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ABSTRACT 

 Cable-direct-driven robots and haptic interfaces are appealing because of their structural simplicity, high 

stiffness, and high exerted wrench-to-weight ratio.  A major drawback is that cables can only exert tension.  

Therefore, actuation redundancy is required to apply general wrenches (force/moment vectors).  Even with 

actuation redundancy, not all desired wrenches can be applied in some configurations due to one or more 

negative cable forces required.  In addition, cable interference can be a serious problem for these devices.  The 

objective of this article is to present the best design for planar cable-direct-driven robots and/or haptic interfaces 

with one degree of actuation redundancy, with regard to general wrench exertion and cable interference.  Results 

indicate that the cable interference constraint dominates which suggests the need for future design work to 

alleviate this interference. 
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INTRODUCTION 

Several cable-direct-driven robots (CDDRs) and haptic interfaces (CDDHIs) have been studied in the 

past.  An early CDDR is the Robocrane developed by NIST for use in shipping ports (Albus, et. al., 1993).  This 

device is similar to an upside-down six-degrees-of-freedom (dof) Stewart platform (Stewart, 1966), with six 

cables instead of hydraulic-cylinder legs. In this system, gravity is an implicit actuator that ensures cable tension 

is maintained at all times. Another CDDR is Charlotte, developed by McDonnell-Douglas (Campbell, et. al., 

1992) for use on International Space Station.  Charlotte is a rectangular box driven in-parallel by eight cables, 

with eight tensioning motors mounted on-board (one on each corner). Three stringed haptic interfaces have been 

built and tested, the Texas 9-string (Lindemann and Tesar, 1989), the SPIDAR (Ishii and Sato, 1994), and the 7-

cable master (Kawamura and Ito, 1993).  CDDRs and CDDHIs can be made lighter, stiffer, safer, and more 

economical than traditional serial robots and haptic interfaces since their primary structure consists of 

lightweight, high load-bearing cables.  On the other hand, one major disadvantage is that cables can only exert 

tension and cannot push on the moving platform.  All of the devices discussed above are designed with actuation 

redundancy, i.e. more cables than wrench-exerting degrees-of-freedom (except for the Robocrane, where 

tensioning is provided by gravity) in attempt to avoid configurations where certain wrenches require an 

impossible compression force in one or more cables.  Despite actuation redundancy, there exist subspaces in the 

potential workspace where some cables can lose tension.  Roberts et al. (1997) developed an algorithm for 

CDDRs to predict if all cables are under tension in a given configuration while supporting the robot weight only.  

None of these previous articles have presented CDDR or CDDHI design for optimal wrench exertion.  Another 

potential problem with CDDRs and CDDHIs is cable interference that further restricts the workspace. 

A haptic interface is a device that can exert wrench (force/moment) and/or tactile feedback to the human 

from virtual reality and/or remote environments.  The current article focuses on wrench feedback.  Many 

researchers have been developing haptic interfaces for various applications.  A comprehensive study of force-, 

wrench-, and tactile-feedback haptic interfaces is provided by Burdea (1996). 
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The objective of the current article is to present the best design for CDDRs and CDDHIs with one degree 

of actuation redundancy, with regard to best general wrench exertion and with regard to avoiding cable/end-

effector interference.  Specifically, this article focuses on the planar 3-dof, 4-cable CDDR that is required to exert 

general wrenches on the environment.  This work equally applies to CDDHIs with one degree of actuation 

redundancy that must exert general wrenches on the human operator’s hand. 

This article begins with a description of the planar CDDR, followed by CDDR cable interference 

determination, statics modeling, a method for attempting to maintain positive cable tensions, and then design and 

results for planar CDDRs with one actuation redundancy, considering both positive cable tensions and cable 

interference. 
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LIST OF SYMBOLS 

 
x, y, φ   Cartesian parameters of end-effector 

{0}, {H}  Fixed base and moving end-effector Cartesian coordinate frames  

a, b, c    end-effector width, end-effector height, and square ground link side 

Li , iL̂    ith cable length, unit vector in the Li direction 

fcW    Cable-interference-free workspace 

ih , iT    ith cable end-effector connection point, ith cable ground connection point 

iv+  and iv−   unit directions of two consecutive edges of end-effector  

[ ]Ro
H    Orthonormal rotation matrix relating {H} to {0} 

fi    ith cable force 

{ } { } T
RRR MFW =  Cartesian wrench exerted on the environment by end-effector 

[ ]A , [ ]+A   Statics Jacobian matrix, Moore-Penrose pseudoinverse of [ ]A  

 in    ith component of the kernel vector of [ ]A  

α   Scalar for tension optimization 
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PLANAR CABLE-DIRECT-DRIVEN ROBOT (CDDR) 

 This section describes the planar 4-cable CDDR, includes a brief discussion on CDDR kinematics, and 

presents a general model to determine cable/end-effector interference. 

A CDDR consists of a rigid end-effector supported in-parallel by n-cables controlled by n tensioning 

actuators.  Figure 1 shows the planar 4-cable CDDR kinematics diagram.  For 3-dof planar operation, there must 

be at least 3 cables.  Since cables can only exert tension on the end-effector, there must be more cables to avoid 

configurations where the end-effector can go slack and lose control.  Our work is limited to CDDRs with one 

degree of actuation redundancy, i.e. 4 cables in planar devices with 3 Cartesian degrees-of-freedom.  This 

scenario represents actuation redundancy but not kinematic redundancy.  That is, there is one extra motor which 

provides infinite choices for applying 3-dof wrench vectors, but the end-effector has only 3 Cartesian degrees-of-

freedom (x, y, φ; angle φ is shown in Fig. 1 and x, y are the components of the vector from the origin of {0} to 

the origin of {H}, expressed in {0}).  Figure 1 shows the definitions for reference frame {0} and moving end-

effector frame {H}.  In Fig. 1, the design parameters for the planar 4-cable CDDR are a (end-effector width), b 

(end-effector height), and c (square ground link side).  The length of each cable is denoted as Li, i = 1,2,3,4. 

Planar CDDR Kinematics 

This section briefly discusses the required kinematics solutions.  Assuming all cables always remain in 

tension, CDDR kinematics is similar to in-parallel-actuated robot kinematics (e.g. Tsai, 1999; Gosselin, 1996).  

In CDDR simulation for design, the inverse pose kinematics solution is straight-forward (given the pose, 

calculate the cable lengths).  The forward kinematics problem requires the solution of overconstrained coupled 

nonlinear equations and is more difficult.  A Newton-Raphson numerical solution is employed, where the 

overconstrained Moore-Penrose pseudoinverse is used in the iteration.  The CDDR inverse velocity Jacobian 

matrix is closely related to the Newton-Raphson Jacobian matrix and the statics Jacobian matrix.  These 

kinematics solutions are presented in (Williams, 1998). 
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Figure 1.  Planar 4-Cable CDDR Kinematics Diagram Figure 2.  Cable/End-effector Interference Diagram 
 

Planar CDDR Cable Interference 

 A potential workspace-limiting problem for CDDRs is that of cable interference.  This can take three 

forms: cable/cable interference, cable/workspace object interference, or cable/end-effector interference.  In the 

planar case we can easily avoid the former case by designing the device so all cables are in different parallel 

planes.  Also, the cable/ workspace object interference will not be a problem for the planar case if all objects are 

below (or above the plane of the CDDR).  We cannot always avoid by design the latter interference and thus we 

present in this section a method for determining cable/end-effector collisions. 

Let us define collision- free workspace fcW as the subset of workspace that can be reached without 

collision between the end-effector and the cables.  In the following we assume that the end-effector is a convex 

polygon and that all cables are attached to the polygon vertices.  The aim of this section is to develop a method 

for checking whether a end-effector configuration { }φyx  belongs to fcW . Let us define φ+  as the angular 

value that the end-effector can rotate anticlockwise before a collision.  Conversely, let us define φ−  as the 

angular value that the end-effector can rotate clockwise before a collision.  Note that these limiting angles 

depend on the position { }yx  and they take into account all cables. 
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Let us consider the ith cable in the cable/end-effector diagram of Fig. 2.  The unit vector in the direction of 

the ith cable is iL̂ .  The cable is connected to the end-effector at point ih  (Fig. 2 shows the vector ih  to this 

point, referenced to the moving {H} frame).  For each point ih  we define two vectors iv+  and iv−  that 

represent the unit directions of two consecutive edges of the polygon.  A collision occurs when the cable 

direction aligns with one of the neighboring consecutive polygon faces, i.e.:  

  ii vL +−=ˆ  or ii vL −−=ˆ      (1) 

 
The negative signs in (1) indicate that at collision the cable direction is aligned but opposite in direction to the 

polygon face.  Define iT  as the grounded point for the ith cable and { } TyxG =  as the origin of {H}, expressed 

in {0}.  Then the collision conditions (1) can be expressed as: 
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where the symbol ixv−+ / indicates that there are two possibilities, one with ixv+ and one with ixv− .  All possible 

solutions of (3) are given by: 
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From (4) we obtain 4 values for each of the two ixv−+ / , but only one of them satisfies (3) and at the same time 

yields positive λ .  It is straight-forward to implement this cable/end-effector algorithm in a computer program. 

Let us indicate these solutions as iφ+  if we consider ixv+ and iφ− if we consider ixv− . Notice that iφ+ has to be 

positive while iφ− has to be negative.  In conclusion: 

{ }
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,...,min
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1        (5) 

 
gives the limiting angles for cable/end-effector interference considering all cables ni ,,2,1 L= ; where 4=n  in 

this article. 
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CDDR STATICS 

In this article, the workspace wherein all cables are under positive tension while exerting all possible 

wrenches is called the statics workspace.  The wrench is a force and moment applied to the environment, 

centered at the origin of the end-effector frame {H}; this is different from a wrench definition where the moment 

is about the base frame {0}.  We assume velocities and accelerations on the end-effector are small and thus the 

device may be controlled in a pseudostatic manner.  Statics modeling and attempting to maintain positive cable 

tension are presented in this section.  We use a simple method to determine the extent of the statics workspace, 

i.e. the workspace wherein all possible wrenches can be applied with only positive cable tension. 

Statics Modeling 

 This section presents statics modeling for planar CDDRs.  For static equilibrium the sum of external 

forces and moments exerted on the end-effector by the cables must equal the resultant external wrench exerted 

on the environment.  Figure 3 shows the statics free-body diagram for the planar 4-cable CDDR. 
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Figure 3.  Planar 4-Cable CDDR Statics Diagram 

The statics equations are: 
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In this article gravity is ignored because it is assumed to be perpendicular to the CDDR plane; we assume the 

end-effector is supported on a plane.  The definition of frames {0} and {H} are given in Fig. 1.  In (6), if  is the 
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cable tension applied to the ith cable (in the negative cable length unit direction iL̂  because 
i

f  must be in 

tension); [ ]Ro
H  is the rotation matrix relating the orientation of {H} to {0}; ih  is the position vector from the 

origin of {H} to the ith cable connection, expressed in {H} (only 3h  is shown in Fig. 3); and RF and RM  are the 

resultant vector force and moment (taken together, wrench) exerted on the environment.  Again, let us emphasize 

that this wrench acts at the end-effector frame {H} origin.  Substituting the above terms into (6) yields: 

[ ]{ } { }RWfA =        (7) 
 

where { } { } Tfffff 4321=  is the vector of scalar cable forces, { } { } { }T
zyx

T
RRR MFFMFW ==  is 

the resultant external wrench vector exerted on the environment by the end-effector (expressed in {0} 

coordinates but felt at the origin of {H}), and the 3x4 Statics Jacobian matrix [ ]A  (expressed in {0} coordinates) 

is: 

[ ] [ ] [ ] [ ] [ ] 
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The statics equations (7) can be inverted in an attempt to exert general wrenches while maintaining positive cable 

tension.  This work is presented in the next subsection. 

Maintaining Positive Cable Tension 

 For CDDRs with actuation redundancy, (7) is underconstrained which means that there are infinite 

solutions to the cable force vector { }f  to exert the given wrench { }RW .  Roberts et al. (1997) present a method 

for determining if a vector of only positive cable forces exists for CDDRs under gravity loading only.  This 

algorithm could be extended to CDDRs with general wrench exertion, but for the planar 4-cable case with only 

one degree of actuation redundancy, a simpler method is used here, based on Shen et al. (1994). 

 First, to invert (7) (solving the required cable tensions { }f  given the desired wrench { }RW ) we adapt the 

well-known particular and homogeneous solution from rate control of kinematically-redundant manipulators: 

{ } [ ] { } [ ] [ ] [ ]( ){ }zAAIWAf R
++ −+= 4      (9) 
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where [ ]4I  is the 4x4 identity matrix, { }z  is an arbitrary 4-vector, and [ ] [ ] [ ][ ]( ) 1−+ = TT AAAA  is the 4x3 Moore-

Penrose pseudoinverse of [ ]A .  The first term of (9) is the particular solution to achieve the desired wrench, and 

the second term is the homogeneous solution that maps { }z  to the null space of [ ]A .  For actuation redundancy 

of degree one, an equivalent expression for (9) is: 
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where the particular solution [ ] { }RWA +  is the first term in (10) and the homogeneous solution is expressed as the 

kernel vector of [ ]A  ( { } TnnnnN 4321= ) multiplied by an arbitrary scalar α. 

 The method we adapt from Shen et al. (1994) to determine if a given configuration lies within the statics 

workspace for a given CDDR design is simple.  To ensure positive tensions fi on all cables i = 1,2,3,4 for all 

possible exerted wrenches, it is necessary and sufficient that all kernel vector components (ni, i = 1,2,3,4) have 

the same sign.  That is, for a given configuration of a given CDDR design to lie within the statics workspace, all 

0>in  OR all 0<in  (i = 1,2,3,4).  If one of these two conditions is satisfied, regardless of the particular 

solution, we can find a scalar α in (10) which guarantees that all cable tensions { }f  are positive by adding (or 

subtracting) enough homogeneous solution.  Note a strict inequality is required; if one or more 0=in , the 

configuration in question does not lie within the statics workspace.  This method is simple but powerful since we 

needn’t consider specific wrenches, but it works for all possible wrenches.  It should be noted that this method is 

necessarily conservative, i.e. there may exist combinations of positive and negative particular and homogeneous 

solution components that may yield positive cable tensions by proper choice of α for a certain wrench, but our 

goal in design is to ensure that all possible wrenches be satisfied in the statics workspace, not merely some 

wrenches.  It should also be noted that while we demonstrate this method for the planar 4-cable CDDR, it is 
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applicable to any CDDR with one degree of actuation redundancy.  Also, there is no guarantee that scalar α in 

(10) exists to guarantee that all cable tensions { }f  are positive; in fact, when such α ceases to exist, this defines 

the boundary of the statics workspace. 

For design purposes we need to calculate this kernel vector repeatedly, for many CDDR designs and 

many configurations within each design.  Equation (11) gives the method to calculate each kernel vector 

component in , where iA  is the determinant of the 3x3 submatrix of [ ]A with column i removed. 

( ) i
i

i An 11 +−=    i = 1,2,3,4   (11) 

 
For on-line control purposes, once a given wrench at a given configuration is determined to be feasible 

via the above-described method, the tensions for control are calculated by (10), choosing α so that one 

component of { }f  is zero (or, a small positive value) and the remaining terms are positive.  Of course, if the 

particular solution happens to contain all positive terms then α can be chosen to be 0; alternatively in this case, α 

can still be chosen so that one component of { }f  is zero (or, a small positive value), which results in the same 

Cartesian wrench but lower cable tensions. 
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PLANAR CDDR DESIGN RESULTS 

 This section presents the parameters, design process, and results for determining the best CDDR design 

with regard to wrench exertion and cable interference.  In previous computer simulations (Williams, 1998), it was 

discovered that the planar crossed-cable case (Fig. 1) was far superior to the planar non-crossed-cable case (not 

shown), particularly in exerting moments.  Therefore we only consider crossed cables in this article. 

Planar 4-Cable CDDR Parameters 

 Assuming a square ground link, there are only three design parameters for the 4-cable planar CDDR: end-

effector rectangular dimensions a and b, plus square ground link side c (refer to Fig. 1).  If we normalize with c = 

1 (the results may be scaled as needed), we have two design parameters a and b.  In this article we limit a and b 

to the same ranges, [ ]4.00.0, ∈ba .  Note a = b = 0 is not a feasible design but we allow this case in our work 

for completeness; the results will show this case is in fact the least optimal design. 

For the Cartesian plane we consider φ rotation at a grid of XY points covering [ ]8.02.0, ∈YX , 

determined by fitting the largest design [a, b] = [0.4  0.4] in the corners of the ground link square with c = 1. 

Considering pitch ranges of the human wrist (when the hand grasps a cylindrical end-effector mounted 

perpendicular to the rectangular [a, b] end-effector at the center), a nominal desired rotation range is o45±=φ .  

We wish to satisfy this statics workspace design requirement at all XY points for all applied wrenches. 

Example Statics and Cable Interference Workspaces 

An example statics workspace result is shown for planar CDDR design location (a, b) = (0.2, 0.3), c = 1 

in the contour plots of Figs. 4.  Figures 4 were generated using the kernel vector method described in the last 

section.  Figure 4a shows the positive limiting angles +φT (the subscript T indicates tension) reachable at all XY 

locations considering only positive cable tensions, for all possible exerted wrenches.  For certain wrenches, +φT 

will be larger at certain XY locations; however, we can guarantee all possible wrenches may be satisfied in the 

Fig. 4a statics workspace, again for only the positive cable constraint.  Note that Fig. 4a demonstrates polar 

symmetry, as all such plots for any (a, b) design does: choose any value +φT in the XY plane and you will find the 
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identical value at the same radius from the center point (X, Y) = (0.5, 0.5) and directly opposite the chosen point.  

Also for this type of plot, the maximum possible +φT always occurs at the center point (X, Y) = (0.5, 0.5). 
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a. +φT Contour (deg)      b.  -φT Contour (deg) 

Figure 4.  Example Statics Workspace:  Limiting Angle φT Results over XY Plane 
a = 0.2, b = 0.3, c = 1, For All Possible Wrenches 

 
Comparing Fig. 4b to Fig. 4a, the -φT static workspace results can always be obtained by rotating the +φT 

results about the vertical line X = 0.5; thus we need only consider the +φT attribute for design purposes and then -

φT will have the same values, mirrored about X = 0.5.  From plots such as Fig. 4a, we can record the maximum, 

average, and minimum limiting angles over all XY.  We will then use these measures to compare different (a, b) 

designs.  For the example in Fig. 4a, MAX(+φT) = o90  (not visible in Fig. 4a since these occur only at discrete 

points), AVG(+φT) = o6.66 , and MIN(+φT) = o8.19 .  Due to the vertical-mirrored symmetry, these measures are 

identical for Fig. 4b (where MAX now indicates the maximum negative angle): MAX(-φT) = o90−  (again, not 

visible in Fig. 4b since these occur only at discrete points), AVG(-φT) = o6.66− , and MIN(-φT) = o8.19− .  The 

MAX result is for a single XY point, always the middle of the XY workspace; due to symmetry, the MIN result 

occurs at two points, the lower-left and upper-right XY corners for +φT, switching to the upper-left and lower-

right XY corners for -φT; the AVG result is for all XY. 
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For CDDR design, Figs. 4 are important to determine feasible statics workspaces wherein all possible 

wrenches can be exerted using only feasible (positive) cable tensions.  However, this type of plot does not give 

the full story since cable interference may be important in CDDR design as well.  As mentioned in the cable 

interference theory section, we only consider cable/end-effector interference since cable/cable interference may 

easily be avoided for planar CDDRs by arranging all cables in different planes, and cable/human interference is 

not a problem in the planar case.  For the same planar CDDR design as Figs. 4 ((a, b) = (0.2, 0.3), c = 1), Fig. 5 

shows the positive limiting angles +φC (the subscript C indicates collision) over all XY for cable/end-effector 

interference.  Figure 5 reports a kinematic constraint of interference between the end-effector and any one of the 

four cables and hence is not related to the exerted wrenches.  Figure 5 was generated using the cable/end-effector 

interference method presented earlier.  Figure 5 demonstrates the same polar symmetry that Figs. 4 have.  Again, 

the maximum +φC is in the middle of the workspace ((X, Y) = (0.5, 0.5)), as was the case for Figs. 4.  Also, the 

negative limiting angles -φC may be obtained by exploiting the same symmetry between Figs. 4b and 4a: rotate 

the +φC results about the vertical line X = 0.5 to get the -φC contour (not shown).  Thus, we need consider only 

the +φC attribute for design. 

Again we record the MAX, AVG, and MIN values over all XY for design purposes:  from Fig. 5, 

MAX(+φC) = o9.36 , AVG(+φC) = o4.24 , and MIN(+φC) = o1.7 .  Due to the vertical-mirrored symmetry, the 

negative angle measures are identical, with a negative sign.  Again, The MAX result is always for the middle of 

the XY workspace; the MIN result occurs at the lower-left and upper-right XY corners for +φC, switching to the 

upper-left and lower-right XY corners for -φC; the AVG result is again for all XY. 

 Comparing Figs. 4a and 5, it is clear that the cable/end-effector interference constraint dominates and its 

associated MAX, AVG, and MIN limiting angle values +φC are much less than those of +φT.  However, the 

statics workspace concept is still crucial for CDDRs since we are limited to feasible (positive) cable tensions.  

Therefore, we will consider both statics workspace and kinematics interference workspace in CDDR design. 



 16  

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

X

Y

10

10
20

20

20

20

20

20

30

30

30
30

30

30

35

35

35

35

35

35

35

35

 
Figure 5.  Example Interference Workspace:  Limiting Angle +φC Results (deg) over XY Plane 

a = 0.2, b = 0.3, c = 1 
 

Planar 4-Cable CDDR Design Curves 

We now present design curves to aid in selecting the best planar CDDR design, considering both positive 

cable tensions for all possible exerted wrenches and kinematic cable/end-effector interference. 

Figures 6 show the MAX, AVG, and MIN +φT values over the design plane (a,b).  Remember, due to 

symmetry, we needn’t consider -φT separately.  Figures 6 consider only the statics workspace constraint that all 

cable tensions must remain positive for exerting all possible wrenches.  Each (a,b) location in Figs. 6 report the 

MAX, AVG, and MIN +φT (respectively), each instance considering all XY locations.  That is, for each (a,b), a 

contour plot similar to Fig. 4a was generated and the computer program memorized the MAX, AVG, and MIN 

+φT values for later plotting against the a,b design plane.  The program then iterated over all (a,b) locations 

under consideration.  Design parameters a and b were each varied from 0 to 0.4 (with c = 1), in steps of 0.02.  At 

each (a,b) location, X and Y were each varied from 0.2 to 0.8, in steps of 0.02 (these were also the parameters 

used in Figs. 4).  Note a, b, c, X, and Y all have units of length; the results may be scaled as needed for CDDR 

design, based on the normalized c = 1. 
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Figure 6.  Design Curves, Tension Only:  Limiting Angle φT Results over a, b Parameters 
 

The MAX +φT results in Fig. 6a demonstrate a different type of symmetry than Figs. 4 and 5, about the a 

= b line.  The AVG +φT results of Fig. 6b almost share this symmetry, but are off due to the lack of symmetry in 

the MIN +φT results of Fig. 6c.  The MIN results are not symmetric due to the end-effector vertices rotating 

outside of the XY plane under consideration when the end-effector is placed at the lower-left and upper-right 

corners (where the MIN +φT values occur).  Considering the statics workspace constraint only, the best designs 
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appear to be along the a = b line toward the center of the a,b range.  For good CDDR design, the AVG measure 

is more important than the MAX and MIN measures, since the latter two only involve one or two XY points, 

while the former involves all XY points. 

We must also consider cable/end-effector interference in planar CDDR design.  Another set of design 

curves was generated in the same manner as for Figs. 6, but this time considering only the kinematic cable-end-

effector interference constraint.  Three contour plots over all design parameters a,b were generated, showing the 

MAX, AVG, and MIN +φC limiting angles (again, -φC needn’t be considered separately due to symmetry).  These 

contour lines in all three cases were vertical; that is, for a given value of a, the limiting values φC remain 

unchanged for all possible b values.  This behavior is expected since the end-effector height b does not affect the 

interference but the end-effector width a does. 

 This set of design curves for cable/end-effector interference only is not shown because they are so similar 

to the next set of design curves shown: the limiting cases are found over all a, b considering both statics 

workspace and interference constraints.  That is, the statics-workspace-only design curves of Fig. 6 were 

compared with the kinematics-interference-only design curves (not shown) and the lesser value of the limiting 

angles reported (the smaller of φT and φC at each a, b design point), called φTC to indicate the limiting angle 

considering both tension and collision.  Figures 7 show these Overall Design Curves, including the MAX, AVG, 

and MIN limiting angles φTC over all a, b design parameters under consideration.  With the exception of the 

lower-left and lower-right corners of the a, b design plane, the interference constraint dominates. 

Figures 7 show the limiting angle φTC MAX, AVG, and MIN values that can be obtained by planar 

CDDRs at the a, b design choices shown, considering both statics workspace and kinematics cable/end-effector 

interference constraints.  To choose the best and worst planar CDDR designs we use the following procedure.  

Over all a, b we use a weighted sum of the MAX, AVG, and MIN φTC values, each normalized to have a largest 

value of 1.0 to make each equal in importance; further choosing an equal weighting between MAX, AVG, and 
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MIN yields the Final Design Curve shown in Fig. 8.  A perfect score would be 3.0 (highest MAX, AVG, and 

MIN φTC all occurring at the same a, b value), while the worst score would be 0.0. 
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Figure 7.  Overall Design Curves considering both Tension and Collision 
 

From Fig. 8, the best planar CDDR designs occur at a = 0 and b > 0.1 where the score is approximately 

2.7.  The worst design, as predicted, is at a = b = 0, which is an infeasible design; here the score approaches 0.  

The next-worst design lies along a = 0.32, where the score is approximately 1.2.  Therefore we choose: 
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BEST design:  a = 0.0  b = 0.1 

WORST design: a = 0.32 b = 0.05 
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Figure 8.  Final Design Curve considering both Tension and Collision 

and Equally Weighting MAX, AVG, and MIN Limiting Angles 
 
 

Earlier we said that the AVG φTC value is the most important for planar CDDR design since it represents 

all possible XY locations, while the MAX is for the center point only and the MIN is for two corner points only.  

If one were to weight the results to use AVG only and ignore MAX and MIN, one would obtain nearly the same 

results as given above (see Fig. 7b to verify this fact). 

Note that the general case chosen for detailed demonstration in Figs. 4 and 5 (a = 0.2, b = 0.3) was 

neither the best nor worst case, with an intermediate score of approximately 1.8. 
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BEST and WORST Results  

Figure 9a shows the BEST planar CDDR design and Fig. 9b shows the associated achievable limiting 

angles φTC considering both statics workspace and kinematics cable/end-effector interference constraints.  For 

comparison, Fig. 10a shows the WORST planar CDDR design and Fig. 10b shows the associated achievable 

limiting angles φTC considering both statics workspace and kinematics cable/end-effector interference constraints. 

Considering both statics workspace and kinematics cable/end-effector interference constraints, the BEST 

design was not able to satisfy our design goal of a minimum limiting angle of o45=TCφ  over the entire XY 

workspace.  It does come close to o45  in the middle of the workspace, from the upper-left corner to the lower-

right corner, but this is the maximum limiting angle rather than the minimum limiting angle.  The WORST design 

angle results (Fig. 10b) are not greatly different from the BEST design angle results (Fig. 9b); however, the 

BEST case is clearly preferable.  In Figs. 9b and 10b the cable/end-effector interference constraint dominates. 

 Considering only the statics workspace constraint, there is a much larger difference between the best and 

worst cases (not shown since this is impractical).  Many cases can exceed the desired angle of o45  if we ignore 

the interference constraint (for instance, the general case of Figs. 4 exceeds this goal in most of the XY statics 

workspace).  Interestingly, the BEST case identified above for both statics workspace and cable/end-effector 

interference constraints is nearly the worst case considering statics workspace only!  However, we cannot ignore 

the interference constraint and so we propose the results given above as the BEST and WORST cases. 

 It is possible that, through clever design to minimize the chance of cable/end-effector interference, one 

could increase the effective overall planar CDDR workspace.  It was the intent of our work to remain 

conservative in design.  Reducing cable/end-effector interference is a topic for further work. 
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Figure 9a. Best Design a = 0, b = 0.1    Figure 9b.  Best Limiting φTC Results (deg) 
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Figure 10a. Worst Design a = 0.32, b = 0.05   Figure 10b.  Worst Limiting φTC Results (deg) 

 
 
 The BEST and WORST results presented are not general but subject to our design parameters (c=1 and 

a,b limited to discrete values as explained previously) and our design criteria (we want the largest statics 

workspace possible; over all XY we wish the largest limiting φ angle wherein all cable tensions may remain only 

positive). 



 23  

CONCLUSION 
 

 This article presented design of planar cable-direct-driven robots (CDDRs) with one degree of actuation 

redundancy, with regard to best statics workspace for general wrench exertion and with regard to kinematic 

cable/end-effector interference.  The results may be extended to other cable-direct-driven robots and haptic 

interfaces (CDDHIs) with one degree of actuation redundancy that must exert various wrenches on the 

environment and the human hand.  Statics workspace is defined as that workspace in which all possible wrenches 

may be applied with only positive cable tensions.  The well-known particular and homogeneous solution from 

kinematically-redundant manipulator rate control was adapted to calculate the tension control for exerting 

commanded wrenches.  A simple method was presented to determine the limits of the statics workspace.  Using 

this method and the cable/end-effector interference determination method presented, the best and worst planar 4-

cable CDDR designs were found, subject to our design parameters and design criteria.  The cable/end-effector 

interference constraint was found to dominate.  Future work plans include developing designs to minimize the 

cable/end-effector interference problem and to implement and evaluate our CDDR and CDDHI designs in 

hardware.  Potential applications of this technology include industrial robot tasks (assembly, welding, painting, 

etc.), large-scale outdoor robots (e.g. construction and shipyards), and haptic interfaces. 
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