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ABSTRACT

The double universal joint robot wrist can eliminate singularities which limit the performance of

existing industrial robot wrists.  Unfortunately, this singularity-free wrist has an offset which prevents

decoupling of the position and orientation in the manipulator inverse kinematics problem. Closed-form

solutions are difficult, if not impossible, to find. This paper solves the inverse position kinematics

problem of manipulators with the double universal joint wrist. Common regional manipulator types are

used to demonstrate the solutions.  A numerical singularity analysis is presented for manipulators with

the offset double universal joint wrist.  The results point to the existence of coupled position and

orientation singularities which are difficult to enumerate.  Therefore, this offset singularity-free wrist

actually worsens the overall manipulator singularity problem.
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1   INTRODUCTION

Most existing industrial robot wrists have singularity configurations which restrict manipulator

dexterity.  The double universal joint (DUJ) wrist has been proposed to eliminate wrist singularities. The

kinematic diagram for this wrist is shown in Fig. 1a.  Double universal joint wrists have been designed

and built by Trevelyan, et al. [1], Milenkovic [2], and Rosheim [3,4]. The ET Wrist [1] was designed for

sheep shearing.  The Omni-Wrist [4] is currently used for industrial spray painting operations.  Forward

and inverse position and velocity kinematics equations for the DUJ wrist are presented in [5].  The

present paper studies this class of robot wrist mounted on different regional manipulator arms.

Offset wrists complicate manipulator kinematics and may increase singularity problems.  More

recently,  Stanisic, et al., [6,7] have developed a singularity-free wrist and regional arm structure without

the detrimental offset.

The DUJ wrist has an offset separating wrist coordinate frames.  This prevents decoupling of

manipulator position and  orientation, which complicates the inverse position solution.  The current

paper solves the inverse position problem of the three-degree-of-freedom DUJ wrist on three-degree-of-

freedom Cartesian, cylindrical, spherical, and articulated regional arms.  Two inverse position solution

algorithms are developed:  1) Closed-form solutions are found for two simple manipulator geometries.

2) An iterative solution calculates the arm variables and then the wrist variables in closed-form, iterating

until convergence is achieved.  Similar methods were presented by Milenkovic [8] and Takano [9].  A

good initial guess is calculated for the iteration by assuming zero wrist offset and using standard

decoupling of position and orientation.  In ensuing steps the wrist offset is included, each time using the

current wrist angles to calculate the input to the position part.  In this way the Cartesian position error is

driven towards zero.  The orientation error is theoretically zero at each step.

This paper first discusses the inverse position problem and demonstrates why the DUJ wrist

complicates the problem.  The inverse position solution methods are then developed.  Lastly, a

singularity analysis is presented for manipulators with the DUJ wrist to investigate coupled position and

orientation singularities.
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2 INVERSE POSITION PROBLEM

The forward kinematics problem is a mapping from joint space θ  to Cartesian space y.  For

serial manipulators, the forward kinematics problem is straightforward [10].

( )y f= θ (1)

The inverse position kinematics problem inverts Eq. 1, mapping the Cartesian space to joint space.

Equation 2 is difficult to solve because the system is coupled, nonlinear, and multiple solutions generally

exist.

( )θ = −f y1   (2)

The forward kinematics solution may be expressed as a concatenation of  homogeneous

transformation matrices, factored at the forearm frame.

( ) ( )H
B

F
B

H
FT T T= θ θ θ θ θ θ1 2 3 4 5 6, , , , (3)

The inverse position kinematics problem uses the same equations, but H
BT  is specified and the joint

angles are unknown.

2.1  Manipulator Wrists with Collocated Frames

Most industrial wrists are spherical, with three coincident frames.  Pieper [11] proved that if a

manipulator has three consecutive joints with collocated frames, a closed-form inverse position solution

exists.  For a spherical wrist, this solution can be found by decoupling the Cartesian position and

orientation.  The forearm frame {F} origin is always collocated with the last wrist frame {H} origin, and

so the Cartesian position is only a function of the arm joint values ( )θ θ θ1 2 3, , .

{ } ( )P P P PX Y Z
T B

F= θ θ θ1 2 3, , (4)

After solving these arm joint values, the relative wrist orientation is found:

( )H
F

F
B

H
B

F
B T

H
BR R R R R= =−1

1 2 3θ θ θ, , (5)
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With H
F R known, the wrist angles ( )θ θ θ4 5 6, ,  are found by inverting the appropriate Euler angle set.

2.2  Double Universal Joint (DUJ) Wrist

For the DUJ wrist (and other non-spherical wrists), the Cartesian position and orientation are

coupled because F
HP  (the position vector from the forearm to the last wrist frame origin) is nonzero.

(See Fig. 1b, where the offset L is exaggerated).  The Cartesian position is a function of all joint angles.

{ } ( )P P P PX Y Z
T B

H= θ θ θ θ θ θ1 2 3 4 5 6, , , , , (6)

Three more equations are obtained from the orientation command.  These six equations are nonlinear

and coupled in the six unknowns.  A closed-form solution may not exist.

The following equation is an attempt to decouple Eqs. 6 (see Fig. 1b).

B
F

B
H F

B F
HP P R P= − (7)

This fails because F
HP  depends on ( )θ θ θ4 5 6, , .
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3  INVERSE POSITION SOLUTION
Two methods are used to solve the inverse position kinematics of manipulators with the DUJ

wrist.  Closed-form solutions were found for two manipulators.  An iterative method was applied to

manipulators with no closed-form solution.

Figures 2a through 2d show the three-degree-of-freedom regional arms considered in this paper.

Each arm has a base frame {B} and a forearm frame {F} where the DUJ wrist is mounted.  The last wrist

frame is {H} in Fig. 1.  The articulated arm (Fig. 2d) is based on the Flight Telerobotic Servicer (FTS)

arm [12] with the first joint locked.  Though not currently scheduled for space flight, FTS flight

hardware has been built for NASA.  Originally, the offset DUJ wrist was considered for the FTS

hardware.  Details for the solutions discussed below are given in [13] and [5].
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3.1  Closed-Form Solutions

A closed-form solution was developed for the Cartesian manipulator.  The basis for this solution

is that the forearm orientation is independent of the arm variables (X,Y,Z): F
BR I= , so H

F
H
BR R= .  The

wrist angles are calculated as in the Appendix.  Then Eq. 7 is used to calculate the unknowns (X,Y,Z);

the abbreviations ci i= cosθ  and si i= sinθ  are used throughout this paper.

( )
( )

X

Y

Z

P

P

P

L c s s s c

L s s c s c

Lc c

X

Y

Z












=












−

+
−

















4 6 4 5 6

4 6 4 5 6

5 6

(8)

A closed-form solution for the cylindrical I manipulator of Fig. 2b was attempted.  Though this

attempt failed, a closed-form solution was found for the cylindrical II manipulator.  The difference

between the cylindrical manipulators is the mounting orientation of the DUJ wrist, as seen in Fig. 2b.

For either cylindrical manipulator, F
BR is a function of unknown θ 2 .  Therefore, Eq. 5 may not be

applied to solve ( )θ θ θ4 5 6, ,  first, as in the Cartesian case.  Rather, the kinematics equations, Eq. 3, are

used to solve for ( )h r, ,θ  first.  The key to the cylindrical II solution is the following combination of

unknowns; r32 is given from the orientation command.

c c
r

5 6
32 1

2
= +

(9)

The position and orientation is decoupled using Eq. 9.  The solution is:

h P Lc cZ= − 5 6 θ = 





−tan 1 B

A
r A B= +2 2 (10)

where:

A P
Lr

c cX= − 12

5 62
B P

Lr

c cY= − 22

5 62

There is a unique solution, assuming r>0  and using the quadrant-specific inverse tangent function.

Following this solution, Eq. 5 is used to find H
F R, and ( )θ θ θ4 5 6, ,  are calculated as in the Appendix.
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3.2 Iterative Solution Method

The closed-form solutions presented in the previous section are for special cases.  For general

manipulators with the DUJ wrist,  the offset L prevents decoupling of the arm and wrist unknowns.  The

iterative method for solving the inverse position kinematics of a manipulator with offset wrist axes

applies to any arbitrary 3-dof regional arm structures.  The efficiency is improved if the 3-dof regional

arm has a closed-form inverse kinematics solution.  The algorithm flow-chart is shown in Fig. 3.  This

algorithm is not new as similar methods have been presented [8, 9].  Thus, the efficiency of the iterative

method presented is comparable to these earlier works.

To provide a good initial guess, the wrist offset L is first assumed to be zero, so B
F

B
HP P= . With

this condition, the solution method follows Eqs. 4 and 5.  The solutions for the first three joints given

( )P P PX Y Z, ,  are given in the Appendix for the cylindrical I, spherical, and articulated arms.  After

solving the first three joint values, the wrist unknowns ( )θ θ θ4 5 6, ,  are solved in the Appendix, given

H
F R from Eq. 5.  In the next iteration, Eq. 7 is used to obtain a better value for B

FP  than the zero-offset

assumption yields.  This equation may be applied because approximate values for the wrist joints have

been calculated.  The updated B
FP  is used to repeat the calculations, solving the arm and then wrist

unknowns.

A benefit of this method is that the orientation error is zero at each iteration.  The ( )θ θ θ4 5 6, ,

values are not the exact solution.  However, they produce the exact commanded orientation because they

are based on F
BR (calculated from the current values for the first three joints) and the original H

BR.

The position vector error resulting from each iteration is expressed by the scalar Cartesian

position error (CPE).  The commanded position vector is B
HP ; the actual position vector is B

HP
E

,

calculated from forward kinematics using the current joint values.  CPE is calculated using the

Euclidean norm in Eq. 11.  The algorithm terminates when CPE is less than a specified tolerance ε .

CPE P PB
H

B
HE

= − (11)
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The number of multiple inverse position solutions is summarized in Table 1, both for the

regional arm alone and the overall manipulator including DUJ wrist.  Table 1 assumes prismatic joints

are limited to positive values.  The DUJ wrist alone has four multiple solutions so the total number of

solutions is 4x, where x is the number of regional arm multiple solutions.  Four solutions are found for

the DUJ wrist even when the offset L is set to zero to calculate the initial guess for iteration.  The

iterative method finds all possible multiple solutions as summarized in Table 1.
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Table 1 Number of Inverse Solutions
Manipulator Regional Solutions Overall Solutions

Cartesian 1 4
Cylindrical I & II 1 4
Spherical 2 8
Articulated 4 16

Figure 4 shows the convergence of the iterative method for the cylindrical, spherical, and

articulated manipulators given a specific H
BT , where N is the number of iterations.  After the first

iteration, CPE = L (41 mm from a commercial DUJ wrist) for all manipulators.  In each iteration, CPE

decreases approximately by an order of magnitude.  Closed-form solutions are used for each iteration to

reduce computation.
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Figure 4   Convergence of Iterative Algorithm

No formal convergence proof is available.  The algorithm performed similar to Fig. 4 for all simulated

trajectories (Fig. 4 is for one commanded H
BT  along a trajectory).  As long as the offset L is small

relative to the smallest effective moment arm due to the regional arm lengths, convergence is likely.

However, for certain configurations (such as when the last wrist frame is placed near the first regional

joint) the inverse position solution may diverge.  In such cases, the linearized resolved-rate control

method [14] may be used in place of inverse position because it is not iterative and can handle the offset.

Both inverse position and resolved rate algorithms are subject to the same singularities, presented in the

next section.
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4  MANIPULATOR SINGULARITY ANALYSIS

Manipulator singularities for non-redundant manipulators are found from the determinant of the

manipulator Jacobian matrix J.  All joint angle sets which result in zero or near zero determinant are at

or near singular configurations.  Singularities instantaneously cause the loss of one or more degrees of

freedom.  In the neighborhood of singularities, a finite Cartesian velocity command requires joint

velocities approaching infinity.

For a manipulator with a spherical wrist, the upper right Jacobian submatrix is the zero matrix,

which is the velocity-domain manifestation of position/orientation decoupling (see Eq. 12, where

{ } [ ]{ }v JTω = �Θ ; v are the three translational Cartesian velocities,ω  are the three rotational Cartesian

velocities, and { }�Θ  are the six joint rates).  Singularities are classified as regional arm singularities

(found from JUL = 0 ) and wrist singularities (found from JLR = 0).

[ ] [ ] [ ]
[ ] [ ]J
J

J J
UL

LL LR
=











0
; J J JUL LR= (12)

For a manipulator with an offset wrist the Jacobian matrix [ ]J  is fully populated as shown in Eq.

13.  This is because the wrist joints participate in translation of the last wrist frame in addition to

orientation.  In this case, the  singularities can no longer be classified as separate regional arm

singularities and wrist singularities.

[ ] [ ] [ ]
[ ] [ ]J
J J

J J

UL UR

LL LR
=













; J J JUL LR≠ (13)

For two manipulators identical except for wrist offset L: [ ] [ ]J JUL UL≠  due to the additional moment

arm L affecting Cartesian translational rates from the regional arm joint rates; [ ] [ ] [ ]J JUR UR≠ = 0

because in the offset wrist case the wrist joint rates enter into the Cartesian translational rates;  however,

[ ] [ ]J JLL LL=  and [ ] [ ]J JLR LR=  because the wrist offset has no effect on the Cartesian rotational rates.
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The DUJ wrist alone is singularity-free (actually, the two existing singularities are forced to lie

outside of joint limits, as shown in [4, 5]).  The regional arm singularities for the first three joints do not

necessarily exist for the overall manipulator with offset wrist.  The following question arises:  Are there

any singularities due to the coupling of position and orientation?  This question is answered by analyzing

the determinant of the 6x6 Jacobian matrix for each manipulator with the DUJ wrist.  This analysis has

not been previously published, to the author’s knowledge.

The overall Jacobian matrix for a manipulator with the DUJ wrist (Eq. 13) can be determined

symbolically or numerically given the DH parameters (see tables in the Appendix). The method used in

this paper recognizes each column i of the Jacobian matrix as the contribution to the Cartesian velocity

of the last wrist frame { }v Tω  due to joint i alone, with �θ i  factored out for revolute joints (or �di  for

prismatic joints).  Equation 14 gives the 6x1 ith column of the Jacobian matrix when the ith joint is

revolute (left) and prismatic (right).

{ } ( )k
i

k
i

k i
H

k
i

J
Z P

Z
= ×












�

�
 { }k

i

k
iJ

Z
=













�

0
(14)

where { }k
iJ  is the ith column of the Jacobian matrix expressed in {k} coordinates, k iZ�  is the

instantaneous direction of the revolute axis (or sliding direction for prismatic joints), and  ( )k i
HP  is the

position vector from the origin of frame i to the origin of the last wrist frame H, expressed in {k}

coordinates.  Equation 14 holds for manipulators without and with wrist offset (Eq. 12 and Eq. 13,

respectively).

All manipulators considered in this paper have a 3-dof regional arm with the 3-dof DUJ wrist.

However, the Jacobian matrix for all cases (given the DH parameters in the Appendix) will be derived as

a 6x8 matrix due to the repeated angles θ θ5 6,  in Fig. 1a.  Since the DUJ wrist is designed so both angles

θ5  and angles θ6  are individually coupled, columns 5 and 8 of this 6x8 Jacobian both multiply �θ5  and

columns 6 and 7 multiply �θ6 .  Therefore, the original 6x8 Jacobian matrix is converted to a 6x6 Jacobian

matrix by adding columns 5 and 8 to form column 5, and adding columns 6 and 7 to form column 6.
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A potential problem in rate kinematics and singularity analysis is Jacobian matrix scaling.  If the

translational and rotational terms have significantly different scales, the resulting Jacobian matrix

conditioning will be in question.  For instance, in this paper the DH length parameters were chosen on

the order of 1 m.  The Jacobian matrix scaling will be acceptable since all rotational terms are

constrained to be unit vectors or zero (see Eq. 14) and the translational terms will be the same order of

magnitude.  If however 1000 mm were used instead of 1 m, the Jacobian matrix scaling would suffer.

For Jacobian matrices derived symbolically, the simplest terms will result if the frame of

expression is in the middle of the serial chain, usually the elbow frame.  Note that regardless of the

frame k of expression, the Jacobian matrix always relates the last wrist frame Cartesian rates with respect

to the base frame.  The Jacobian determinant is invariant with regard to coordinate transformations.

Singularity conditions are reported below for the manipulators in this paper.

4.1 Symbolic Singularity Analysis

The Jacobian matrix determinant for the Cartesian manipulator with the DUJ wrist is Eq. 15.

J c c= =4 05 6
2 (15)

Due to the simple geometry of the Cartesian manipulator, Eq. 15 is identical to the determinant

of the 3x3 Jacobian matrix for the wrist alone [5].  The singularity conditions are solved by inspection,

θ5 90= ± $  or θ6 90= ± $ .  If the wrist is designed such that these angles are beyond joint limits, the

Cartesian manipulator with the DUJ wrist is singularity-free.

As manipulator complexity increases, the symbolic complexity of the Jacobian matrix

determinant also increases.  The remaining singularity conditions are derived via exhaustive computer

numerical searches.  Partial symbolic results are possible for the cylindrical I, cylindrical II, and

spherical manipulators:  These determinants each have a factor c6 , so θ6 90= ± $  is a singularity

condition for these manipulators; as mentioned above, this lies beyond joint limits.
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4.2 Numerical Singularity Analysis

Both cylindrical I and cylindrical II manipulators with the DUJ wrist were found to be

singularity-free.  The angle θ  was varied over 360$  in one degree steps, while θ5 and θ6  were varied

over ±50$  (the commercial wrist in [4] has ±45$  limits).  No determinant was less than 0.2 for either

case.  The cylindrical manipulators both have singular conditions r=0 , and θ 6 90= ± $  but these are

assumed to be outside joint limits.  Several coupled position and orientation singularities were found

when θ5 and θ6  were extended beyond ±50$ , but these cases are outside wrist joint limits.

Three standard singularity conditions were identified for the spherical manipulator with DUJ

wrist:  1) θ6 90= ± $ ;  2) r=0  and φ = 0;  and 3) r=0  and θ6 0= .  None of these standard singular

conditions cause a problem because θ6 90= ± $  and r=0  are outside joint limits.  However, in addition

the spherical manipulator has many coupled position and orientation singularities internal to its

workspace, found by numerical searching.  It is difficult to assign a numerical value delineating

singularity, but generally any determinant less than 10-6 is in the neighborhood of a singularity, given

acceptable Jacobian matrix scaling. The singular conditions occur at general angular values within the

DUJ wrist and regional arm joint limits.

The behavior of the articulated manipulator with the DUJ wrist is similar to that of the spherical

manipulator.  There are many coupled position and orientation singularities existing at various locations

within the workspace, determined by exhaustive numerical searching.  Locations for these singularities

are difficult to enumerate.  Again, the singular conditions occur at general angular values within

practical joint limits.

In summary, for simple manipulator geometries (the Cartesian manipulator and both cylindrical

manipulators), the DUJ wrist does not cause coupled singularities.  These manipulators are singularity-

free (except for workspace limit singularities, which no manipulator can escape).  As the manipulator

geometry becomes more complex, many coupled position and orientation singularities arise within the

workspace, at general configurations difficult to enumerate.  The author is currently applying screw

theory in attempt to explain these singularities geometrically, which are less easy to understand than

singularities of common industrial manipulators with zero-offset wrists.
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5  CONCLUSION

This paper presents solution of the inverse position problem and singularity analysis for the offset

DUJ wrist on a manipulator.  The offset of this singularity-free wrist prevents decoupling of the position

and orientation.  Cartesian, cylindrical, spherical, and articulated regional manipulators were considered.

Closed-form solutions are found for the Cartesian and cylindrical II manipulators.  The iterative method

is numerical, but each iteration uses closed-form solutions.  It was found that two iterations give 1 mm

accuracy for all three cases considered.  A good initial guess is calculated, all possible multiple solutions

are found, and the method is based on closed-form solutions.

A manipulator singularity analysis using the Jacobian matrices of the Cartesian, cylindrical I and

II, spherical, and articulated arms with the DUJ wrist was presented.  It was found that the Cartesian and

cylindrical I and II manipulators are singularity-free when using the wrist.  Coupled position and

orientation singularities were found at many locations within the spherical and articulated manipulators’

workspaces and within DUJ wrist joint limits.  This is a potentially serious limitation of the wrist, when

used on common regional manipulator types.

The methods of this paper can be implemented in a real-time controller for manipulators with the

DUJ wrist.  Such dexterous manipulators could be used in space telerobotic systems and industrial and

remote applications,  but further work is required to avoid the singularities.  The primary contribution of

this paper is exposing the existence of coupled position and orientation singularities in manipulators

with the offset DUJ wrist.  These singularities were found to occur at general configurations difficult to

enumerate.  Thus, the irony is that offset singularity-free wrists may actually exacerbate the manipulator

singularity problem.
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APPENDIX.  INVERSE POSITION SOLUTIONS
Inverse position solutions are presented in this appendix for the DUJ wrist, plus the cylindrical I,

spherical, and articulated regional arms.  For each case, the forward kinematics transformation is given,

from which the inverse position solution is derived (except for the Cartesian and Cylindrical II, whose

closed-form solutions were presented in Section 3.1.  First, the DH parameters (Craig convention, [10])

are given for the DUJ wrist and each regional arm.  For more detail, refer to [5, 13].

Double Universal Joint (DUJ) Wrist
Table A.1 DUJ Wrist DH Parameters

i αi −1 ai −1 di θi

4 0 0 0 θ4 90+ $

5 90$ 0 0 θ5 90+ $

6 90$ 0 0 θ6

7 0 L 0 θ6

H − 90$ 0 0 θ5 90− $

[ ]H
F T

s c K s c c K s K c LK

s c K c c c K s K s LK

s c c c c c s c Lc c
=

− − +
+ − +

− −



















2 2 2

2 2 2

2 2 1 2

0 0 0 1

5 6 1 4 5 6 1 6 1 4 1

5 6 2 4 5 6 2 6 2 4 2

5 5 6
2

5
2

6
2

5 6 6 5 6

where: K c s s s c1 4 6 4 5 6= + K s s c s c2 4 6 4 5 6= −

θ4
1 23 11

13 21 32
2

1
= −

+ + +






−tan

r r

r r r
θ5

1 13 4 23 4

33
= −






−tan

r s r c

r

( )θ6
1 23 4 13 4 5 33 5

13 4 23 4

1

2
=

− −
+







−tan

r c r s s r c

r c r s

There are four possible solutions, ignoring joint limits.

Cartesian Regional Arm
Table A.2 Cartesian DH Parameters

i αi −1 ai −1 di θi

1 0 X 0 90$

2 0 Y 0 − 90$

3 0 0 Z 0
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Cylindrical I Regional Arm
Table A.3 Cylindrical I DH Parameters
i αi −1 ai −1 di θi

1 0 0 h 0
2 0 0 0 θ + 90$

3 90$ 0 r 0

[ ]F
BT

s c rc

c s rs

h
=

−

















θ θ θ
θ θ θ

0

0

0 1 0

0 0 0 1

h PZ= θ =






−tan 1 P

P
Y

X

r P PX Y= +2 2

There is one solution, assuming positive r.

Cylindrical II Regional Arm
Table A.4 Cylindrical II DH Parameters
i αi −1 ai −1 di θi

1 0 0 h 0
2 0 0 0 θ
3 0 r 0 0

Spherical Regional Arm
Table A.5 Spherical DH Parameters

i αi −1 ai −1 di θi

1 0 0 0 θ
2 90$ 0 0 φ + 90$

3 90$ 0 r 0

[ ]F
BT

s c s c c rc c

c s s s c rs c

c s rs
=

− −
−



















θ θ φ θ φ θ φ
θ θ φ θ φ θ φ

φ φ φ0

0 0 0 1

θ =






−tan 1 P

P
Y

X

φ θ
=







−tan 1 P c

P
Z

X

r P P PX Y Z= + +2 2 2

There are two solutions.
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Articulated Regional Arm
Table A.6 Articulated DH Parameters

i αi −1 ai −1 di θi

1 0 0 0 θ1

2 90$ L1 0 θ2

3 0 L2 0 θ3 90+ $

4 90$ 0 L3 θ 4 90+ $

[ ]F
BT

s c s c c L c L c c L c c

c s s s c L s L s c L s c

c s L s L s
=

+ +
− + +

− +



















1 1 23 1 23 1 1 2 1 2 3 1 23

1 1 23 1 23 1 1 2 1 2 3 1 23

23 23 2 2 3 230

0 0 0 1

( ) ( )
θ θ2 3

1 3 3
2

3
2 2

2
2

3
2

3
2 2 2

2
2

3
2

3
2 2

3 3

2
2 4

2
+ =

− ± + − − − −

− − − −

















−tan
L P L K P L L K P

L L K P L K

Z Z Z

Z

θ1
1=






−tan

P

P
Y

X

θ2
1 3 23

3 3 23
= −

−






−tan

P L s

K L c
Z ( )θ θ θ θ3 2 3 2= + −

where: K P c P s LX Y3 1 1 1= + −
There are four solutions.

For the Cartesian, cylindrical, and spherical regional arms, the DH parameters of the overall manipulator

are obtained by adding Rows 4-H of Table A.1 to Rows 1-3 of the appropriate regional arm table.

However, for the articulated regional arm, Row 4 is given in Table A.6, and the remaining rows are 5-H

from Table A.1.


