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ABSTRACT 

State of the art legged robots, such as the Honda’s series of 
bipedal robots ending in the latest advanced walking robot 
ASIMO, and the series of bipedal robots of Waseda University 
including the latest advanced robot WABIAN, employ joint-
mount motors, which simplifies the analysis/design and traces 
the route for an effective control system, but results in legs 
that are heavy and bulky. Cable-driven robots overcome this 
shortcoming by allowing the motors to be mounted on or near 
the torso, thereby reducing the weight and inertia of the legs, 
resulting in lower overall weight and power consumption.  To 
facilitate analysis and design, typical cable-driven robots use 
non-stretchable cables, which require at least n+1 motors for 
an n Degree-of-Freedom (DoF) joint.  Therefore, for a robot 
with N joints, at least N additional motors are needed 
comparing to joint-mount motor drives.  Moreover, the drive 
train of both joint-mount and cable-driven designs are rigid, 
which cannot effectively absorb ground impact shocks nor 
transfer potential energy to kinetic energy and vice versa when 
the robot is in motion, as biologic animals do.  
 In this paper we present the design and test of a cat-size 
quadruped robot called RoboCat, which employs stretchable 
elastic cable-driven joints as inspired by biological quadruped 
animals. Although it complicates kinematics and dynamics 
analysis and design, the elastic cables allow n motors to be 
used for an n-DoF joint, thereby eliminating N motors for a 
robot with N joints comparing to non-stretchable cables, 
further realizing the weight and power savings of the cable 
driven design.  Moreover, the elastic cable driven joints not 
only effectively absorb ground contact shock, but also 

effectively transfer potential and kinetic energy during 
walking or running, thereby improving the robot motion 
performance and energy efficiency. In the paper we will 
discuss the kinematics and dynamics analysis of elastic cable 
driven joints, implementation of elastic cable-driven joints on 
the Ohio University RoboCat, and control.  

 
1. INTRODUCTION  

Traditional direct drive actuation system of robotic 
manipulators is probably one of the easiest ways to actuate 
robotic walkers, due to its simplicity in mechanical 
implementation and the fact that the rotational motion of 
motors is directly mapped into rotational motion of the joints. 
Consequently, if we just require an appropriate functionality 
of a robotic walker, the direct drives with a gear set would be 
a convenient solution. However, biological walkers that use an 
inverted pendulum like mechanism [1, 2, 3] are considered 
energy efficient relatively with respect to the state of the art 
robotic walkers [12, 13], using a different kind of actuators, 
the muscles, which can be considered as elastic (stretchable) 
linear actuators. Energy efficiency and the level of the walk 
cycle precision and smoothness are among important reasons 
for mimicking biological walkers. As the fundamental actuator 
unit, the muscle behavior and structure attract special attention 
of research in robotics. There have been a number of attempts 
to produce artificial muscles for use in robotics [4 - 8], based 
on different principles such as pneumatics, piezoelectric 
effect, magnetostriction, etc. 
 One of the possibilities of a walking robot muscle-like 
actuation is to use (elastic) cables. Applications of the cable 
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actuation in general robotics [9] show that the main feature, 
among other interesting features, of the cable actuation is the 
possibility to achieve relatively high accelerations, due to the 
reduced mass of the most kinetically-active segments of the 
robots.  
 Since the walking robots usually have to carry an 
independent energy source (batteries), it is the most critical to 
reduce the energy consumed per distance walked. Using the 
cables the motors are moved to the sections of the robot that 
are the least kinetically-active and experience the lowest 
accelerations. The main benefits are: the balancing stability of 
the robot is improved and the energy consumption is reduced 
due to the reduced mass of the fast moving segments of the 
walking robot. It will also lead to significantly reduced overall 
weight of the robot. There are other benefits, too, but not 
directly included in the scope of this paper.  
 Some work has been done in the area of cable actuation 
in the walking robotics. A partially cable actuated hexapod is 
analyzed in [14].  
 
2. KINEMATICS AND DYNAMICS ANALYSIS OF THE 
QUADRUPED WALKING ROBOT 
 
2.1 The walking robot architecture 

The walking robot architecture under consideration is shown 
in Figure 2.1. The robot architecture has 4 actuated degrees of 
freedom (hip, knee, ankle and the pulley) for each leg 
corresponding to the longitudinal motion and additional 2 
degrees of freedom (hip and ankle) for each leg corresponding 
to the lateral motion. The actuated revolute joints of one leg 
are marked by “R” in Figure 2.1.  
 The main objective of the design was to provide a 
minimum DoF such that the quadruped can perform relatively 
“smooth” walk without frequent requests for walk direction 
change. Therefore, the RoboCat design considered here is the 
result of partial biomimicking with significant reduction in 
DoF. The trunk segment does not contain internal flexibility, 
while a biological cat has significant flexibility in the trunk, 
enabling the locomotion direction change. The robot 
architecture still enables the locomotion change through the 
inclusion of the two (per leg) revolute antero-posterior 
oriented joints at the hip and at the ankle. Other revolute joints 
(hip, knee, and ankle) connecting the leg segments provide the 
motion parallel to the sagittal (symmetry) plane.  
 The cables for the knee joint actuation are pulled using 
specially shaped pulleys situated on the trunk. This particular 
design detail deviates from the biological architecture and has 
a significant disadvantage in the fact that the cable forces can 
produce significant coupling between the knee and the hip 
joint, since the cables for the knee can generate significant 
torque for the hip, if not properly traced. A biological muscle 
for the knee does not cross the hip joint and does not generate 
any torque with respect to the hip.  
 

 
 

Figure 2.1 The RoboCat architecture 
 
The length and the position of the bars with the cable 
attachment points about the knee joint directly influence the 
required (variable) cable tension over the joint motion range, 
as well as the (variable) cable pulling speed. Further, the 
required cable tension and speed (through calculation of 
power) are the input parameters for the motor sizing, while the 
transmission ratio of the motor gearbox selection directly 
depends on the size and the shape of the pulley.  
 Besides the architecture shown in Figure 2.1, several 
other options have been considered and/or planned to be 
analyzed in the future work. Considering the compactness of 
the architecture and the implemented hardware, it is 
convenient to use spherical joints rather then a combination of 
revolute joints for the hip. A biological hip joint is a spherical 
joint (3 DoF), but it is difficult to design a direct drive based 
actuation system for a robotic hip joint. However, using the 
cables, the option of using spherical joints is recommended, 
since it reduces the number of cables needed (4 cables for a 
spherical joint) comparing with separate three revolute joints 
(6 cables for three separate 1 DoF joints). For the sake of the 
simplicity, we decided to actuate only knee joint using cables.  
 So far, the overall architecture is presented, without 
specifying details. The proper sizing and the specification 
design detailed need to be done iteratively using a 
mathematical model of the system. 
 
2.2 Mathematical modeling parameters and 

assumptions 

The most significant assumptions for the mathematical model 
derivation are the following: 
 
1) The contact surfaces between cables and the guiding holes 
are frictionless, 
2) The cables are ideally flexible, i.e. the bending moments 
are zero, 
3) The stretchable cables behave as linear springs, 
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4) The lateral motion does not produce significant inertial 
effects on the longitudinal motion, 
5) The walk is performed on a horizontal flat plane, 
6) For the sake of the dynamics analysis, the trunk can be 
represented as a concentrated mass at the center of gravity 
(CG) for the upper body, 
7) The walk of the robotic system is statically stable. 
 
The walking cycle for a leg is consisted of two main phases: 
the support phase and the swing phase. Since the dynamics of 
a stance leg with the trunk is significantly different from the 
dynamics of a swing leg alone, we will consider the two 
corresponding models of one leg dynamics with the 
concentrated mass of the trunk segment.  
 The stance leg with the concentrated mass of the trunk 
model is shown in Figure 2.2.  The influence of the other legs 
to the trunk is represented through the horizontal and the 
vertical component of the interaction force rellocated to the 
trunk CG (Ct), along with the torque resulting from the 
reallocation of the forces.  
 Since the dynamics of the system is governed by several 
parameters of the system that are subject of the optimization 
through the dynamics simulation and the testing on the real 
hardware, we will particularly point out the sensitivity of the 
system behavior with respect to those quantities and analyze 
the way to optimize them.  
 
Cable stiffness. One of the most important parameters is the 
cable spring stiffness. The physical quantity in animals that 
corresponds to the stiffness of the cables is the stiffness of the 
corresponding animal’s muscles and tendons. Tendons 
accumulate a portion of energy that would be normally lost 
due to a foot-ground collision. The accumulated energy is 
released during the next gait cycle to decrease the amount of 
the kinetic energy input via the muscles. Similar effect is 
expected using the elastically stretchable cables for the 
walking robot. The contact forces are expected to smooth out 
as well as the joint torques, which is a desirable effect on the 
robot control. However, a potential problem using the 
stretchable cables is that the system can easily experience an 
oscillating behavior if there is no sufficient damping, which 
requires a dynamic controller to stabilize the system.  
 
Points of the cable attachments. The positions of the points 
where the cables are attached relative to the joints and the 
geometry of the cable guidance are very important for a 
couple of reasons. The points where the cable guiding holes 
are positioned, points A’ and B’ in Figure 2.2, determine the 
torque arm with respect to the joint axis, along with the range 
of angular motion of the joint. Inappropriate position of the 
guiding holes can result in a very high cable tension required 
to generate a certain required torque at a specific joint angles. 
Therefore, optimized positions of the guiding rings and the 
attachment points will be determined via numerical solutions 
and simulations.  

 
 
Pulleys profile. The pulley is designed to have a variable 
radius profile, shown in Figure 2.3.  
 
 

 

Figure 2.3 The pulley profile 
 
The objective of the variable radius is to compensate for the 
difference in the cable length increase on one side and the 
cable length decrease on the other side of the corresponding 
joint, in this case the knee joint. Considering the architecture 
shown in Figure 2.2, the cable length increase between points 
B and B’ is not the same as the cable length decrease between 
points A and A’. This causes problems if the variation of the 

Figure 2.2 Leg-trunk model  
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sum )(BB'AA' 2f  is significant, since a pulley with 

constant radius would release the same cable length as the 
cable length that it stores for the same angle of rotation. This 
difference can be compensated to a certain extent with the 
preloaded springs attached in series along the cables. 
However, the experiments showed that the spring stiffness 
must be significantly decreased to compensate large variation 

of )(BB')(AA' 22   , which will reduce the effective torques 

it can provide to the joints. The variable radius pulley is an 
effective solution to enable a single motor to drive elastic 
cables. The design objective is that if the cable were not 
stretched, the pulley angle of rotation should be proportional 
to the rotation of the knee joint, that is  
 

constant
2

4  k



. 

 
The constant k is a modeling parameter that has influence on 
the controller sensitivity and performance, and will be 
considered through the simulations results.  
 Clearly, there is no need for the variable radius pulley in 
the case when two motors are used to pull the two cables 
separately; however, the intention here is to use only one 
motor to drive a revolute joint.  
 Considering the model specifics, the mathematical model 
derivation requires detailed kinematic analysis, which is 
discussed next. 
 
2.3 Kinematics  

The objective of kinematics analysis of the robotic walker, 
actuated by the elastic cables, is to find the relationships 
between the joint angles and the positions in an inertial 
Cartesian coordinate system, as well as the corresponding 
velocities. Besides this, the kinematic analysis needs to 
provide the relationship between the cable speed and the 
angular speed of the corresponding joint. In this particular 
case, the aforementioned relationship represents the 
relationship between the pulley angular speed and the knee 
joint angular speed for the case when there is no change in the 
cable length. The cables are stretched and are assumed to 
behave as preloaded linear springs, deformation and 
kinematics are coupled with the dynamics through the 
deformation and forces of the springs.  
 Expressing the velocities of the CGs in the inertial 
(ground attached) Cartesian coordinate frame requires 
expressions of the orthogonal coordinates in terms of the joint 
angles, which are obtained as follows. 
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where )2,1(, ilCi  are the lower parts of the leg segments 

lengths from the joints to the CGs, 1pl  and 2pl  are the y and x 

coordinates of the trunk CG with respect to the hip joint, i , 

 1,2,3,4)( i are the joint angles denoted in Figure 2.2, ij and 

ijk ,  1,2,3)  , ,( kji are the combined angles as jiij    

and kjiijk   , and abbreviation for sine and cosine 

functions is used as  sins  ,  cosc  , with 

 denoting any of the aforementioned (combined) angles.  

 By differentiating (2.1) we obtain the velocities 
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Besides the relationships (2.1) and (2.2), we need an 
appropriate function that indicates how much and with which 
rate the cable should be pulled to obtain a desired joint angle 
and an angular speed. The cable length change on the two 
sides of the pulley in Figure 2.2 is due to the change in the 
joint angle and due to the change in the cable tension. The 
cable length change rate due to the change in the knee angle 

2  is  
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where rl  and ll  are the cable lengths on the right and on the 

left of the pulley, respectively, rS  and lS  are corresponding 

cable tensions, and  
 
 rrBBs hhhhh 4231  ,  rrBBc hhhhh 4132  ,  

 llAAs hhhhh 4231  ,  llAAc hhhhh 4132  ,  

 
with rh1 , lh1 , 2h , 3h , rh4 , lh4  denoting the position of the  

cables attachment points relatively to the knee joint, as shown 
in Figure 2.4.  
 The total cable length changes on the two sides of the 
pulley are 

  )0(')('
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  )0(')('
1

),( 202 AAAA
k

SSSl
sl

llll   , (2.4) 

  
 

Figure 2.4 The cable attachment points parameters 
 
where srk , slk  are the cable spring stiffness coefficients for 

the right and left cable segments, respectively.  
 Now, we need to determine the pulley profile function 
that will provide proportional rotations of the knee joint and 
the pulley, for an approximately constant cable tension. The 
general profile of the pulley is shown in Figure 2.3, which 
indicates two rigidly joined segments corresponding to the 
right and left cable. The objective of this design is to reduce 
normally large spring’s deformations due to the joint angles 
changes (geometrical changes). 
 To compensate the necessary difference in the cable 
stored on and released from the pulley, the radius functions 

)( 4rr  and )( 4lr  must cancel nonlinearity in )(AA' 2  and 

)(BB' 2 . In this way, the two functions are 
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derivatives are given in (2.3), the plus sign is for “s=r” and 
"" BP  . The ratio cannot be precisely constant due to the fact 

that the cable is stretchable and we cannot compensate the 
general cable tension force, since it is not only a function of 
the angles, but also depends on the inertial forces and the 
payload.  

 For the following parameters: m1.03211  hhhh lr , 
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The profile plot for the set of the parameters is shown in 
Figure 2.5.  
 The pulley profile shown in Figure 2.5 is consisted of the 
two sections corresponding to the back and the front cable of 
the knee drive unit. The derivation of the pulley assumes that 
the knee joint design restricts hyperextensions, which means 
that the angle 2  takes only positive values for the back legs 

and only negative values for the front legs of the RoboCat. We 
can see that two radii have the same value only for 02  , 

when the symmetry exists.  
 

 
Figure 2.5 The pulley profile 
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model derivation, we would need the acceleration vector 
expressions for the centers of gravity of the major 
architectural parts (links, motors, battery). However, the 
method that we will use requires the expressions for the 
velocity of the centers of gravity. Now, we will use the 
kinematics expressions to derive the dynamics model of the 
robot.  
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2.4 Dynamics of the RoboCat 

Using the Lagrange energy method, a set of nonlinear 
differential equations of second order is derived. Since the 
derivation details would take significant space, we will 
include the final results for every particular DOF.  
 The dynamics of the system can be represented by the 
matrix equation 
 

      )())(P()())(,)(C()())(M( ttttttt 


 ,  (2.7) 
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where Srk , lkS  are the cable stiffness coefficients for the 

front and the back cable, respectively, and 
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(2.9) 




dR
k

S
AAAAll PL

Sl

L
LL 

4

0

0
0242 )(')('),( , 

 
are the deformation of cable springs. The new quantities 
included in (2.9) denote the following: 0RS  and 0LS  are the 

cables pre-tensions, )(PRR  and  )(PLR  are the two pulley 

variable radii given by (2.6) and   is the geometrical angle of 
the cable guide on the pulley, shown in Figure 2.3. The 
integrals in (2.9) represent the stored cable along the pulley 
thread.  
 The vector of the torques 


 in (2.7) is  

 

  Tah )(0)()( ttt  


, (2.10) 

 
where )(h t  and )(a t  are the torques at the hip and the ankle 

joints, respectively. The torque at the knee joint is considered 
through the cable tension expressions in the vector  )(


P .  

 If we consider the system shown in Figure 2.1 precisely, 
we would have 4 DOF and, consequently, matrices in (2.7) 
would have the size 4 by 4 and the vectors would be 4 by 1, 
which would increase the computational efforts in the system 
controller algorithm. By neglecting the moment of inertia of 
the pulley drive system, the mathematical model is reduced to 
three differential equations of the second order. However, we 
need the moment balancing equation of the pulley – cables 
system. The equation is 
 

)()(),()(),( k442Sl442Sr tRlkRlk PLLPRR   , (2.11) 

 
where )(k t  is the torque provided by the pulley drive.  

 The equations (2.7) through (2.11), along with the 
kinematic relations, and the matrices  )M(


 and 

 ))(,)(C( tt  
 shown in Appendix represent the mathematical 

model of the walking robot. For the purpose of the controller 
design, the mathematical model of the form (2.7) needs to be 
converted into a state space model, which is, a set of the first 
order differential equations. 
 
2.5 State space model 

Since the mass matrix in (2.7) is invertible, the equation can 
be explicitly solved with respect to the angular accelerations 
as 
 

          
 111 )()()(),()(   MPMCM , or 

 

 
 )(),( Gf  , (2.12) 

 
where  
 

       )()(),()(),( 11 
 PMCMf   ,  and 

 

  1)()(  


MG . 
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By assigning variables: 11   , 112    , 23   , 

234    , 35   , and 356    , the state space model 

has the form 
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where )(


if , )(


ijG  (i=2,4,6; j=1,2,3) represents the entries 

of the  functions in (2.12).  
 
2. 6 Interconnections with other supporting legs 

The interconnections with other supporting legs can be 
viewed as disturbances in case when it is not convenient to 
expand the mathematical model of the system and the 
controller complexity. However, if it is necessary to obtain 
better performance of the controller, the interconnections can 
be modeled as follows. 
 The interconnections between the supporting leg models 
can be interpreted through the interconnecting force and 
torque, as shown in Figure 2.2. The interconnecting forces and 
torque can be included in the existing model through the joint 
torques. The augmented torque vector given by (2.10) 
becomes  
 

)()( 1232123112321231h1  clslFslclF PPtyPPtxt  , 

 )( 123212312312  slclclF PPtxt  

       )( 12321231231  clslclF PPty  , (2.14)  

 )( 1232123123132a3  slclclclF PPtxt

)( 1232123123132  clslslslF PPty  , 

 
where the meaning of the interconnecting forces and the 
torque is explained earlier and shown in Figure 2.2. The next 
section will show how the model is used to design a controller.  
 
 
3. CONTROLLER DESIGN 

The controller design for the robotic walker will be based on 
the trajectory regulation control [10].  
 
3.1 Controller architecture  

The control system architecture, shown in Figure 3.1, is 
consisted of [10, 11]: 
 

(a) Nominal trajectories generator, 
(b) Inverse dynamics for nominal control calculation 
(c) Tracking error regulation controller, 
(d) Measurement system, and  
(e) Plant 
 

 
 

Figure 3.1 The trajectory regulation controller architecture 
 
The nominal motion specification block generates the joint 
trajectories that will provide a balanced walk. The information 
about the nominal joint angles at every time-step is sent to the 
error dynamics controller and the nominal torques generator. 
The nominal torques are generated based on the inverse 
dynamics mathematical model. Since the mathematical model 
of the robot is not an exact description of the dynamic 
behavior, there will be errors in the resulting motion. The 
amount of the resulting motion deviation from the desired 
motion is calculated based on the measurements of the joint’s 
angles which is used by the error dynamics controller to 
generate the correction torques.  
 The inverse dynamics that is used to generate the 
nominal torques is obtained directly from (2.7), where the 
torques are explicitly expressed in terms of the functions of 
angles and their first two derivatives. However, the derivatives 
of the input signals must be obtained via pseudo-
differentiators of the form (in the Laplace domain) 
 

 
1

)(



s

s
s


,     23 10,10  ,  

 
to obtain physically realizable derivatives. Since the controller 
architecture is based on the error dynamics, we need to obtain 
the appropriate error dynamics model. 
 
3.2 Error dynamics 

The error dynamics model is based on the state space model 
(2.14) and it has the following form 
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(3.1) 

where iii  
~

 and i  (i=1,…,6) are, respectively, the 

error and the nominal value of the i-th component of the state 
vector, and h

~ , k
~ , a

~  are the corrective torque values, 

generated by the feedback controller with the objective to 

satisfy 0
~



 (exponentially). The way the error vector is 

stabilized is discussed in the following section. 
 
3.3 Control law 

The control law should provide the corrective torques such 
that the errors converge to zero with an exponential decay. To 
achieve this goal, the control inputs cancel the nonlinearity 
(FL technique) and introduce the terms proportional to the 
errors of the states as follows. 
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and ijk  (i=2,4,6; j=i-1, i) are the constants that need to be 

determined, such that the closed control loop error dynamics 
are exponentially stable and have desired transient behavior.  
 Particularly, we can set up the constraint that the system 
has less than 5% overshoot, and the settling time less than 0.5 
seconds for each joint rotational DOF, which results in the 
damping coefficient 69.0  and the natural frequency 

s

rad
59.11n  .  To obtain the two values, the coefficients ijk  

need to have the following values 
 

2

614121 s

rad
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Finally, the control law is  
 

 gr bG
 ~~ 1 , (3.3) 

 
where rG  is the reduced input matrix evaluated at the nominal 

trajectory 


.  Next, we will evaluate the performance of the 

control law via simulation results. 
 
3.4 Simulation results and the performance analysis 

The block diagram, shown in Figure 3.1, is implemented in  
the Matlab/Simulink; the control law is tested on a 
combination of ramp inputs for the joints angles and the 
simulation results are shown in the following figures. 
 The nominal joint angles and the smooth pseudo-
differentiator obtained angular velocity trajectories are shown 
in Figure 3.2.  
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Figure 3.2 Nominal trajectories 
 
 
The nominal torques predicted by the inverse dynamics block 
are shown in Figure 3.3.  
 The results in the nominal torques plot agree with the 
expected results since force arm is significantly greater for the 
knee joint than for the other two joints. The hip joint has low 
predicted torque due to the fact that the CG of the trunk for 
the prescribed motion is considered vertically above the hip.  
 Cable tensions needed to provide the knee joint angular 
trajectory are shown in Figure 3.4. The plot shows that the 
cables pre-tension was 50 N and could have been even 
reduced and still avoid slack cable.  
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The comparison between the actual angles versus the desired 
angles is shown in Figure 3.5. The plot shows very low errors 
of the actual trajectories (the ankle and the hip have the same 
nominal trajectory in the plot). Deviation is noticeable at the 
instants when there are sharp changes in the desired trajectory 
slope.  
 The deviation of the actual angles from the desired 
angles can be seen in the errors plot shown in Figure 3.6.  
Total torques supplied to the joints of the robot model are 
shown in Figure 3.7. If the nominal torques, shown in Figure 
3.3, are compared with the total torques, significant corrective 
values of the torques can be noticed at the instants when there 
is significant change in the desired speed of the joints, due to 
the inertial effects and the effect of the pseudo-differentiation, 
as well.  
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Figure 3.5 The actual versus desired trajectories 
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4. CONCLUSION AND FUTURE WORK 

The paper presented a novel actuation system of a robotic 
walker. The actuation system is based on a combination of the 
direct drive actuation and a novelty in walking robotics, the 
stretchable cable actuation. Several benefits are introduced 
using the cables to actuate joints. The energy consumption is 
reduced through the reduction of the inertial forces on the 
most motion active parts of the robot. The need of using two 
different pulley-motor pairs to actuate a revolute joint in case 
of using non-stretchable cables is compensated using the 
stretchable cables with the design of the special pulley profile. 
The threaded pulley profile with the variable radius ensured 
that, along with relatively small deformations of the cable 
spring, the cables do not become loose, which would lead 
directly into complications with “pure transport delays” in the 
control law.  
 The mathematical model is derived, with respect to the 
assumptions that are listed. The leg-trunk dynamics model is 
presented in state space form and the corresponding error 
dynamics is used to design the controller using the trajectory 
regulation control with an open-loop nominal controller and a 
closed loop tracking error regulation controller. The nominal 
controller is based on the inverse dynamics model of the plant. 
The closed-loop controller is based on the feedback 
linearization control, where plant nonlinearity is cancelled by 
state feedback, and desired linear dynamics are assigned.   
 It is shown how the model can be combined through the 
interconnection quantities with another leg-trunk model to 
consider the impact from the other supporting legs.  
 The performance of the joint trajectories tracking was 
analyzed using simulations, which showed satisfactory results 
of tracking the prescribed joint trajectories.  The possible 
problematic cases of the tracking would be the cases with the 
sharp changes and/or associated noise in the desired 
trajectories, due to the need of finding (approximate) 
derivatives. 
 
Planned future work is to implement the robot control 
algorithm in a real hardware. Certain steps in this direction 
have already been made on a quadruped robot – RoboCat, 
however using an open loop control algorithm that produced 
certain oscillation in the joints motion. It is expected that the 
implementation of the presented algorithm will result in a 
better performance, besides the inherent beneficial features of 
using the (stretchable) cables for the robot actuation, which 
were described in the paper.  
 Currently the RoboCat employs a statically stable 
walking gait, with standard Radio Controlled (R/C) servo 
motors as actuators, as shown in Figure 4.1.  
 

 
Figure 4.1 The RoboCat (see the video clip link below) 

 
The shoulder/hip joints have one DOF direct actuation, and 
the knee/elbow joints have one DOF elastic cable driven 
actuation. The servo motors have built-in angular position 
controllers, which restricted the motion control to be a 
sequence of position commands to the joints. Such joint 
motion control scheme is open-loop in nature, and the 
performance is very limited, which can be seen at  
  
http://www.youtube.com/watch?v=sZZpKn_nDIc 
http://www.youtube.com/watch?v=ZCydQB9Vyfo 
  
We will implement the closed-loop motion control scheme 
developed in this paper in the future, which should improve 
the performance significantly.  
 Due to a limitation on the number of pages, we have not 
included another important segment of analysis, the swing leg 
dynamics and control. This will be included in a future paper.  
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APPENDIX 
THE INERTIAL PROPERTIES AND THE COUPLING 

MATRICES 
 
The inertia properties matrix  ))(M( t
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 is given by the 

following columns. 
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where TI , 1I , 2I  are the moments of inertia of the trunk, 

upper leg, lower leg, respectively, and 1m , 2m , Tm  are the 

masses of the upper leg, lower leg and the trunk segment, 
respectively. Moments of inertia of the motors are neglected in 
the stance leg model.  
 

The joints angular speed coupling matrix  ))(,)(C( tt  
 is 

given by columns as follows 
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where mhk , kk  and mak  are the effective damping coefficients 

for the hip, knee and ankle joints, respectively. 
 
 
 


