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Abstract 

This paper presents three-dimensional static modeling of the human lumbar spine to be used in the formation of 

anatomically-correct movement patterns for a fully cable-actuated robotic lumbar spine (RLS) which can mimic in vivo human 

lumbar spine movements to provide better hands-on training for medical students. The mathematical model incorporates five 

lumbar vertebrae between the first lumbar vertebra and the sacrum, with dimensions of an average adult human spine.  The 

vertebrae are connected to each other by elastic elements, torsional springs and a spherical joint located at the inferoposterior 

corner in the mid-sagittal plane of the vertebral body. Elastic elements represent the ligaments that surround the facet joints and 

the torsional springs represent the collective effect of intervertebral disc which plays a major role in balancing torsional load 

during upper body motion and the remaining ligaments that support the spinal column. The elastic elements and torsional springs 

are considered to be nonlinear. The nonlinear stiffness constants for six motion types were solved using a multi-objective 

optimization technique. The quantitative comparison between the angles of rotations predicted by the proposed model and in the 

experimental data confirmed that the model yields angles of rotation close to the experimental data.  The main contribution is that 

the new model can be used for all motions while the experimental data was only obtained at discrete measurement points. 

1 Introduction 

The art of palpation is usually taught by using human patients who are palpated by the instructor for demonstrative purposes. 

Medical students watch the process and palpate each other, generally with limited dysfunctions.  It is difficult to find and 

demonstrate patients for every dysfunction taught.  There exists no assessment device to objectively evaluate clinical palpation of 

students.  To enhance palpation teaching assessment, a cable-actuated robotic lumbar spine (RLS) is currently under development 

[1]. The current study involves lumbar spine movement patterns to define RLS motions under different loading conditions. 

Studies for mathematical modeling of the thoracic, lumbar and thoracolumbar spine include [2-12]. [8] developed the first 

static 3D model for spine nonlinear force analysis. The authors used a stiffness method considering the vertebrae as rigid bodies 

connected with deformable elements having axial, torsional, bending and shear resistance. In a continuation [9], the authors 

emphasized the kinematic constraints role of facet joints. Facets and the ligaments carry loads in bending and torsion. [10] 

performed a lumbar spine static simulation based on experimental data in [11]. They simulated ligamentous and non-ligamentous 

soft tissue using linear springs, whereas nonlinear behavior is expected. [12] used a L3-L4 segment finite element model to 

analyze the facet orientation sensitivity and the initial joint gap between facets. Both parameters affected the facet load. 

In this paper, a model of the human lumbar spine using nonlinear elastic elements and torsional springs based on 

experimental data is proposed. The purpose is to create a model that accurately estimates the movement patterns of the lumbar 
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vertebrae under externally-applied forces and moments. The experimental data used presents vertebral motion at discrete values. 

The proposed model estimates movement patterns continuously, i.e. for any applied moment. The model’s validation and 

simulation results are presented. 

2 Methods 

2.1 Construction of the Lumbar Spine Geometry 

The lumbar spine geometry has average human dimensions based on experimental data [1]. All geometry parameters have 

been previously used in the literature, except for the facet plane and facet plane angle.  Assuming sagittal symmetry, we define a 

facet plane that connects the four facet centers. This plane allows the attachment of posterior elements with various dimensions, 

making the system modular. The facet plane angle is the angle between the facet plane and the vertebral body posterior wall. A 

cylindrical shape is assumed for vertebral bodies. Figure 1 shows the facet plane angle and cylindrical vertebral body. The 

lumbar spine geometry is shown in Figure 2. 

 

 

Figure 1. Facet Plane and Angle 

 

Figure 2. 3D Geometry of the Lumbar Spine [1]

2.2 Mathematical Model 

The mathematical model includes five lumbar vertebrae and the sacrum, 10 elastic elements that connect inferior facets of 

one vertebra to the superior facets of the lower one and 15 torsional springs that represent the collective torque-resisting effects of 

the intervertebral disc and the ligaments. The significant motion of the vertebrae during spinal movement is rotational [11-13]. 

Therefore, a spherical joint connects vertebrae. This joint location is critical to provide anatomically-correct motion for each 

vertebra during overall lumbar movement. The spherical joints are located at the inferoposterior corners of the vertebral bodies 

because the experimental data used is [13]. In that reference, the inferoposterior corner of each vertebra is the coordinate frame 

origin for which the rotation angles were recorded.  

The equations of static equilibrium for forces and moments are derived for each vertebra using the free-body diagram 

(Figure 3). Force equilibrium in the base frame {B} can be written as: 

 Facet Plane 

 ϕ 
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݉୧ is the i-th vertebra mass, g୆ ൌ ሼ0	 െ 9.81	0ሽ୘ is the gravity vector, ۴۰ ௦௥௙௜
, ۴۰ ௦௟௙௜

, ۴۰ ௜௥௙௜
, ۴۰ ௜௟௙௜

 are the forces due to the 

elastic element connected to the superior right facet, superior left facet, inferior right facet and inferior left facet, and R୆ ୧ is the 

spherical joint reaction force. Fୣ୶୲
୆

୧
	is the external force applied to the i-th vertebra center of gravity. 

 

Figure 3. Free-Body Diagram of a Vertebra 

As in [13], the external forces are all zero except for one at the uppermost vertebra L1. This 100-Newton compressive force 

represents partial torso weight. This external force’s line of action passes through the centers of gravity of first lumbar and first 

sacral vertebra during motion.  The elastic elements forces connecting the facets in (1) are: 
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(2) 

 

R୧
୆  is the rotation matrix giving the orientation of frame {i} with respect to {B}, using X-Y-Z (α, β, γ) Euler angles: 

 YB 

 ZB 

 XB 

 {B} 
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R୧
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where	cα ൌ cos α		,	cβ ൌ cos β	,	cγ ൌ cos γ	, sα ൌ sin α	, 	sβ ൌ sin β	,	sγ ൌ sin γ. 

The remaining variables in (2) are: G=2 mm [14,15] is the facets joint gap (equal to the unstretched springs length when the 

lumbar spine is upright), 	 ୧۾ ௜௥௙୧
, 	 ୧۾ ௜௟௙୧

 , 	 ୧۾ ௦௥௙୧
 , 	 ୧۾ ௦௟௙୧

  are the facet centers position vectors with respect to local vertebral 

frame {i} (Figure 3), kୱ୰୤ is the stiffness constant, and ܝෝ୧ ௦௥௙௜
 is the unit vector in the local vertebral frame {i} that defines the 

force line of action in the corresponding elastic element. The remaining forces and stiffness constants are defined similarly. 

The static equilibrium equations for the moments about the local frame {i} are: 
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(4) 

 

M୧ ୱ ൌ ሼ M୧ ୱ౮౟	 M
୧

ୱ౯౟ 	 M
୧

ୱ౰౟ሽ
୘ is the moment vector due to torsional springs attached to the i-th vertebra, M୧ ୱ౮౟ ൌ െkୱ౮౟q୶୧ is 

the moment due to the torsional spring about the x-axis, kୱ౮౟ is the spring constant of the torsional spring about the x-axis and q୶୧ 

is the angular displacement. M୧ ୱ౯౟  and M୧ ୱ౰౟  are the same way as M୧ ୱ౮౟  using y and z axes. Pେୋ
୧  and Pୗ

୧  are the position 

vectors from the local origin to the center of gravity and center of the socket in {i} (Figure 3). 

2.3 Experimental Data 
 

The simulation results to validate the proposed model are based on experimental data in [13]. These researchers used fresh-

frozen lumbosacral-spine specimens with only ligamentous soft tissue to test lumbar spine mechanical behavior by constructing 

load-displacement curves for each vertebra under specific loading conditions. Motion was induced by applying pure moments to 

the first lumbar vertebra. This moment, applied about one of the three axes of rotation, caused spine to flex/extend, bend or rotate 

axially. The applied moment magnitude was 2.5, 5.0, 7.5 and 10 Nm. The data contained the translation and rotation of each 

vertebra under the tested loading condition. It is emphasized once more, however, that the rotational motion remained dominant 

over the translational motion. A load-displacement data example for L3-L4 segment model validation is in Table 1. 
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Table 1. Experimental Load-Displacement Data for L3-L4 [13] 

External Moment, ܜܠ܍ۻ (Nm) Motion () 

X Y Z X Y Z 

Flexion 

2.50 0.00 0.00 5.00 0.00 0.00 
5.00 0.00 0.00 6.00 0.00 0.00 
7.50 0.00 0.00 6.50 0.00 0.00 

10.00 0.00 0.00 7.00 0.00 0.00 

Extension 

-2.50 0.00 0.00 -1.50 0.00 0.00 
-5.00 0.00 0.00 -2.25 0.00 0.00 
-7.50 0.00 0.00 -2.00 0.00 0.00 
-10.00 0.00 0.00 -2.75 0.00 0.00 

Left Torque 

0.00 2.50 0.00 0.75 0.50 0.25 
0.00 5.00 0.00 1.13 1.00 0.38 
0.00 7.50 0.00 1.25 1.63 0.50 
0.00 10.00 0.00 1.75 1.75 0.63 

Right Torque 

0.00 -2.50 0.00 0.50 -0.88 -0.38 
0.00 -5.00 0.00 -0.25 -1.75 -0.50 
0.00 -7.50 0.00 0.50 -1.88 -0.75 
0.00 -10.00 0.00 0.63 -2.00 -1.00 

Right Bending 

0.00 0.00 2.50 0.75 0.75 3.10 
0.00 0.00 5.00 1.50 0.80 4.00 
0.00 0.00 7.50 1.75 0.80 4.75 
0.00 0.00 10.00 1.50 1.25 5.00 

Left Bending 

0.00 0.00 -2.50 -0.25 -0.60 -3.50 
0.00 0.00 -5.00 0.60 -1.00 -4.50 
0.00 0.00 -7.50 1.50 -1.00 -5.00 
0.00 0.00 -10.00 1.40 -1.25 -5.50 

3 Results 

In the first stage of validation, the nonlinear stiffness constants for the elastic elements and the torsional springs are 

calculated for static equilibrium using the experimental data for six motion types (flexion/extension, right/left torque, right/left 

bending). The static equilibrium equations (1) and (4) for all vertebrae (30 equations total) are solved simultaneously 

numerically. The static equilibrium problem is converted into a multi-objective optimization problem by minimizing the 

equilibrium equations for each vertebra. The rotation angles for each vertebra for all six motion types and four different external 

moment values (2.5, 5.0, 7.5 and 10.0 Nm) are known [13]. The stiffness constants are calculated for each externally applied 

moment. Due to space limitations, solved stiffness constants only for flexion are presented in Table 2. The results for the 

remaining motion types can be found in [14]. 
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Table 2. Nonlinear Stiffness Constants for Flexion 

Vertebra 
External Moment 

(Nm)† 
 ܠܛܓ

(Nm/rad) 
 ܡܛܓ

(Nm/rad) 
 ܢܛܓ

(Nm/rad) 
 ࢌ࢙࢘ܓ

(N/m) 
 ࢌ࢒࢙ܓ

(N/m) 
 ࢌ࢘࢏ܓ

(N/m) 
 ࢌ࢒࢏ܓ

(N/m) 

L5 

2.50 36.40 0.00 0.00 390.26 386.46 0.77 0.75 
5.00 27.88 0.00 0.00 376.52 373.70 1.44 1.32 
7.50 26.53 0.00 0.00 271.03 274.90 1.17 48.26 
10.00 24.08 0.00 0.00 350.54 350.54 1.48 1.48 

L4 

2.50 0.00 0.00 0.00 418.41 418.47 390.26 386.46 
5.00 0.01 0.00 0.00 353.15 347.99 376.52 373.70 
7.50 0.00 0.00 0.00 241.43 238.49 271.03 274.90 
10.00 0.03 0.00 0.00 257.88 257.88 350.54 350.54 

L3 

2.50 0.00 0.00 0.00 178.34 172.89 418.41 418.47 
5.00 0.13 0.00 0.00 113.76 111.09 353.15 347.99 
7.50 0.00 0.00 0.00 65.50 40.42 241.43 238.49 
10.00 0.00 0.00 0.00 48.21 48.21 257.88 257.88 

L2 

2.50 0.01 0.00 0.00 10.63 10.74 178.34 172.89 
5.00 0.06 0.00 0.00 0.07 0.00 113.76 111.09 
7.50 0.00 0.00 0.00 1.10 1.11 65.50 40.42 
10.00 0.04 0.00 0.00 1.08 1.08 48.21 48.21 

L1 

2.50 75.26 0.00 0.00 0.00 0.00 10.63 10.74 
5.00 102.03 0.00 0.00 0.00 0.00 0.07 0.00 
7.50 122.56 0.00 0.00 0.00 0.00 1.10 1.11 
10.00 139.47 0.00 0.00 0.00 0.00 1.08 1.08 

† X component of the external moment. Y and Z components are all zero for flexion motion. 

 

After obtaining the stiffness constants at available loading conditions, curve fitting is applied to calculate stiffness values for 

any moment (not limited to the discrete experimental data). This curve fitting is based on a third degree polynomial: 

 

k ൌ a ∗ Mୣ୶୲
ଷ ൅ b ∗ Mୣ୶୲

ଶ ൅ c ∗ Mୣ୶୲ ൅ d (5) 

 

k is the stiffness constant (kୱ౮, kୱ౯ , kୱ౰ for torsional springs or k௦௥௙, k௦௟௙, k௜௥௙, k௜௟௙ for elastic elements), Mୣ୶୲ is the nonzero 

component of the moment vector applied to the uppermost vertebra L1, and a, b, c and d are the polynomial coefficients. 

The second stage of validation is the comparison of the model and experimental data. The model is tested under moments 

2.50, 3.35, 4.20, 5.00, 5.85, 6.70, 7.50, 8.35, 9.20 and 10.00 Nm using the stiffness constants obtained in the first stage by using 

(5). The validation moment values include the experimental data moments. Figure 4 shows the model output for the L3-L4 

segment. The model closely follows the angle values for common moment values tested, i.e. 2.5, 5.0, 7.5 and 10 Nm, typical of 

all our results. 
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Figure 4. Model vs. Experimental Data (L3-L4 shown) 
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Figure 5 shows the absolute errors between the angles of rotation predicted by the model and experimental data for the L3-

L4 segment. 

 

Figure 5. Absolute Error in Model Estimation of the Experimental Data (L3-L4 shown) 

4 Discussion 

A mathematical model that is validated by comparing its results to experimental data becomes a powerful tool since the 

change of parameters would be sufficient to modify a specific configuration or a loading condition without repeating the 

experiment. The purpose of this study was to create a tool to predict normal anatomically-correct movement patterns for the 

human lumbar spine. The proposed model, as seen from the results, closely follows the experimental data when they are available 

and predicts the movement patterns for six different motion types continuously for applied moment within 0-10 Nm. 
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when the same motion model is tested with ligament stiffness values chosen from different experimental studies, the 
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employed in the literature. It is also noted that all parameters can be calculated for specific experimental data using the method 

detailed in this study. When using this method, care must be taken in terms of the placement of the spherical joints since that 

location must match the origin of the coordinate system with respect to which the experimental data were measured. The 

predicted response is sensitive to this location and may require additional effort to locate accurately [10]. 

Though this model was derived to acquire anatomically-correct motion patterns for a robotic spine, it is general for other 

pseudo-static lumbar spine biomechanical applications.  For example, the model predicts the displacement of any point on any 

lumbar vertebra, useful in studies of lumbar spine muscles length changes.  

There are limitations to the model. First, this model would not be reliable for motions with high accelerations, which require 

inertial forces, ignored in the proposed model and the referenced experimental data. Second, combined motion of the lumbar 

spine is not addressed in this model, requiring application of external moments about more than one axis. Accelerated and/or 

combined motions are seldom utilized during clinical diagnoses. The results are satisfactory for programming the RLS since it 

targets training medical students. 

The palpation of muscles and soft tissue is significant for palpatory diagnosis. The forces of the spinal muscles can be 

incorporated into the model applying a force generation model and considering the attachment points on the bones and tendons. 

However, deciding how the muscles would “feel” like (when touched by a physician) between those attachment points would be 

a quite involved task. The ultimate goal of this model was to produce the angles of rotations to be commanded to the robotic 

lumbar spine as realistically as possible. Upon building the robotic lumbar spine, the addition of the muscles and soft tissue will 

be performed with strong collaboration of the faculty from the College of Osteopathic Medicine at Ohio University. We have 

been working with DOs for a long time in matters that require their feedback in terms of how normal or dysfunctional tissue 

would feel like. In the past, we have had success in developing virtual training simulations using their valuable feedback. 

The RLS will be programmed to be controlled by a force-feedback joystick. Via joystick motion, the angles of rotations 

from this study will be commanded to the RLS, representing normal lumbar spine movement. Abnormalities from known 

dysfunctional movement patterns will also be enabled. 

In conclusion, a three-dimensional mathematical model to estimate the normal movement patterns of the lumbar spine under 

different loading conditions was proposed. This model will be used in programming of a cable-actuated Robotic Lumbar Spine 

for training of medical students to identify normal and abnormal movement patterns. Model parameters were obtained by using 

previously-published experimental data and results validation showed good agreement. 
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