
 
 

Velocity and Acceleration Cones for Kinematic and 
Dynamic Constraints on Omni-Directional Mobile Robots 

 
 

Jianhua Wu and Robert L. Williams II 
Ohio University 

Athens, OH 
 

Jae Lew 
Eaton Corporation 
Eden Prairie, MN 

 
 
 

Final Manuscript 
ASME Journal of Dynamic Systems, Measurement, and Control 

April, 2006 
 
 
 
Keywords: mobile robot, dynamic path planning, kinematic and dynamic constraints, velocity cone, 

acceleration cone, actuator saturation, wheel slippage. 
 
 
 Contact author information: 
 
  Robert L. Williams II, Professor 
  Department of Mechanical Engineering 
  259 Stocker Center 
  Ohio University 
  Athens, OH  45701-2979 

Phone: (740) 593-1096 
  Fax: (740) 593-0476 
  E-mail: williar4@ohio.edu  
  URL: http://www.ent.ohiou.edu/~bobw 



 

 2

 
Velocity and Acceleration Cones for Kinematic and 
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Jianhua Wu, Robert L. Williams II, and Jae Lew 
 
 
 
 
ABSTRACT 
 

We consider the problems of kinematic and dynamic constraints, with actuator saturation and 

wheel slippage avoidance, for motion planning of a holonomic three-wheeled omni-directional robot.  

That is, the motion planner must not demand more velocity and acceleration at each time instant than the 

robot can provide.  A new coupled non-linear dynamics model is derived.  The novel concepts of 

Velocity and Acceleration Cones are proposed for determining the kinematic and dynamic constraints.  

The Velocity Cone is based on kinematics; we propose two Acceleration Cones, one for avoiding 

actuator saturation and the other for avoiding wheel slippage.  The wheel slippage Acceleration Cone 

was found to dominate.  In practical motion, all commanded velocities and accelerations from the 

motion planner must lie within these cones for successful motion.  Case studies, simulations, and 

experimental validations are presented for our dynamic model and controller, plus the Velocity and 

Acceleration Cones. 
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1.  INTRODUCTION 

 An omni-directional robot is a holonomic robot that can move simultaneously in rotation and 

translation (Pin et al., 1994) and has been widely studied due to its maneuverability. However, most 

work on omni-directional robots is in robot development; there are few studies on dynamic models.  

Watanabe et al. (1998) presented state variable based modeling of a three-wheeled omni-directional 

robot, whose wheels are assumed to be symmetrically-arranged orthogonal assemblies. Williams et al. 

(2002) expanded this model to a non-symmetrically-arranged three-wheeled omni-directional mobile 

robot, and gave the non-linear state variable dynamics equations.  Kalmar-Nagy et al. (2001) presented 

dynamic modeling and experimentally-derived coefficients of three-wheeled omni-directional mobile 

robots with symmetrically-arranged wheels. These models all have decoupling between the wheels, 

which is not complete for analyzing the dynamic behavior of the robot. Thus, our first task in this article 

is to derive the coupled non-linear dynamics model for symmetric three-wheeled omni-directional 

robots. 

 Many authors have presented results in control of non-holonomic mobile robots (we focus 

instead on the holonomic omni-directional mobile robot).  Borenstein and Koren (1987) present a 

control strategy to avoid slippage and maintain zero orientation error for a mobile nurse robot.  Hong et 

al. (1999) explore the limits of kinematic models for differentially-steered wheeled mobile robots and 

develop a dynamic control algorithm.  Astolfi (1999) presents exponential stabilization of the 

kinematic and dynamic model for a wheeled mobile robot using a discontinuous, bounded, 

time-invariant, state-feedback control law.  Dixon et al. (2000) develop a variable-structure-like 

tracking controller for a mobile robot that compensates for uncertainties in the kinematic model.  

Mukherjee et al. (2002) present two algorithms for the motion planning of a spherical mobile robot.  

Chakraborty and Ghosal (2005) propose a three-wheeled mobile robot and present dynamic simulation 

to demonstrate no-slip motion is possible on uneven terrain. 

 Some authors presenting results on holonomic omni-directional mobile robots are now discussed. 
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Betourne and Campion (1996) develop an LQR controller for a four-wheeled robot with the goal to 

minimize slippage during acceleration.  Fujisawa et al. (2001) present an omni-directional robot 

controller for following given paths using visual servoing.  Smid et al. (2004) use virtual simulation to 

evaluate motion of a mobile robot in constrained area with obstacles, using multiple sensor fusion and a 

comparison of Ackerman vs. parallel steering.. 

 There are relatively few references dealing with the important problems of mobile robot motion 

planning considering actuator saturation and physical kinematic and dynamic constraints on the motion.  

Carelli and Freire (2003) present wall-following corridor navigation, attempting stable sensor-based 

navigation while avoiding actuator saturation.  Munoz et al. (1999) consider kinematic and dynamic 

constraints in motion planning control of a non-holonomic mobile robot.  Chiaverini and Fusco (1999) 

presented path following subject to velocity and acceleration constraints based on actuator limits, using 

kinematics only. 

 The main focus of the current article is to present kinematic and dynamic constraints, including 

actuator saturation avoidance and wheel slippage avoidance, for motion planning of wheeled holonomic 

omni-directional mobile robots.  We have also considered dynamic obstacle avoidance, subject to these 

motion planning constraints, but this is beyond the scope of the present article.  We present novel 

concepts of Velocity Cone and two Acceleration Cones (Dynamic and No Slippage) to achieve the 

desired practical limitations on motion planning.  This article first derives a new coupled non-linear 

dynamics model for wheeled holonomic omni-directional mobile robots, followed by development of 

the novel Velocity and Acceleration Cones, with case studies, and then simulation with experimental 

validation. 

 

 

 

 



 

 5

2. THREE-WHEELED OMNI-DIRECTIONAL ROBOT MODELING 

This section presents kinematic and dynamic modeling of a holonomic three-wheeled 

omni-directional robot. Then we develop a controller, followed by simulation/experiment for validation. 

2.1 Kinematic and Dynamic Modeling 

2.1.1 Kinematic Modeling.  Figure 1 shows a bottom view of the Ohio University Phase VI RoboCup 

robot. Three motors are symmetrically arranged on the robot bottom. Each wheel is mounted directly to 

its motor shaft so the motor and the wheel have same rotational center. 

  
Figure 1. Phase VI RoboCup Robot (Bottom)   Figure 2. Omni-Directional Robot Geometry 
 

Special wheels are used for the robot as shown in Figure 1. The wheel can be used for powered 

rotation along the primary diameter as normal wheels, while the double-row passive rollers along the 

outside diameter allow free rotation along an orthogonal direction to the powered rotation.  These 

wheels allow the holonomic omni-directional motion. 

As shown in Figure 2, {w} is the fixed world coordinate frame and {m} is the moving frame. 

Frame {m} has the same origin as {w}, but {m} rotates with the robot. The xm axis is set to be 

perpendicular to traction force 1T , and φ is defined as the angle of xm with respect to xw.  We define 

1 2 3[ ]t TT T T=F  as the traction force of the ground on the wheels, as shown in Figure 2.  We further 
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define [ ]m m m m T
x y ZF F T=F as the Cartesian force and moment on the robot in the moving frame, and 

define constant geometrical matrix B as: 

3 30
2 2
1 11
2 2

L L L

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B         (1) 

where L is the radial distance to the wheels from the robot center.  The force relationship in the moving 

frame is expressed as: 

m t=F B F         (2) 

Where t is not a frame, but indicates ‘traction’.  The friction drag force along the orthogonal direction 

of the wheel is assumed negligible, as it is relatively small compared with that along the primary 

diameter, especially for the double-row roller wheels. (Williams et al, 2002).  Using the principle of 

virtual work: 

w T w m T m t T t t T
Lr⋅ = ⋅ = ⋅ = ⋅F X F X F X F q      (3) 

where [ ]w w w w T
x y ZF F T=F  is the Cartesian force and moment on the robot in {w}; r  is the wheels’ 

radius; [ ]w T
w w wx y φ=X  and [ ]m T

m m mx y φ=X  are the Cartesian velocity of the robot in {w} and 

{m}; t
Lr=X q  represents the wheel edge translational velocities, where 1 2 3[ ]T

L L L Lq q q=q  are the 

wheel angular velocities.  From (2) and (3), the velocity kinematic equations of the omni-directional 

robot are expressed in {m} or {w} as follows: 

m
Lr ⎡ ⎤= ⎣ ⎦

-1TX B q         (4) 

w w m w
m m Lr ⎡ ⎤= = ⎣ ⎦

-1TX R X R B q            (5) 

where Rw
m is the orthonormal rotation matrix which rotates vectors in {m} to {w} (Craig, 2005): 
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cos sin 0
sin cos 0

0 0 1

w
m

φ φ
φ φ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R            (6) 

Taking the time derivative of w X in (5), since B and r are constants, we get: 

( )w w w
m L m Lr ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

-1 -1T TX R B q R B q        (7) 

Equation (7) is the acceleration kinematics equation for the three-wheeled omni-directional robot. 

2.2.2 Dynamic Modeling.  From (2) and Newton’s Second Law, we have: 
 

w w w m w t
m m= = =F M X R F R B F          (8) 

where 
0 0

0 0
0 0

m
m

J

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M is the robot mass matrix, and m and J are the mass and rotational inertia of the 

robot.  From (7) and (8), and by using the orthonormal property of rotational matrices w w T
m m=-1R R , we 

obtain the traction force of the robot as: 

[ ] ( )t w T w w
m m L m Lr ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

-1 -1-1 T TF B R M R B q R B q       (9) 

We model the rotational dynamics of each wheel/motor by reflecting the load inertia (wheel) to 

the motor shaft.  The following equations apply to each motor/load axis, 1, 2,3i = : 

t
Li L Li L Li iJ q c q F rτ = + +   Li

mi m mi m mi
ττ J q c q
n

= + +   mi
Li

qq
n

=    (10-12) 

where 1 2 3[ ]T
m m m mq q q=q  are the three motor angular velocities, τmi and τLi are the motor and load 

torques, cm and cL are the motor and load rotational damping coefficients, and Jm and JL are the motor 

and load rotational inertias; and n is the gear ratio of the in-line motor gearhead. The rotational dynamics 

expressions, reflected to the motor shafts, are then: 

1 2 3 4

1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 1 0 0 0 1 1 1 0

m m m m mk k k k φ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

τ q q q q   (13) 
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where: 

 22

22

21 9
)4(

nL
rJmL

n
JJk L

m
+++=  22

22

2 9
)2(

nL
rJmLk +−=  23 n

cck L
m +=  2

2

4 9
32
n
mrk =    (14-17) 

1 2 3 1 2 3( ) ( )
3 3

L L L m m mr q q q r q q q
L nL

φ + + + += =         (18) 

And 1 2 3[ ]T
m m m mτ τ τ=τ ; Equation (18) is obtained from the velocity kinematic relationship (5).  From 

(13) and (18) we observe: 1) mτ  and mq  are coupled between wheels; 2) mq  of each wheel is 

affected by the other two wheels via 2k , thus decreasing 2k  reduces the coupling from the other 

wheels; 3) Each miq  is coupled with the other 2 wheels by φ4k ; and 4) In the case of zero Cartesian 

robot rotation, 0φ = , the sum of the wheels’ angular speeds is zero and the angular wheel speeds are 

decoupled.  For each motor, we have the following dynamics equation: 

( )mi i E mi lr ME k q k kτ = −          (19) 
where Ei is the motor voltage input, Ek  is the motor back emf constant, and Mk is the motor torque 

constant. lrk  is the inverse of the motor terminal resistance R. The motor inductance is omitted, as it is 

small and generally ignored in robot dynamics.  Combining (19) with (13) leads to (20), which is the 

final expression of the EOM of the three-wheeled omni-directional robot, at the joint level. 

31 2 4

1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 1 0 1 ( ) 0 1 0 1 0 1
0 0 1 1 1 0 0 0 1 1 1 0

m m E m m
lr M lr M lr M lr M

kk k kk
k k k k k k k k

φ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

E q q q q  

(20) 
Where 1 2 3[ ]TE E E=E .  Equations (20) are coupled non-linear equations. The effect of the non-linear 

coupled 4th term is proportional to the robot Cartesian rotational speed φ  and Mlrkkk4 . When 0φ = , 

the non-linearity in (20) disappears. The non-linear term is also eliminated if all three motors have the 

same angular velocity.  From the 2nd term of (20), the linear wheel coupling factor is proportional to 

Mlrkkk2 .  Design efforts, such as using larger L or n to reduce k2 (see (15)), can decrease the wheel 

coupling effects in the EOM.  Based on (20) we can make a couple of statements.  First, the dynamic 
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response of each wheel is affected by the other two wheels. If we take: 

24.0 mLJ ≈   2

2

22

22

1 9
4.4

9
)4(

n
rm

nL
rJmLk ≈+≈  2

2

22

22

2 9
6.1

9
)2(

n
rm

nL
rJmLk −≈+−= (21-23) 

 

From (22) and (23), we have %3612 −≈kk , which cannot be neglected. The minus sign 

indicates the angular acceleration helps to accelerate the other wheels in the same direction. (It changes 

to a positive sign when moved to the left-hand side in (20), which functions as an input like E).  Also, 

the wheel angular velocities are affected by the robot Cartesian rotational speed φ . The wheel angular 

velocities are not proportional to their respective input voltages Ei, which complicates controller design. 

A big gear ratio and small robot mass and wheel size can decrease the non-linear effects of the Cartesian 

rotational speed of the robot by reducing k4 in (17). 

2.2 Controller 

 For simulation and experiment, we have developed a Simulink model.  In order to test our 

modeling and the kinematic and dynamic constraints on path planning (the main idea of this article, 

starting next section) in simulation and then experiment, we must first develop a controller.  Figure 3 

shows the Simulink diagram of the closed-loop trajectory-following controller. Path Planning gives the 

desired robot velocity at each time sample. Inverse Kinematics calculates the angular velocities of the 

three wheels, which are inputs of Robot Dynamics (see Figure 4). The outputs of Robot Dynamics, the 

wheel angular velocity responses, are used to calculate the velocity of the robot in Forward Kinematics. 

The velocity of the robot is integrated to yield the current robot position and orientation. 

 There are two levels of closed-loop control in Figures 3 and 4. The position and orientation of 

the robot are fed back via machine vision to compare with their desired value, comprising a closed-loop 

control for pose; the errors are then used as the inputs of three independent PID controller blocks (with 

zero D term). In the Velocity Loop (middle of Figure 3, expanded in Figure 4) is another closed-loop PI 

controller, which is used to control the angular velocity of each wheel independently. 
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Figure 3.  Simulink Diagram for Closed-Loop Trajectory Following 

 
 

Figure 4 shows the details of the Velocity Loop. The angular velocity of each wheel is fed back to 

compare with its commanded signal; a PID controller block (with zero D term) is applied for each wheel. 

For controller design, a trial-and-error method was applied instead of a classic method to determine the 

P and I gains by shaping the dynamic response for each wheel in the simulation.  We take relatively 

high gains but not so high as to cause instability. The gains found by simulation also work well for the 

experimental robot hardware.  The wheel angular velocities are coupled when the robot is rotating. 
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Figure 4.  Wheel Velocity Inner Control Loop 

 
2.3 Simulation and Experimental Validation of the Dynamic Model and Controller 

In this section we simulate the Ohio University RoboCup three-wheeled omni-directional robot, 

using the dynamic model and controller derived earlier. The real-world robot data used for simulation is 

given in Table I (mass moment of inertia units are kg-m2, rotational damping is N-m-s, mass is kg, length 

is in m, and the units of klr, kM, and kE are 1/Ohm, N-m/amp, and volt/rad/s, respectively).  Substituting 

the data from Table I into (14-17) yields Table II. 

Table I.  RoboCup Robot Specifications 
Jm JL n cm cL J m r L klr kM kE 

2.7e-7 8e-5 14 5e-8 0 4.6e-3 2.36 2e-2 7e-2 1/8.71 0.0156 0.0145
 

Table II.  Coefficients of EOM for RoboCup Robot 
k1 k2 k3 k4 

3.03e-6 -8.57e-7 5.0e-8 1.85e-6 

)(1 Mlrkkk  )(2 Mlrkkk EMlr kkkk +)(3 )(4 Mlrkkk  
1.69e-3 -4.79e-4 1.45e-2 1.03e-3 
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We substitute the Table I and II values into (20), to obtain the specific the EOM of our RoboCup robot.  

Units of the first, second, and fourth constants in (20) are volt-s2 and units are volt-s for the third 

constant. For an example, a circle of radius 0.3 m is the desired path, starting from point A (0.8, 0.5) in 

{w}; the motion is: 

0.5 0.3cos( )
0.5 0.3sin( )
2 3

x t
y t
φ π

= +
= +
=

        (24) 

 
We specify that the virtual circle radius rotate around 360 degrees at 1.0 rad/s as the robot follows the 

commanded trajectory, from starting point A and ending at the same point.  Note that the robot 

orientation is commanded to be constant and thus the robot angular velocity is 0φ =  for the 

commanded trajectory.  The commanded and simulated robot trajectory circles are compared in Figure 

5 and the commanded and experimental robot trajectory circles are compared in Figure 6.  The 

experimental mobile robot was shown in Figure 1; it moves on a carpeted surface. 

  
Figure 5.  Simulated Circular Motion  Figure 6.  Experimental Circular Motion 

 
Figure 5 shows that the commanded and the simulated robot response are very close; the 

simulated circle is just inside the commanded circle.  The experimental tracking result of Figure 6 is 

also satisfactory, with the actual circle also inside the commanded circle, not as close to the commanded 
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as in the simulation case.  Our simulation results ignored the inherent non-linearities since 0φ =  for 

our simulated motions. 

The problems of kinematics and dynamic constraints including actuator saturation and wheel 

slippage were not taken into account in the modeling, simulation, and experiment of this section.  

These are the main ideas of this article.  Now Section 3 introduces the topic, then Sections 4 and 5 

present modeling and case studies of the kinematics and dynamics constraints, respectively.  Section 6 

then presents simulation and experimental validation of the kinematics and dynamics constraints for 

path planning. 
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3. PATH PLANNING SUBJECT TO KINEMATIC AND DYNAMIC CONSTRAINTS 

Simulation with experimental validation based on the coupled dynamic EOM was performed in 

the last section. With the developed controller, the robot can follow the desired path closely in 

simulation and experiment. However, the kinematics and dynamics constraints of the robot were not 

taken into account in the simulation.  Dynamic path planning, which considers the kinematics and 

dynamics constraints of the robot, is discussed in this section; we assume no obstacles in this article. 

The path assigned to a real robot should satisfy some practical conditions. First, the velocity and 

acceleration of a robot should be within their limitations. These limitations are determined by the 

specific actuators, driving structure, and dynamics of the robot. Secondly, the path must satisfy the given 

position and velocity at the initial and final points. We describe these conditions as follows: 1) The robot 

translational speed at any path point must be within its limitation (as a function of rotational speed): 

2 2
max( ) ( ) ( )w wx t y t v φ+ ≤  for all motion time BA tttt ≤≤: .  2) The robot translational acceleration 

at any path point must be within its limitation (as a function of rotational acceleration): 

2 2
max( ) ( ) ( )w wx t y t a φ+ ≤  for BA tttt ≤≤: .  3) The assigned path must match the desired pose at 

the initial and final points: ( )w w
A AX t X=  and ( )w w

B BX t X=  where ( ) [ ( ) ( ) ( )]w w w w TX t x t y t tφ=  

for BA tttt ≤≤: .  4) The assigned path must match the desired velocity at the initial and final points: 

( )w w
A AX t X=  and ( )w w

B BX t X=  where ( ) [ ( ) ( ) ( )]w w w w TX t x t y t tφ=  for BA tttt ≤≤: . 

In the following sections, the kinematic and dynamic constraints of an omni-directional robot are 

discussed, and then case studies are presented for each.  Lastly, simulation and experimental results are 

presented to demonstrate and validate our theoretical results. 
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4.  KINEMATIC CONSTRAINTS 

 The kinematic constraints of a three-wheeled omni-directional robot are discussed in this section. 

A novel concept called the Velocity Cone is proposed, used to determine the robot velocity constraints.  

A case study applies the Velocity Cone to calculate the kinematic constraints of the RoboCup robot. 

4.1 Velocity Cone 

From the robot kinematic equations (5), the Cartesian velocity w X  of the robot in {w} can be 

determined from the wheel angular velocities 1 2 3[ ]T
L L L Lq q q=q . First, assuming that  Liq u≤  

(where constant u is the maximum allowable wheel angular velocity), we obtain the range of m X  in {m} 

using the linear transformation (4).  This is shown graphically in Figure 7. 

 
Figure 7.  Linear Transformation to Determine the Space of m X  

 
The left side cube in Figure 7 shows the wheels’ angular velocity range. 1Lq , 2Lq  and 3Lq are 

all constrained to Liu q u− ≤ ≤ , which generates a cube in wheel angular velocity coordinates, assuming 

all three wheels have the same velocity capability. The right side 3D polygon in Figure 7 is the 

corresponding Cartesian robot velocity in {m}. Points P' and Q' in the Cartesian velocity space 

correspond to points P and Q in the wheel angular velocity space. Primes indicate points in the Cartesian 

velocity space. The hexagon inside the 3D polygon represents the translational speed range in the mx  

and my  directions, with zero Cartesian rotational speed. It is a perfect hexagon when the wheel angular 

velocity space is a perfect cube.  Figure 8 shows the top and side views of the 3D polygon . 



 

 16

 
Figure 8.  Velocity Cone Top and Side Views 

 
 On the left in Figure 8, the outside black hexagon shows the total possible robot velocity range.  

The inner hexagon shows the maximum mx  and my  Cartesian velocity range with 0=φ . Two 

triangles with dashed lines ( ''' GFA  and ''' KJB ) are special cases of the robot velocity range for 

b±=φ  (see the right of Figure 8); the maximum instantaneous velocities are at points 'A , 'F , 'G  

when  b=φ  and 'B , 'J , 'K  when b−=φ . 

The velocity range in {w} (where the path planner works) is a linear transformation of that in 

{m}, which varies with robot orientation φ.  The velocity range in {w} has the same shape as that in {m} 

and it rotates with the robot. The velocity should be selected so the robot moves without kinematic 

saturation. That is, at any moment, the path planner cannot assign a robot velocity in {w} that exceeds 

its allowable translational velocity range, as a function of its rotational speed. 

Outlying points 'A  and 'B  cannot be used for planning a motion such as moving along a 

straight line in {w} as these velocities can only be obtained in the case of moving with Cartesian rotation. 

The maximum velocities that can be used for planning a general translational motion without a specific 

φ  are at the six vertexes like 'E  of the inner hexagon in Figure 8 left, in the case of no rotation.  In 

triangle ''' GFA  with a rotational speed of b=φ , the maximum velocity which can be used for 

planning a straight-line motion, is ''' Ho  (this is also seen in the right hand side of Figure 8). 
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Though the velocities in some points on the surface b=φ  ( ''' GFA ) are faster than any velocity 

in surface 0=φ  ( ''DC ), these points cannot be used for planning general robot motions, as they all 

have the specific b=φ . The maximum velocity range used to plan motions in {w} is a hexagon when 

0=φ  and a circle in the appropriate φ  plane when 0φ ≠ , which is an unchanged area after the total 

instantaneous velocity range rotates 360° .  As the linear transformation from {m} to {w} only changes 

the direction of the velocity, the feasible velocity range for path planning in {w} can be approximated as 

a cone in {m}, as shown in Figures 7 and 8.  

The Velocity Cone has the same shape in {w} and {m}. It is the total unchanged space inside the 

3D polygon in Figure 7 when the velocity range in {m} rotates 360 degrees. Except at 0φ = , in which 

some points like 'E in the hexagon (just outside the Velocity Cone) can be used to plan a feasible motion, 

only velocities within the Velocity Cone can be used to plan general motions with rotation in {w}.  This 

method is conservative.  In Figure 8, the line '' DP  represents the relationship between the rotational 

speed and maximum allowable translational speed (the cone is symmetric about the φ  axis): 

maxv vm v nφ + =        (25) 

where maxv  is the maximum allowable translational speed corresponding to φ , constants vm  and vn  

are determined using (4) and Liq u= .  In Figures 7 and 8, only the φ+  cone is shown; the φ−  cone 

is symmetric to this, about the 0φ =  plane.  An example is given next. 

4.2  Velocity Cone Case Study 

 The RoboCup robot Velocity Cone is now determined.  The values for L, r, kE and n are given in 

Table I and the maximum wheel velocity is u = 58 rad/s.  Using (1) and (4), the wheel angular velocity 

space and the robot Cartesian velocity space in {m} are calculated and shown in Figures 9. The top and 

side views of Figure 9b are shown in Figures 10. The inner hexagon of Figure 10a is the 0φ =  plane. 
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Figure 9a. Wheel Angular Velocity Space    Figure 9b. Robot Velocity Space 

  
 Figure 10a. Top View    Figure 10b. Side View, Robot Velocity Space 

 
 The hexagon in Figure 9b (the inner hexagon of Figure 10a) is obtained by calculating the points 

in the surface of the wheel angular velocity cube that also satisfy 0321 =++ LLL qqq .  From Figures 10, 

point D' is (0, 1.18, 0) and point P' is (0, 0, 16.86). The equation of line P'D' is thus 

max(16.86 1.18) 16.86vφ + = .  The left- and right-side constants of (36) have units rad/m and rad/s.  

This specific form of (25) is used to determine the maximum allowable robot translational velocity vmax 

when φ  is given.  It assumes positive φ ; vmax is symmetric for negative φ .
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5.  DYNAMIC CONSTRAINTS 

 The dynamic constraints of a three-wheeled omni-directional robot are presented in this section. 

A novel concept called the Acceleration Cone is proposed to determine the robot acceleration constraints. 

Two kinds of Acceleration Cone are considered, the Dynamics Acceleration Cone for avoiding actuator 

saturation and No Slippage Acceleration Cone for avoiding wheel/motion surface slippage. 

 

5.1  Dynamics Acceleration Cone 

 Actuator saturation at the dynamic level is a practical problem of the motion-capacity of the 

robot; motions exceeding the torque capacity are infeasible. By reviewing the dynamics model (20), as 

the fourth term is relatively small compared with the third term (which can be verified by using the 

specific robot parameters), it can be seen for any given E, maxq  happens when 0=q . 

max max max
1 2

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

m m m
lr M lr M

k k
k k k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

E q q A q    (26) 

where:     
1 2 2

2 1 2

2 2 1

1

lr M

k k k
k k k

k k
k k k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A    (27) 

 
 Solving (26) for the maximum allowable wheel rotational acceleration we have 

maxm = -1q A E ; 

using this with (7) we find the maximum allowable Cartesian acceleration in {m}: 

 max
m

r
n

⎡ ⎤⎣ ⎦=
-1T -1B A

X E       (28) 
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Figure 11.  Determining the Space of Xm by Linear Transformation 

 

Figure 11 is similar to Figure 7 for the Velocity Constraint case; here the allowable motor voltage cube 

iE e≤  (where e is the maximum allowable motor voltage, assumed to be the same for all three motors), 

is linearly transformed via (28) to the maximum allowable Dynamics Acceleration Cone in {m}. The 

linear relationship between the rotational acceleration and the maximum translational acceleration is:  

maxa am a nφ + =      (29) 

where constants am and an are determined from (20) with iE e= .  A Dynamics Acceleration Cone 

example is given next. 

 

5.2  Dynamics Acceleration Cone Case Study 

 The RoboCup robot Dynamics Acceleration Cone is now determined.  The values for L, r, n, klr, 

kM, k1, and k2 are found in Tables I and II and the RoboCup robot maximum motor voltage is e = 12 volts.  

Using (26) and (28), the input voltage space and the robot acceleration space are calculated and shown 

in Figures 12. The top and side views of Figure 12b are Figures 13. The inner hexagon of Figure 13a is 

the 0φ =  plane.  The hexagon of Figure 12b is obtained by calculating the points of the input voltage 

cube surface satisfying 0φ = . 
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Figure 12a. Input Voltage Space           Figure 12b. Dynamics Acceleration Space 

 

  
 Figure 13a. Top View      Figure 13b. Side View, Dynamics Acceleration Space 
 

 

From Figures 13, point D' is (0, 14.44, 0) and point P' is (0, 0, 89.29). The equation of line P'D' 

is thus 333)9.7/333( max =+ aφ .  The left- and right-side constants have units rad/m and rad/s2.  This 

equation has the same assumptions as the dynamic EOM that there is no slippage between the wheels 

and the ground, and the friction force is large enough to accelerate the robot. This is not always the case 

and so we will discuss dynamic constraints on wheel slippage in the next subsection. 
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5.3  No Slippage Acceleration Cone 

A three-wheeled omni-directional robot dynamic model with wheel/motion surface slippage is 

given in Williams et al. (2002). Here we consider that slippage occurs when the friction force is too 

small to perform the assigned robot motion. Restricting the maximum robot acceleration in an attempt to 

avoid slippage is presented as a dynamic constraint in this subsection.  Equation (8) relates the traction 

force 1 2 3[ ]t TT T T=F  of the ground on the wheels to the robot Cartesian acceleration in {w}.  If we 

assume that robot weight mg is equally supported by the three wheels, to avoid slippage we must have: 

3i
mgT μ≤           (30) 

where μ is the friction coefficient between the wheel and motion surface.  Combining (8) and (30), the 

maximum allowable acceleration is written as: 

T
uuu

m TTTBMmgX ][
3

1−≤ μ      (31) 

Where we use 11 ≤≤− uT  since μmg/3 was factored out.  Comparing with the Dynamics Acceleration 

Cone linear transformation (28), we see that (31) is an Acceleration Cone for determining the maximum 

robot acceleration to avoid slippage.  Using (1) and robot rotational inertia 24.0 mLJ = , (31) becomes: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−−

−

≤

u

u

u
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T
T
T

LLL

gX
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1

4.0
1

4.0
1

2
1

2
11

2
3

2
30

3
μ     (32) 

The robot mass is cancelled; the new Acceleration Cone is determined only from robot geometry and the 

friction coefficient.  As this new Acceleration Cone is based on maximum friction forces to avoid 

slippage, it is called the No Slippage Acceleration Cone.  An example is given next. 
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5.4  No Slippage Acceleration Cone Case Study 

Taking 0.25μ =  (Williams et al., 2002) and 0.07L =  m from Table I (L is the distance 

between the robot center and each wheel), we obtained the No Slippage Acceleration Cone for the 

RoboCup robot. Figures 14 present the transformation from the traction force to acceleration spaces, 

which are obtained with the same method as Section 5.2 except that (32) is used instead of (28).  The 

magnitude of the traction force cube surfaces of Figure 14a is ± μmg/3.  The top and side views of 

Figure 14b are Figures 15. The inner hexagon of Figure 15a is the 0φ =  plane. 
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    Figure 14a. Traction Force Space           Figure 14b. No Slippage Acceleration Space 
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From Figures 15, point D' is (0, 1.22, 0) and point P' is (0, 0, 87.5). The equation of line P'D' is 

max(87.5 1.22) 87.5aφ + = .  The left- and right-side constants have units rad/m and rad/s2.  This 

equation yields the maximum robot translational Cartesian acceleration, given φ , to avoid slippage. 

 

5.5  Discussion  

Two novel Acceleration Cones are proposed to determine the maximum robot acceleration to 

avoid actuator saturation (Dynamics) and to avoid wheel slippage (No Slippage).  The assigned robot 

acceleration must lie within both Acceleration Cones.  The Dynamics Acceleration Cone depends on 

the robot and motor dynamics. More powerful motors yield a bigger Dynamics Acceleration Cone.  

The No Slippage Acceleration Cone is determined only by the arrangement of the actuators and the 

wheel/motion surface frictional coefficient. It is independent of the robot mass, actuators, and the 

wheels’ radius. 

We found that the Dynamics Acceleration Cone is much larger than the No Slippage Acceleration 

Cone for the RoboCup robot.  Comparing Figures 13b and 15b, for the same φ  range, the 

translational accelerations are more than an order of magnitude larger for the Dynamics Acceleration 

Cone.  Therefore, for planning accelerations, the No Slippage Acceleration Cone can be used 

exclusively since it dominates (yields much lower translational accelerations).  Now, the Dynamics 

Acceleration Cone in Figure 13b is only for zero angular velocity, so the size of this cone is maximum, 

i.e. all admissible accelerations will be less for motions with initial velocities.  However, we found that 

the No Slippage Acceleration Cone still dominates for all motions even considering this issue, when the 

voltage is less than e = 12 volts. 

Our RoboCup team did not know this issue when the motors were selected; it turns out that the 

motors selected for torque capacity to generate maximum translational accelerations and velocities are 

oversized, considering wheel slip.  Wheel slippage has plagued our robots.  It may be more efficient 
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to design the motors so the sizes of the Dynamics and No Slippage Acceleration Cones are about the 

same. 

Next the Velocity and Acceleration Cones are used to determine the maximum velocities and 

accelerations in a RoboCup robot path, demonstrating the theory of this article via simulation and 

validating it via experiment. 
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6.  SIMULATION AND EXPERIMENTAL VALIDATION 

6.1 Dynamic Path Planning with a 3rd-order Polynomial: A Simulation Case Study   

Any assigned robot path must satisfy the given position and velocity at the initial and final points.  

A 3rd-order polynomial can satisfy these conditions (Craig, 2005).  For each of the Cartesian x, y, and φ 

directions, we develop a 3rd-order polynomial (with four unknown coefficients each) by matching the 

position and velocity at the initial and final points and times.  The first derivative, the robot speed, 

takes its maximum value when the second derivative, the acceleration, is zero. This agrees with the robot 

dynamic EOM (20) where the maximum acceleration occurs with zero velocity and maximum velocity 

has zero acceleration.  The second derivative of 3rd-order polynomials is continuous. 

The third-order polynomial coefficients change with time period AB ttt −=Δ . The chosen time 

period is related to the maximum speed and maximum acceleration. The shorter the time period, the 

bigger the maximum speed and the acceleration will be. The task of dynamic path planning with a 

3rd-order polynomial is to determine the minimum Δt that satisfies both kinematic and dynamic 

constraints of the robot (Sections 4 and 5).  First, the relationships between Δt and the maximum 

velocity and acceleration are evaluated.  The minimum Δt for satisfying both velocity and acceleration 

constraints is then calculated. Δt is written as:  

( )( ) ( )( )max max{ : max & max }t Min t v t v a t aΔ = Δ Δ ≤ Δ ≤        (33) 

 A simulation case study is presented with the conditions in Table III (units m, m/s, rad, and 

m/s2). 

Table III. Constraints Data for Simulation 
xi yi xf yf vi θvi vf θvf vmax amax 

-1.2 -1.5 1.8 2 0.2 18π 0.3 9π 0.8 1.2 
  
(xi, yi) and (xf, yf) are the initial and final points. vi and vf are the speeds at the initial and final points. θvi 

and θvf are the velocity angles with respect to xw. vmax and amax are the maximum velocity and 

acceleration chosen to be less than their maximum admissible values (from (25) max 1.18 /v m s=  is 
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associated with 0φ =  rad/s from the Velocity Cone and 2
max 1.22 /a m s=  comes from the No 

Slippage Acceleration Cone with 0φ = ; the Dynamics Acceleration Cone with 0φ =  yields a much 

higher 2
max 14.44 /a m s= ).  The vmax and amax chosen for this example are therefore within their 

admissible ranges. 
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Figure 16.  Path Planning with Initial/Final Positions/Velocities 

 
Figure 16 shows the simulated path, which is not a straight line.  The tangent lines at the initial 

and final points match the given velocity directions at these points. 
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Figures 17 show the vector norms of speed and acceleration during the simulated motion. The 

speed starts from the given vi and ends at the given vf. The maximum velocity and acceleration are 
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within their constraints. Δt is 7.7 sec, which is determined by the chosen maximum velocity constraint 

( sec8.0max mv = ; note vmax is reached but amax is not since vmax dominates this particular problem). 

6.2 Experimental Validation of Kinematic and Dynamic Constraints for Path Planning 

An experimental study is presented to investigate the kinematic and dynamic constraints of the 

omni-directional RoboCup robot (please see Wu, 2004, for experimental setup details). A 2nd-order 

polynomial combined with a constant-velocity motion is assigned to the robot in the experiment, as an 

alternative to the 3rd-order polynomial presented above.  In three experimental cases (Table IV, SI 

units), the robot is commanded to move from an initial point ( 0.95, 0.05w wx y= =  m) to a final point 

( 0.05, 0.9w wx y= = m) in the same motion pattern with different combinations of maximum velocity 

and acceleration. These are chosen experimentally near wheel slippage (the maximum velocity and 

acceleration are set relatively high and then decreased until the robot moves without actuator saturation 

and without wheel slippage). 

Table IV.  Experimental Cases for the RoboCup Robot (m/s and m/s2) 
 Case 1 Case 2 Case 3 

vmax 1.0 1.2 1.0 
amax 1.2 1.2 1.5 

 

A straight-line path is selected in our experiment since the robot can reach the maximum 

acceleration and maximum velocity with a limited distance.  A few robot orientations were tested, 

5...,1,06)12( =+= nn πφ , as both maximum acceleration and maximum velocity at these 

orientations are within related cones. The results were independent of the orientation. We also tried 

orientations at 5...,1,0,3 == nnπφ  and verified that the robot can achieve a slightly higher acceleration 

and velocity. 

Since the experiment purpose is to investigate the practical motion of the RoboCup robot, we 

used 10% lower control gains to eliminate any oscillatory effects of the controller. The experimental 

results are shown in Figures 18a, 18b, and 18c for Cases 1, 2, and 3.  The desired and actual motions in 
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the wx  and wy  directions are plotted vs. time for each case. With max 1.0 /v m s=  and 

2
max 1.2 /a m s= (Case 1, Figure 18a), there is no wheel slippage or actuator saturation for the robot. The 

robot successfully follows the wx  and wy  command, with a time lag due to the lower control gains. 

In Case 2 (Figure 18b), with max 1.2 /v m s=  and 2
max 1.2 /a m s= , the robot cannot follow the 

command smoothly. Since amax is the same as in Case 1, max 1.2 /v m s=  is too high for the RoboCup 

robot. In Figure 18b, the vibratory motion starts at the constant-velocity portion (in y, and to a lesser 

degree, x), which means the robot cannot achieve the desired velocity. 

In Case 3 (Figure 18c), with max 1.0 /v m s=  and 2
max 1.5 /a m s= , the robot also cannot follow 

the command smoothly, in this case due to high amax. Unlike Case 2, the vibration of the signal starts in 

the deceleration motion, which means the robot cannot achieve the desired deceleration (the robot does 

follow the constant-velocity motion well). 
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Figure 18a.  Experiment Case 1 
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Figure 18b.  Experiment Case 2   Figure 18c.  Experiment Case 3 

 
 

Experiments with other combinations (not shown; vmax between 1.0 to 1.2 /m s and amax between 

1.2 to 1.5 2/m s ; please see Wu, 2004) also did not give steady results. 

We conclude that the kinematic and dynamic constraints of the RoboCup robot are 

max 1.0 /v m s=  and 2
max 1.2 /a m s= , for 0φ = . These values, independent of the robot orientation φ, 

experimentally yield steady results without wheel slip or actuator saturation.  These limits, however, 

are dependent on robot Cartesian angular velocity φ  and acceleration φ .  The stated values are the 

largest possible (desirable for our RoboCup robot) since they were obtained for 0φ φ= = ; for non-zero 

φ  and φ , the velocity and acceleration limits will be smaller.   Comparing with the simulation case 

studies of Sections 4 and 5, which resulted in max 1.18 /v m s=  from (25) and 2
max 1.22 /a m s=  from 

the no-slip acceleration cone for 0φ φ= = , the robot velocity and acceleration constraints obtained by 

simulation and experiment agree well (the actual levels are lower than that predicted by theory and 

simulation, as is expected). 

The above 2
max 1.22 /a m s=  was derived from the No Slippage Acceleration Cone with 0φ = ; 

considering the Dynamics Acceleration Cone, the 0φ =  value is much greater, 2
max 14.44 /a m s= .  
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Clearly wheel slippage dominates for our RoboCup robot, in terms of limiting the maximum admissible 

accelerations.
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7.  CONCLUSION 

This article presents a new dynamics model and kinematic and dynamic constraints for motion 

planning of a holonomic three-wheeled omni-directional robot.  The novel concepts of Velocity and 

Acceleration Cones are proposed for determining the kinematic and dynamic constraints of a holonomic 

three-wheeled omni-directional robot. The Velocity and Acceleration Cones are the feasible velocity and 

acceleration ranges (in Cartesian coordinates), suitable for any robot orientation.  The Velocity Cone 

was derived based on the mobile robot kinematics equations. It gives the total allowable robot 

translational and rotational velocity ranges, independent of robot orientation.  Specific translational 

velocity limits are dependent on the robot angular velocity.  The motion planner must only command 

velocities within the Velocity Cone for successful practical motion. 

Two types of Acceleration Cone have been developed: one (Dynamic) is based on the robot and 

actuator dynamics and limitations and the other (No Slippage) is derived by the maximum friction force 

on each wheel. The Dynamic Acceleration Cone is determined by the actuator torque capabilities.  The 

No Slippage Acceleration Cone is determined only by the actuator arrangement and the wheel/motion 

surface friction coefficient; it is independent of the robot mass, actuator specifications, and the wheels’ 

radius.  Both Acceleration Cones are also independent of robot orientation.  Specific translational 

acceleration limits are dependent on the robot angular acceleration.  Accelerations from the motion 

planner must lie within the Dynamic Acceleration Cone to avoid actuator saturation and within the No 

Slippage Acceleration Cone to avoid wheel slippage during motions; we found wheel slip dominates. 

Case studies and simulation for the kinematic and dynamic constraints (Velocity and Acceleration 

Cones) have been presented. Experimental validation has been presented for our dynamic model and 

controller, plus the kinematic and dynamic constraints. 

Our Velocity and Acceleration Cones may be applicable in robotics outside holonomic 

three-wheeled omni-directional mobile robots, but the geometric properties will be harder to visualize 

for degrees-of-freedom greater than three. 
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