lx  direction is lx .  If the obstacle moves perpendicular 

to the DPL, we have 2 2
maxob lv v x    and maxaaob  , which can be considered as the limitation of the 

acceleration and velocity of the obstacle for algorithm success. In our simulation and experimental study 

(Section 4), we used max max max( 2 2)ob l lv x y v    .  In real applications, if it is necessary to avoid 

collisions with obstacles having higher velocities than the robot, we must decrease the velocity of the 

robot in the xl direction (thus extending the motion time period). 

5.2  Failure Cases in Multiple-Obstacle Avoidance 

If the velocity and acceleration of the obstacle are limited as in Section 5.1, the developed 

algorithm can effectively avoid collisions with single obstacles. However, for multiple obstacles, there 

are still some cases in which the robot cannot avoid collisions with the obstacle.  One case is that the 

robot increases its velocity in the yl direction to avoid collisions with one obstacle. When the robot is at 

its maximum velocity in the yl direction, a second obstacle appears in the checking collision range.  In 

order to avoid collisions with the second obstacle, the robot has to increase its velocity in the yl direction, 

but the robot has already reached its maximum velocity. Another case is that when the robot has to 

increase its velocity in the yl direction for avoiding the first obstacle, the second obstacle appears in the 
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checking obstacle range, which requires the robot to decrease its velocity in the yl direction. This also 

results in the failure of collision avoidance with the second obstacle.  These failures are due to the fact 

that obstacles’ motions are not pre-known and the robot motion along xl is fixed due to the fixed time 

requirement.  A path to the destination point in fixed time is not guaranteed when there are more than 

one obstacle within the checking collision range near the DPL. In such collision avoidance failures, the 

robot must halt, waiting until it can try for point B again, with a new starting point A. 

5.3  Failure Cases Observed in the Experiment 

Four failure modes were observed in the experiment. First, sometimes the robot cannot react to 

the motion of the moving obstacle; later we found (by monitoring the vision signal) this is because the 

vision system did not give the correct signal of the moving obstacle, as the hand and arm moving the 

obstacle is sometimes visible. This was largely eliminated after we paid attention to the vision range.  

Secondly, if we move the obstacle too fast, the robot will try to avoid the collision with the obstacle 

behind the motion of the obstacle. This is a correct reaction in the developed algorithm. However, the 

tethered wires of the robot interrupt the vision signal or sometimes interfere with a static obstacle, which 

results in failure cases.  This is not an issue for untethered mobile robots.  Thirdly, if we move the 

obstacle too fast (exceeding the velocity limitations discussed in Section 5.1), the robot could not 

completely avoid collisions. However, we still can see that the robot correctly reacts to the motion of the 

moving obstacle as best it can.  Fourthly, if we move the obstacle differentially to hinder the robot for a 

relatively long time, the robot could possibly get no chance to reach the destination position, as the field 

is relatively small.  

Because the experimental study for moving-obstacle avoidance was only performed for a single 

moving obstacle (the method handles any number of moving obstacles; up to eight have been simulated 

(not shown in this article)), few failure cases were observed. Certainly additional failure cases would 

arise in experimental multiple moving obstacle avoidance, which is planned for the near future. 
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6.  CONCLUSION 

 A novel hybrid real-time approach has been developed for mobile robot motion planning 

focusing on moving obstacle avoidance. A global deliberate approach has been applied to the motion 

along the desired path line (DPL) while a local reactive approach is used to avoid the collisions with 

obstacles. The motions were subject to kinematic and dynamic constraints expressed by novel velocity 

and acceleration cones to avoid velocities and accelerations the robot cannot achieve due to kinematics, 

actuator saturation, and wheel slippage (these were not presented, see Wu et al., 2006).  A coupled 

nonlinear dynamics model and controller were summarized for holonomic three-wheeled 

omni-directional mobile robots. 

The reactive approach applied to local motion planning used relative velocity between the robot 

and obstacles to detect and avoid collisions. In addition, instead of using all the global information in the 

field, the collision detection only uses local information within a range surrounding the robot. 

Furthermore, with the developed approach, there is no trapping of the robot by local minima and no 

undesired influence by the obstacle when the robot passes by (these drawbacks are characteristic of the 

widely-applied potential field method of obstacle avoidance). 

   A fixed time problem has been implemented, i.e. the robot strives to reach its goal in a given 

time, while avoiding obstacles.  The method generally handles any obstacle motions (as long as the 

motion characteristics of the obstacles are similar to the robot), which are not pre-known, and obstacle 

motion can change during the process.  A machine vision system senses the obstacles’ motions for use 

in the algorithm.  We have identified limitations of our method, both algorithmic and experimental.  

Simulation with experimental validation have shown the effectiveness of the developed approach for 

moving obstacle avoidance by a mobile robot in an unknown changing environment.  
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