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ABSTRACT 

A planar cable-direct-driven robot (CDDR) architecture is introduced with only translational freedoms.  

The motivation behind this work is to improve the serious cable interference problem with existing CDDRs and to 

avoid configurations where negative cable tensions are required to exert general forces on the environment and 

during dynamic motions.  These problems generally arise for rotational CDDR motions.  Thus, we propose a class 

of purely translational CDDRs; of course, these are not general but may only perform tasks where no rotational 

motion or resistance of moments is required at the end-effector.  This article includes kinematics and statics 

modeling, determination of the statics workspace (the space wherein all possible Cartesian forces may be exerted 

with only positive cable tensions), plus a dynamics model and simulated control for planar translational CDDRs.  

Examples are presented to demonstrate simulated control including feedback linearization of the 4-cable CDDR 

(with two degrees of actuation redundancy) performing a Cartesian task.  We introduce an on-line dynamic 

minimum torque estimation algorithm to ensure all cable tensions remain positive for all motion; otherwise slack 

cables result from the CDDR dynamics and control is lost. 

 

1.  INTRODUCTION 

Cable-direct-driven robots (CDDRs) are a type of parallel manipulator wherein the end-effector link is 

supported in-parallel by n cables with n tensioning motors.  In addition to the well-known advantages of parallel 

robots relative to serial robots, CDDRs also have low mass and can have better stiffness than other parallel robots.  

Several CDDRs and cable-direct-driven haptic interfaces (CDDHIs) have been studied in the past, as now partially 

discussed.  An early CDDR is the Robocrane developed by NIST (Albus et al., 1993) for use in shipping ports.  

This device is similar to an upside-down six-degrees-of-freedom (dof) Stewart platform, with six cables instead of 

hydraulic-cylinder legs. In this system, gravity is an implicit actuator that ensures cable tension is maintained at all 

times. Another CDDR is Charlotte, developed by McDonnell-Douglas (Campbell et al., 1995) for use on 

International Space Station.  Charlotte is a rectangular box driven in-parallel by eight cables, with eight tensioning 

motors mounted on-board (one on each corner).  Four CDDHIs have been built and tested, the Texas 9-string 
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(Lindemann and Tesar, 1989), the SPIDAR (Walairacht et al., 1999), the 7-cable master (Kawamura and Ito, 

1993), and the 8-cable haptic interface (Williams, 1998).  CDDRs and CDDHIs can be made lighter, stiffer, safer, 

and more economical than traditional serial robots and haptic interfaces since their primary structure consists of 

lightweight, high load-bearing cables.  On the other hand, one major disadvantage is that cables can only exert 

tension and cannot push on the moving platform.   

All of the devices discussed above are designed with actuation redundancy, i.e. more cables than wrench-

exerting degrees-of-freedom (except for the Robocrane, where tensioning is provided by gravity) in attempt to avoid 

configurations where certain wrenches require an impossible compression force in one or more cables.  Despite 

actuation redundancy, there exist subspaces in the potential workspace where some cables can lose tension; this 

problem generally is associated with rotational end-effector motion.  This problem can be exacerbated by CDDR 

dynamics, hence the current article studies dynamics and control of planar translational CDDRs, with no rotational 

motion allowed.  Roberts et al. (1998) developed an algorithm for CDDRs to predict if all cables are under tension 

in a given configuration while supporting the robot weight only.  These authors also present the inverse kinematics 

and fault tolerance of Charlotte-type (Campbell et al., 1995) CDDRs, but no dynamics modeling is presented.  The 

authors have presented CDDHI design (with translational and rotational motion) with regard to exerting all possible 

wrenches with only positive cable tensions and with regard to avoiding cable interference (Williams and Gallina, 

2002).  In that work it was found that cable interference dominates. 

Recently there has been a lot of work concerning CDDR-related research.  Choe et al. (1996) point out that 

wire-driven robots must provide stiffness in all six Cartesian directions, even if the desired motion is in a subspace 

of general Cartesian motion.  The current article handles this issue by assuming that our planar end-effector is 

supported by a base plate for stiffness perpendicular to the plane, and by not requiring moment resistance by the 

end-effector.  Though not directly related to CDDRs, Kock and Schumacher (2000) present a discussion of 

actuation redundancy for more conventional parallel manipulators.  Barrette and Gosselin (2000) present a 

systematic kinematic and workspace analysis of planar CDDRs with translational and rotational motion. 

Most proposed CDDRs and CDDHIs involve both translational and rotational motion of the end-effector 

link guided by cables.  (An exception is the SPIDAR (Walairacht et al., 1999), which is a spatial 4-cable haptic 

interface reading translations only and providing three Cartesian forces to the human finger.)  All CDDRs and 

CDDHIs with translational and rotational motion suffer from the potential of cable interference and reduced statics 

workspaces wherein some negative cable tensions would be required, which is infeasible.  The basic idea behind 

this article is to introduce a CDDR with only translational motion that can be used for a reduced set of tasks: 

axisymmetric tasks that require no rotational motions or moment resistance by the end-effector.  Example tasks 

include planar spray painting, spot and seam welding, limited planar assembly tasks, and translational/force-only 

haptic interface.  The main objective of this work is to benefit from potential advantages of CDDRs without the 

cable interference and negative cable tension problems; an obvious drawback is the limited range of tasks. 



 4  
 

This article describes two candidate translational planar CDDRs, presents kinematics modeling, followed 

by statics modeling, a method for attempting to maintain positive cable tensions, and a method for determining the 

statics workspace, wherein all possible Cartesian forces may be exerted, with only positive cable tensions.  The 

article then presents dynamics modeling (resulting in a nonlinear, coupled dynamics model), followed by Cartesian 

trajectory control simulation employing Cartesian PD control and feedback linearization for planar CDDRs with 

one and two degrees of actuation redundancy.  An on-line dynamic minimum torque estimation algorithm is 

developed to avoid slack cables due to dynamics.   Examples are then presented for the dynamics model and 

simulated control, for the translational planar 4-cable CDDR with two degrees of actuation redundancy. 

 

2. CABLE-DIRECT-DRIVEN ROBOTS (CDDRs) 

In this article a translational planar CDDR consists of a single end-effector point driven in parallel by n 

cables controlled by n tensioning actuators.  Since no rotational motions and no moment resistance are required at 

the end-effector, all n cables meet in a single point, and the end-effector is modeled as a point mass.  Figures 1 and 

2 show the translational planar 3-cable and 4-cable CDDR kinematics diagrams.  We assume that a base plate 

supports the end-effector in the XY plane so no Z stiffness need be provided by the planar CDDR, which is 

impossible.  Also, we assume no end-effector moment resistance is required by the subset of planar translational 

tasks in this article; no rotational motions or Z moment resistance is possible with the CDDRs of Figs. 1 and 2. 
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Figure 1.  Planar 3-Cable CDDR Diagram  Figure 2.  Planar 4-Cable CDDR Diagram 

 

For 2-dof planar translations there must be at least two cables.  Since cables can only exert tension on the 

end-effector, there must be more cables to avoid configurations where the CDDR cables can be slack and lose 

control.  Figure 1 represents one degree of actuation redundancy, i.e. three cables to achieve the two Cartesian 

degrees-of-freedom { } Tyx=X ; the CDDR in Fig. 2 has two degrees of actuation redundancy.  These scenarios 
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represent actuation redundancy but not kinematic redundancy.  That is, there is an extra motor or motors which 

provide infinite choices for applying 2-dof Cartesian force vectors, but the moving point has only two Cartesian 

degrees-of-freedom ( { } Tyx=X , the components of the position vector from the origin of {0} to the moving 

point, expressed in {0} coordinates). 

Figures 1 and 2 show the inertially-fixed reference frame {0} whose origin is the centroid of the base 

polygon; the regular base polygon (triangle and square, respectively) has sides of fixed length BL ; each cable is 

passed through the ground link at the fixed points { } T
iyixi AA=A ; the length of each cable is denoted as iL , and 

the cable angles are iθ  ( ni ,,1L= ).  The end-effector point mass is m and the lumped motor shaft/cable pulley 

rotational inertias for each actuator are iJ  ( ni ,,1L= ).  We also include viscous damping coefficients ic  

( ni ,,1L= ) at each motor shaft to provide a linear model for the system friction.  The cable pulley radius for each 

actuator is ir  ( ni ,,1L= ; not shown in Figs. 1 or 2).   

Theoretically the moving point can reach any point within the base polygon, if cable lengths can go to zero.  

Also, the potential for cable/cable and cable/end-point interference is non-existent for the CDDR designs of Figs. 1 

and 2.  The potential certainly exists for interference between cables and workspace items and/or humans, but this 

problem can be minimized by design in the case of planar CDDRs. 

 

3.  CDDR KINEMATICS MODELING 

This section presents the inverse and forward translational position and velocity kinematics analysis for 

planar CDDRs.  Inverse kinematics is required for control, and forward kinematics is required for simulation and 

sensor-based control.  Kinematics is concerned with relating the active joint variables and rates to the Cartesian 

position and rate variables of the moving point.  The cable angles and rates are also involved.  Assuming all cables 

always remain in tension, CDDR kinematics is similar to in-parallel-actuated robot kinematics (e.g. Tsai (1999); 

Gosselin (1996)); however, with CDDRs the joint space is overconstrained with respect to the Cartesian space.  

Again, in this article we only consider translational motion and forces, associated with a reduced set of possible 

planar tasks. 

3.1  Position Kinematics 

The inverse position kinematics problem is stated:  given the Cartesian position { } Tyx=X  calculate the 

cable lengths iL .  The solution is simply calculating the Euclidean norm between the moving point { } Tyx=X  

and each fixed ground link vertex Ai: 

( ) ( )22
iyixi AyAxL −+−=   ni ,,1L=    (1) 

 
For use in velocity kinematics and statics, we require the cable angles: 
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The quadrant-specific inverse tangent function must be used in (2). 

The forward position kinematics problem is stated:  given the cable lengths iL , calculate the Cartesian 

position { } Tyx=X .  This problem is overconstrained and assumes a consistent input of iL .  First we consider 

cables 1 and 2.  This problem can be simplified by shifting a new reference frame origin to 1A  whose XY directions 

are identical to {0}; in this new frame { } T001 =A  and { } T
BL 02 =A .  Then the solution to the forward 

position kinematics problem is the intersection of two circles, one centered at 1A  with radius 1L  and the second 

centered at 2A  with radius 2L ; the solution is: 
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We choose the positive solution for y in (3) to ensure the forward position kinematics solution lies within the ground 

polygon.  Therefore, from the multiple possibilities (we could have used any two cables to obtain the solution), 

there is a unique correct solution.  Note the value of x in (3) is unique due to the special geometry for cables 1 and 2 

(both y values have the same x value).  To finish, this solution (3) must be shifted back to the {0} frame reference.  

This solution applies to any planar n-cable CDDR with a point end-effector. 

 After employing (3) for the forward position kinematics solution, it is a good idea to use the inverse 

position kinematics solution (1) for all remaining cables ( ni ,,3 L= ) to verify that the iL  input was consistent. 

 
3.2  Velocity Kinematics  

 To derive the velocity kinematics equations we consider the thi  cable vector-loop-closure equation 

{ } { } T
iiiyiiix

T sLAcLAyx θθ ++= , where iic θθ cos=  and iis θθ sin= .  The time derivative yields: 
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We invert this thi  cable Jacobian matrix to yield: 
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Since we are interested in relating active cable length rates to the Cartesian rates, we can extract the first row of (5) 

to construct the overall CDDR inverse velocity solution.  For the 3- and 4-cable cases: 
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 Note that though we eliminated iθ&  from the velocity equations, cable angles iθ  from (2) are required in 

(6).  The general form of (6) is XML && =  where L&  is the vector of n cable rates, M  is the translational CDDR 

inverse Jacobian matrix, and { } Tyx &&& =X  is the Cartesian velocity vector for the moving point, shared by all n 

cables.  Considering the inverse velocity problem of conventional serial robots, the result (6) is amazing: the inverse 

velocity problem is solved directly (the inversion was handled symbolically from (4) to (5)) with little computation 

and there is no singularity problem. 

 However, to solve the forward velocity kinematics problem we must invert the form of (6): LMX 1 && −= .  

Due to redundant actuation, M  is not square but is of dimension nx2 for the planar case; therefore we cannot invert 

M  but we have two choices for the forward velocity solution: 1) choose only two cables to make a reduced, square, 

inverse Jacobian matrix.  For instance, as in the forward position kinematics solution, choose cables 1 and 2.  The 

forward velocity solution for the 3-cable CDDR is then 1212 LMX 1 && −=  where 12M  is M  with row 3 removed and 

12L&  is the vector containing the first two cable rates.  This approach can readily be extended to the 4-cable CDDR.  

After forward velocity solution, ensure that the L&  inputs were consistent by evaluating the neglected row(s) of (6).   

2) The alternate forward velocity solution approach, assuming consistent L&  inputs, is to use the left pseudoinverse: 

LMX && #= , where ( ) T1T MMMM
−

=# .  The second alternate solution approach may be preferable in hardware 

application since any errors in L&  measurements will be somewhat mitigated by the pseudoinverse, compared to 

using only two components of L& . 

 Via either solution approach, the forward velocity solution is subject to singularities.  The singularity 

conditions are derived from the determinants of the three possible 2x2 square submatrices of M : 
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The singularities only occur when two cables lie along a straight line; this is only possible at the edges of the 

theoretical kinematic workspace, i.e. along the edges of the ground polygon.  Equation (7) gives the 3-cable CDDR 

singularities.  The 4-cable CDDR singularities are similar (i.e. only along the edges of the ground square). 
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4.  CDDR STATICS MODELING 

In this article, the workspace wherein all cables are under positive tension while exerting all possible 

Cartesian forces is called the statics workspace.  Statics modeling and attempting to maintain positive cable tension 

are presented in this section.  We use a simple method to determine the extent of the statics workspace, i.e. the 

workspace wherein all possible forces can be applied with positive cable tensions. 

 
4.1  Statics Modeling  

This section presents statics modeling for translational planar CDDRs.  For static equilibrium the sum of 

forces exerted on the moving point by the cables must equal the resultant external force exerted on the environment.  

Figure 3 shows the statics free-body diagram for the planar 4-cable CDDR.  The statics equations are: 

R

n

i
ii

n

i
i t FLt =−= ∑∑

== 11

ˆ        (8) 

 
In this article gravity is ignored because it is assumed to be perpendicular to the CDDR plane; we assume the 

moving end-effector point is supported on a base plate.  All vectors are expressed in {0} (see Figs. 1 and 2).  In (8), 

it  is the cable tension applied to the thi  cable (opposite the cable length unit direction { } T
iii sc θθ=L̂  because 

vector it  must be in tension).  { } T
yxR ff=F  is the resultant vector force exerted on the environment by the 

moving point.  Substituting terms into (8) yields the form RFST = , where [ ]nLLS ˆˆ
1 −−= L  is the 2xn 

translational Statics Jacobian matrix and { } T
ntt L1=T  is the vector of scalar cable tensions it .  For the 3- 

and 4-cable CDDRs: 
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Note that there is a special duality between force and inverse velocity: these respective Jacobian matrices 

are related by TMS −= ; compare (6) and (9).  The statics equations (9) can be inverted in an attempt to exert 

general Cartesian forces while maintaining positive cable tension.  This is presented in the next subsection. 
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Figure 3.  Planar 4-Cable CDDR Statics Diagram 

 

4.2  Maintaining Positive Cable Tension  

 For CDDRs with actuation redundancy, (9) is underconstrained which means that there are infinite 

solutions to the cable tension vector T  to exert the given Cartesian force RF .  To invert (9) (solving for the 

required cable tensions T  given the desired force RF ) we adapt the well-known particular and homogeneous 

solution from rate control of kinematically-redundant serial manipulators: 

( )zSSIFST ++ −+= nR      (10) 

 

where nI  is the nxn identity matrix, z is an arbitrary n-vector, and ( ) 1−+ = TT SSSS  is the nx2 underconstrained 

Moore-Penrose pseudoinverse of S.  The first term of (10) is the particular solution to achieve the desired force, and 

the second term is the homogeneous solution that maps z to the null space of S. 

4.2.1  One Degree of Actuation Redundancy.   For CDDRs with only one degree of actuation redundancy 

(the planar 3-cable case in this article), the positive cable tension method of Shen et al. (1994) is adapted to 

determine the extent of the statics workspace.  For actuation redundancy of degree one, an equivalent expression for 

(10) is: 
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where the particular solution RFS+  is the first term in (11) and the homogeneous solution is expressed as the kernel 

vector of S ( { } Tnnn 321=N ) multiplied by arbitrary scalar a. 

 The method we adapt from Shen et al. (1994) to determine if a given point lies within the statics workspace 

for a given CDDR is simple.  To ensure positive tensions it  on all cables i = 1,2,3, for all possible exerted forces, 

it is necessary and sufficient that all kernel vector components (ni, i = 1,2,3) have the same sign.  That is, for a 

given point to lie within the statics workspace, all 0>in  OR all 0<in  (i = 1,2,3).  If one of these two conditions 
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is satisfied, regardless of the particular solution, we can find a scalar a in (11) which guarantees that all cable 

tensions T are positive by adding (or subtracting) enough homogeneous solution.  Note a strict inequality is 

required; if one or more 0=in , the point in question does not lie within the statics workspace.  This method is 

simple but powerful since we needn’t consider specific forces, but it works for all possible forces.  It should also be 

noted that while we demonstrate this method for the translational planar 3-cable CDDR, it is applicable to any 

planar and spatial CDDR with one degree of actuation redundancy. 

The method to calculate each kernel vector component is ( ) i
i

in S11 +−= , where iS  is the determinant of 

the 2x2 submatrix of S with column i removed.  Applying this to the 3-cable CDDR yields: 
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Now, the allowable cable angle ranges are o600 1 ≤≤ θ , oo 180120 2 ≤≤ θ , and oo 300240 3 ≤≤ θ .  Therefore, the 

three possible delta angle ranges in (12) are oo 18060 23 ≤−≤ θθ , oo 180300 31 −≤−≤− θθ , and 

oo 18060 12 ≤−≤ θθ .  Note all three ranges are identical since the second condition is identical to 

oo 18060 31 ≤−≤ θθ .  The sine of all these delta angles is always positive as long as oo 18060 <−≤ kj θθ  (the 

sine is zero when any delta angle is equal to o180 ).  Therefore, the entire allowable kinematic workspace of the 

base triangle is also the statics workspace!  So, there is no limitation due to considering only positive cable 

tensions!  On the edge of the base triangle one 0=in  and thus the triangle edges are not in the statics workspace.  

Recall from the forward velocity solution presented in Section 3.2, the triangle edges also correspond to kinematic 

singularities.  At all points outside of the base triangle, 2 components of the kernel vector N have the same sign and 

the other component has the opposite sign so outside the base triangle is also outside of the statics workspace. 

For on-line pseudostatic control of a planar CDDR with one degree of actuation redundancy, the cable 

tensions for control are calculated by (11) and (12), choosing a so that one component of T is zero (or, in practical 

application, a small positive value) and the remaining terms are positive. 

 
4.2.2  Two Degrees of Actuation Redundancy.   For CDDRs with two or more degrees of actuation 

redundancy (the planar 4-cable case in this article), determination of the statics workspace and the method for 

maintaining positive cable tensions are more complicated.  For actuation redundancy of degree two, an equivalent 

expression for (10) is: 
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where the particular solution RFS+  is again the first term in (13) and the homogeneous solution is expressed as the 

two kernel vectors of S ( { } Tnnnn 4321=N  and { } Tpppp 4321=P ) multiplied by arbitrary scalars a 

and b.  Given (13), the condition for a CDDR configuration to lie within the statics workspace is: 
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Divide the workspace into four sectors as in Fig. 4.  We can construct a different null space basis for each 

sector.  This is required to demonstrate that the entire workspace is within the statics workspace. 

 
Figure 4.  Planar 4-Cable CDDR Workspace Sectors 

 
Case I: Let us suppose that the end-effector point is in the first sector.  A possible basis for the null space 

is: 
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If the end-effector lies within sector I, the allowable cable angle ranges are °≤<° 450 1θ , °<≤° 180135 2θ , 

°<≤° 270225 3θ , and °≤<° 315270 4θ . Note that the sector triangle edges are included.  The possible delta angle 

ranges are °<−<° 13590 24 θθ , °<−<° 18090 12 θθ , °−<−<°− 180270 31 θθ , °−<−<°− 225315 41 θθ , and 

I 

IV II 

III 
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°<−<° 13545 23 θθ .  Therefore all the sine functions in (15) are positive or null and any combination of N and P 

(with positive coefficients a and b) always has positive components as required in (14).  In conclusion, the first 

sector belongs to the statics workspace. 

Case II: Let us suppose that the end-effector point is in the second sector.  We can choose a different basis 

for the null space: 
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If the end-effector lies within sector II, the allowable cable angle ranges are °≤<° 450 1θ , °≤<° 13590 2θ , 

°<≤° 270225 3θ , and °<≤° 360315 4θ . The possible delta angle ranges are °<−<° 13545 34 θθ , 

°−<−<°− 180225 42 θθ , °−<−<°− 180270 31 θθ , °<−<° 13545 12 θθ , and °<−<° 18090 23 θθ . Therefore, 

all sine functions in (16) are positive or null and any combination of N and P (with positive coefficients a and b) 

always has positive components.  In conclusion, the second sector also belongs to the statics workspace. 

The last two cases are similar. Choose: 
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as a suitable basis for sector III and: 
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as a suitable basis for sector IV.  The conclusion for each case is identical, i.e. the third and fourth sectors also 

belong to the statics workspace, including all internal triangle edges.  The only point we did not take into account is 

the center of the square, but in this case the basis of the null space consists of only one vector { } T1111=N  

because the rank of S degenerates to one.  Clearly this special case is within the statics workspace since it easily 

satisfies (14). 

Therefore, we have shown that the entire allowable kinematic workspace of the base square is also the 

statics workspace!  The edge of the base square (which correspond to kinematic singularities) and all points outside 
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of the base square are outside of the statics workspace.  This result makes sense given the 3-cable results since the 

addition of another cable can only help the statics workspace. 

In Section 6.2 we will present a general method for on-line control of a planar CDDR with two (or more) 

degrees of actuation redundancy (i.e. find optimal a and b for (13)).  We will do this with regard to dynamics; since 

the pseudostatic condition is a limiting subset of the general dynamics case, we now move on to dynamics modeling. 

 

5.  CDDR DYNAMICS MODELING 

This section presents dynamics modeling for translational planar CDDRs.  The translational planar 3- and 

4-cable CDDRs are shown in Figs. 1 and 2.  Dynamics modeling is required for improved control (compared to 

using kinematics and statics modeling only) when CDDRs are to provide high velocities and accelerations in 

translational motion.  Dynamics modeling is concerned with relating the Cartesian translational motion of the 

moving CDDR end-effector point to the required active joint torques.  Due to the cable actuation, CDDR dynamics 

modeling is not very similar to in-parallel-actuated robot dynamics modeling (e.g. Tsai (1999); Gosselin (1996)).  

Another complicating factor is that the joint space is overconstrained with respect to the Cartesian space due to 

redundant actuation. 

For the dynamics model derived in this section we assume that the CDDR cables are massless and perfectly 

stiff so we do not consider their inertias or spring stiffnesses.  We further ignore the Coulomb friction and instead 

model linear viscous friction to account for the frictional losses.  Despite these simplifications, the resulting model 

is coupled and nonlinear.  We now present the Cartesian, actuator, and overall system dynamics models. 

 
5.1  Cartesian Dynamics Model 

The free-body diagram for the moving end-effector point is simple and hence not shown.  The 2-dof 

Cartesian dynamic model for the end-effector is given by: 

FXm =&&       (19) 
 

where the Cartesian mass matrix is 







=

m

m

0

0
m , { } Tyx=X is the end-effector position and F is the resultant of 

all n cable forces (tensions) acting on the end-effector. 

 

5.2  Actuator Dynamics Model 

We also take into consideration the dynamic behavior of the lumped motor shaft/cable pulley; the free-body 

diagram for the thi  motor shaft/cable pulley subsystem is shown in Fig. 5. 
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Figure 5.  Free-Body Diagram for the thi  Pulley/Shaft 

 
The combined motor shaft/cable pulley dynamics equations are expressed by the relationship: 

TτβCβJ r−=+ &&&       (20) 

 

where:     
















=

nJ

J

0

01

OJ  and  
















=

nc

c

0

01

OC  

 
are diagonal matrices with rotational inertia and rotational viscous damping coefficients on the diagonal, all cable 

pulley radii ( ir  in Fig. 5) are identical ( rri = ; ni ,,1L= ), nR∈τ is the vector of torques exerted by the motors, 

nR∈T is the vector of cable tensions it , and nR∈β is the vector of pulley angles.  Since the cables can only exert 

positive tensions (they cannot push), to express the cable tensions as a function of the motor torques and angular 

motion from (20), we obtain: 

( )





 −−= βCβJτT &&&

r
pos

1
      (21) 

 
where the symbol ()pos  means we take the value of each vector component that is positive and we set to zero those 

components that were originally negative.  Let us suppose that the torque on each motor is large enough to make all 

cables remain in tension at all times. Under this assumption: 

( )βCβJτT &&& −−=
r

1
       (22) 

5.3  System Dynamics Model 

We now derive the overall system dynamics model by combining the Cartesian and actuator dynamics 

equations of motion.  The statics relationship RFST =  between cable tensions and end-effector forces was derived 

in Section 4.1, where the 2xn statics Jacobian matrices S for the 3-and 4-cable CDDRs were given in (9); the form 

is: 









−−
−−
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1

1

L

L
S       (23) 
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where iθ  ( ni ,,1L= ) are the cable angles (see Figs. 1 and 2). 

We now need an inverse kinematics mapping relating the pulley angles iβ  ( ni ,,1L= ) expressed as 

functions of the end-effector position { } Tyx=X .  Let us define all iβ  to be zero when the end-effector is located 

at the origin of frame {0}.  From this position, a right-handed positive angle iβ  on one pulley will cause a negative 

change iL∆  in cable length i: ii Lr ∆−=β .  The change in cable length i is iii LLL 0−=∆  where 

( ) ( )22
iyixi AyAxL −+−=  is the general length for cable i from the inverse position solution given in (1) and 

( ) ( )22
0 iyixi AAL +=  is the initial length for cable i.  Therefore: 
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Successive time derivatives of (24) yield: 
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and ( ) ( )22
iyixi AyAxL −+−=  is the length of cable i, a function of { } Tyx=X .  By substituting (25) into 

(22) we obtain: 
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∂
∂−= X
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β

CX
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β

X
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β

JτT &&&&
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d
r

1      (27) 

 
Finally, by combining  (19), RFST = , and (27), we obtain the overall dynamics equations of motion, expressed in a 

standard Cartesian form for robotic systems (Lewis et al., 1993): 

( ) ( ) ( )τXSXX,NXXM =+ &&&
eq       (28) 

 
where the equivalent inertia matrix ( )XMeq  and nonlinear terms ( )XX,N &  are: 

( ) ( )
X
β

JXSmXM
∂
∂+= req       (28a) 



 16  
 

 ( ) ( ) X
X
β

C
X
β

JXSXX,N &&
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∂+








∂
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dt

d
    (28b) 

 

Note the statics Jacobian matrix ( )XSS =  from (23) is a function of Cartesian position { } Tyx=X  through the 

cable angles 







−
−

= −

ix

iy
i Ax

Ay1tanθ  (see Figs. 1 and 2). 

 

6.  CDDR CONTROLS DEVELOPMENT 

 This section presents our control architecture and control law development, followed by the dynamic 

algorithm for calculating actuator torques for CDDRs with two or more degrees of actuation redundancy (this was 

referred to at the end of Section 4). 

 
6.1  Control Law and Architecture 

This sub-section presents our control architecture and control law for translational planar CDDRs based on 

the overall system Cartesian dynamics equations of motion (28).  The input to the plant is the vector of actuator 

torques τ.  Each component of τ has to be positive or zero at the minimum (in practice, a small positive value).  In 

order to facilitate this problem, let us introduce a virtual generalized Cartesian force input VF  (units Nm): 

( )τXSF =V        (29) 

 
Since the statics Jacobian matrix S(X) has dimension 2xn, this virtual generalized force input VF  has the dimension 

of the translational Cartesian space, 2 in this article.  The components of VF  are not restricted to be positive. If we 

can develop a control law for the virtual Cartesian force input VF , it is always possible to find a real controls 

torque input τ with all positive components that satisfies (29), if the CDDR position is within the statics workspace.  

In Section 4.2 we proved that the entire base polygon is within the statics workspace for translational planar 

CDDRs with regular convex base polygons. Therefore, for control law development, we can consider the new 

dynamics equation: 

( ) ( ) Veq FXX,NXXM =+ &&&       (30) 

 
 We cancel the effects of the nonlinear dynamics terms ( )XX,N &  and account for the inertial terms by using 

the well-known computed-torque (or feedback linearization) technique (Lewis et al., 1993).  We then implement a 

Cartesian PD controller to reduce the tracking error XXe −= R .  The commanded (reference) Cartesian position is 

{ } T
RRR yx=X .  The computed-torque control law for the virtual Cartesian force input VF  is: 

( )( ) ( )RRDPRReqV XXNeKeKXXMF &&&& ,+++=     (31) 
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 Note we use the reference Cartesian values RX  in (31).  Alternatively, we could use the actual feedback 

values from actuator encoder sensors and forward pose kinematics.  Due to this uncertainty, plus sensor noise 

problems, plus the problem of digitally twice differentiating the sensor feedback X , we choose RX  instead. 

The control architecture (shown in the block diagram of Fig. 6) is made up of three different parts: the PD 

controller, the computed-torque terms, and the virtual-Cartesian-force-input-to-real-actuator-torque calculation, 

with dynamic minimum torque estimation to ensure cable tension is maintained at all times despite the CDDR 

dynamics.  In this article the PD controller gains are determined via pole placement for the resulting effective unit 

inertia plant, specifying desired settling time and percent overshoot for a unit step input.  The matrix gains DP,KK  

are 2x2 diagonal matrices, which means that the PD control is accomplished independently for the x and y motions, 

even though the dynamics model is coupled.  We specify the same settling time and percent overshoot for both x and 

y motions (see Section 7).  The inertial terms ( ) RReq XXM &&  are composed of the overall position-dependent 

Cartesian inertia matrix eqM  (28a) and the reference Cartesian acceleration components RX&& ; the nonlinear terms 

are ( )RR X,XN & , given in (28b).  The virtual-to-real calculation has the problem to invert the matrix S(X) that is 

non-square, such that only positive cable tensions result.  This problem is solved in Section 4.2 for CDDRs with 

one actuation redundancy, and in Section 6.2 below for CDDRs with two or more actuation redundancies. 

We do not generally have access directly to Cartesian position X feedback via sensors.  Instead, we must 

calculate this feedback using the encoder feedback for each cable pulley angle iβ  to determine the cable lengths iL ; 

these lengths are then used as the inputs to the forward position kinematics solution of Eqs. (3) to calculate 

Cartesian position X for feedback in the control architecture.  This feedback scheme will work well only if 

sufficient tension is maintained on all cables at all times. 
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Figure 6.  Control Architecture for Translational Planar CDDRs 
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6.2  Calculation of Optimal Actuator Torques 

 This sub-section presents a method for determining the optimal actuator torques for the controller 

architecture of Fig. 6, for CDDRs with two or more degrees of actuation redundancy.  This sub-section presents the 

“Virtual-to-Real Calculation” block of Fig. 6.  Also presented is an algorithm for on-line estimation of minimum 

actuator torques required to maintain positive cable tensions despite the CDDR dynamics; this is the “Minimum 

Torque Estimation” block in Fig. 6 (which equally applies to CDDRs with one degree of actuation redundancy). 

The Jacobian matrix relationship between torques and virtual generalized Cartesian forces is 

underconstrained in CDDRs, given by (29), τXSF )(=V .  For control we need to calculate the real actuator 

torques τ  given the virtual forces VF .  For actuation redundancy of degree one, we can adapt the pseudostatics 

solution of Section 4.2.1 (to this method we must add the dynamic tension estimation algorithm developed below in 

the current sub-section).  For actuation redundancy of degree two or greater, the method is more difficult and is 

presented in this section, specifically for two actuation redundancies.  The solution of the underconstrained system 

τXSF )(=V  is similar to (13) from Section 4.2.2, given in (32) for n=4.  The difference from (13) is that we can 

no longer make the pseudostatics assumption ii rt=τ  ( iτ  is the thi  actuator torque, r is the cable pulley radius, 

and it  is the thi  cable tension).  Due to dynamics this assumption no longer holds; we must calculate the required 

actuator torques for control while attempting to maintain positive cable tensions dynamically. 
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The particular solution VFS+  is the first term in (32) and the homogeneous solution is expressed as the two kernel 

vectors of S ( { } Tnnnn 4321=N  and { } Tpppp 4321=P ) multiplied by arbitrary scalars a and b.  The 

goal of torque calculation consists in finding an optimal solution optτ  with the following features:  1) Each 

component of optτ , denoted { }
ioptτ , must be greater than or equal to a specified minimum torque { } iminτ .  2) The 

norm of τ must be minimized.  The first condition assures that the torque in each motor is always positive, in fact 

always greater than { } iminτ .  If we don’t consider dynamic effects, the tension in each cable turns out to be greater 

than { } ir minτ .  Under this pseudostatic condition, if { } iminτ  is set sufficiently high, the cables will never go slack. 

Unfortunately, when high speed is employed, because of dynamic effects, one or more cable can become slack 

despite a positive { } iminτ .  In this dynamic case the minimum value for { } iminτ  must be estimated on-line for each 

cable in real-time.  The on-line cable tension estimation algorithm comes from forcing each tension component to be 

positive at all times in the dynamics model (27): 
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The estimated torque solution for each actuator from (33) to maintain cable tension is: 
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The reason for the max function in (34) is that when dynamics are taken into account, the minimum torque required 

to ensure the corresponding cable is in tension could be negative for one or more components.  In (34) we force all 

torque components to be zero at the minimum.  For the optimal torque solution, the norm is defined as the simple 

sum since no components are allowed to be negative: 

( ) { }∑
=

=
n

i
ia,b

1

ττ       (35) 

 
The solution form (32) yields a system of linear non-homogeneous inequalities in the scalar unknowns a and b. 

 { } iiiPi mbna minτ≥++τ     ni ,,1L=  (36) 

 
Given in this form, we have a typical problem in linear programming, where the objective function (35), the 

torque norm, must be minimized over a set inequality constraints given by (36).  In the solution space ba, , each 

equation of (36) represents a semiplane whose border is given by the line { } iiiPi mbna minτ=++τ , ni ,,1L= .  

When the n lines intersect each other, we obtain up to ni intersection points ),( ll ba , nil ,,1L= .  We denote this 

set of points Θ .  Note that the maximum number of intersections is ∑
−

=
=

1

1

n

j

jni .  It can be proved (Zionts, 1974) 

that the optimal ba,  solution is one of these intersections, that is  { }nilba ll ,,1),,(opt L=∈ ττ .  The subset of 

points of Θ  that satisfy the minimum torque requirement (36) is given by: 

( ){ } { }{ }nibaba ii ,,1,),( minpos L=∀≥Θ∈=Θ ττ     (37) 

 
We choose the pos),( Θ∈ba  that yields the minimum torque norm minN .  In conclusion, 

),( optoptopt baττ = , where ),( optopt ba  belongs to posΘ  and it yields the minimum norm of torques. 

 
Torque Calculation Example for 2 actuation redundancies: 

Let us consider the planar 4-cable CDDR (n=4) with 2 redundant actuations.  Given: virtual generalized 

Cartesian force 






−

=
05.1

30.1
VF  (Nm), Cartesian position 








−

=
23.0

04.0
X  (m), and minimum actuator torques 



 20  
 

{ } 10.0min =iτ  (Nm), 4,,1L=i .  From this information, the Jacobian matrix )(XS , the kernel (N,P) of )(XS , 

and the particular solution for actuator torques Pτ are: 
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Figure 7 shows the ni=6 intersections among the n=4 constraint lines.  The feasible subspace of the ba, plane is 

the upper-left region, as shown in the shaded portion of Fig. 7. 
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Figure 7.  ba,  Inequality Constraints with Intersections 

 
The set of the 6 intersection points among the 4 lines is: 

( ) ( ) ( )
( ) ( ) ( )}1.25-1.48,0.62-2.54-,0.970.45-

,1.07-0.34,0.060.34,1.580.34{=Θ
 

 
Only two ba,  pairs yield an actuator torque vector τ with all components greater than { } iminτ  (only two 

points border the feasible region in Fig. 7), so the subset of Θ that satisfies (36) is: 

( ) ( ){ }0.62-2.54-,0.970.45-=Θ pos  

The member of posΘ which yields the minimum norm of actuator torques is: 

( )}0.970.45-{),( optopt =ba  

 
and the optimal solutions for actuator torques is: 

{ } T40.10.100.1069.0opt =τ  
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7.  SIMULATION RESULTS 

 This section presents dynamics and control examples for the translational planar 4-cable CDDR with two 

degrees of actuation redundancy.  These examples demonstrate the CDDR control architecture including feedback 

linearization and on-line dynamic minimum torque estimation to maintain positive cable tensions despite the 

dynamics, plus optimal torque calculation for a system with greater than one degree of actuation redundancy.  In 

this section, a given translational planar 4-cable CDDR performs a simulated task twice, the first time without and 

the second time with the on-line minimum torque estimation algorithm. 

The planar 4-cable CDDR model is shown in Fig. 2.  The base square has side 6580.0=BL  m (this 

strange number came from our comparison with the 3-cable CDDR in early work; there is no space to show this).  

The simulated dynamic task is for the CDDR end-effector point { } Tyx=X  to trace a circle in the plane.  The 

circle is centered at the base square centroid (the origin of {0}) and the circle radius is r = 0.2165 m (again, this 

strange number came from our comparison with the 3-cable CDDR).  Figure 8 shows the simulated task to scale 

for the 4-cable CDDR at the starting (and ending) point.  However, to introduce an error for the controller at the 

start, the end-effector actually starts at 1 mm in the positive Y direction from the starting point shown in Fig. 8, and 

it must catch up with the commanded Cartesian motion RRR XXX &&& ,,  and keep the error XXe −= R  small during 

simulated motion. 
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Figure 8.  Planar 4-Cable Translational CDDR Example Task 

 
In the simulated example the 4-cable CDDR is commanded to trace the given circle in 1 sec (zero Cartesian 

force RF  is specified).  We define polar angle φ as the independent parameter for the circle; it is measured using the 

right-hand from the right horizontal to the circle radius; φ is shown at 0 (and o360 ) in Fig. 8.  We provide a 

constant acceleration for the first half of the circle and an equal constant deceleration for the second half of the 

circle; the commanded motion starts and ends at zero velocity.  The kinematic task  
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relationships for this desired reference motion are πφωα 8=== &&& , tαφω == & , and 2/2tαφ =  for the first half of 

the circle; the second half is symmetric to the first.  The associated commanded (reference) Cartesian position RX , 

velocity RX& , and acceleration RX&&  for use in the controller architecture are easy to determine. 

The parameters for the dynamics equations of motion (28) for the 4-cable CDDR are: point mass m = 1 kg; 

rotational shaft/pulley inertias 0008.0=iJ  2kgm  (for all 4,,1L=i ); shaft rotational viscous damping coefficients 

01.0=ic  Nms (for all 4,,1L=i ); and 5== rri  cm (for all 4,,1L=i ). 

The Cartesian PD controller is found by standard pole placement techniques (the feedback linearization 

approach makes the plant appear linear, as a unit inertia), specifying a 0.2 sec settling time and 5% percent 

overshoot.  We design for Cartesian x and y directions independently, with the same settling time and percent 

overshoot specifications.  Gain PK  is a 2x2 diagonal matrix with equal gains of 9.839=PK  on the diagonal, and 

gain DK  is a 2x2 diagonal matrix with equal gains of 40=DK  on the diagonal. 

A Matlab Simulink simulation based on Fig. 6 and the methods of this article was developed to produce the 

results given in this section.  Two control simulations of the dynamics model are presented in this section for the 4-

cable CDDR, both without and with the on-line minimum torque estimation algorithm of Fig. 6.   

Figures 9a-c show the minimum actuator torques, actual actuator torques, virtual generalized Cartesian 

forces, and actual cable tensions, respectively, for the circle task, without the on-line minimum torque estimation 

algorithm. 
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Figure 9a.  Minimum Actuator Torques   Figure 9b.  Actual Actuator Torques 
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Figure 9c.  Actual Cable Tensions   Figure 10.  Virtual Generalized Cartesian Forces (Nm) 

1t  (solid), 2t  (long dash), 3t  (short dash), 4t  (*)   VxF  (solid) and VyF  (dash)   

  
 

 As shown in Fig. 9a, for the simulation without the on-line minimum torque estimation algorithm, the 

minimum torques are constant and identical for all actuators, taking a specified value of 0.05 Nm in this example.  

The control torques, calculated by the optimal method in the Virtual to Real Calculation block of Fig. 6, but 

without the Min. Torque Estimation block, are shown in Fig. 9b.  Actuator torques 1, 2, and 3 peak near the center 

of motion time, due to the maximum velocity occurring at this point; torque 4 peaks twice, nearer the start and end 

of motion.  During motion all four torques at different times yield negative values in the Virtual to Real Calculation, 

but these are limited to a small positive value, the constant specified minimum torque of 0.05 Nm.  The associated 

actual cable tensions resulting from the simulated motion considering the dynamics model are shown in Fig. 9c.  

For this simulated motion, the x and y components of the virtual generalized Cartesian forces are shown in Fig. 10; 

these are not limited to be positive.  Without including the dynamic minimum tension estimation algorithm, each 

cable tension becomes negative and thus slack at different times during the simulated motion.  Clearly this is 

unacceptable as control would be lost in these ranges of motion.  Thus, the constant minimum tension specification 

is suitable only for pseudostatic motions, not for dynamic motions with high velocities and accelerations. 

Figures 11a-c show the minimum actuator torques, actual actuator torques, and actual cable tensions, 

respectively, for the same circle task, with the on-line minimum torque estimation algorithm.  As shown in Fig. 11a, 

for the simulation with the on-line minimum torque estimation algorithm, the minimum torques are no longer 

constant, but vary (greater than the minimum positive torque) so that no cable tensions will go negative in the 

dynamics model.  The control torques, obtained by including the Min. Torque Estimation block in the Virtual to 

Real Calculation, are shown in Fig. 11b.  Again, during motion all four torques yield negative values but these are 

limited to the minimum torque of 0.05 Nm in these ranges.  Though Figs. 9a and 11a are quite different (minimum 

torques without and with the dynamic minimum torque estimation), the resulting control torques of Figs. 9b and 

11b are similar, though not identical.  The simulated cable tensions considering the dynamics model are shown in 
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Fig. 11c.  By including the dynamic minimum torque estimation algorithm, each cable tension never becomes 

negative and thus control is maintained at all times.  In Fig. 11c we allow zero cable tension as a minimum; in 

practice a small positive value should be used instead.  Figs. 9c and 11c are very similar in shape and magnitude; 

however, Fig. 11c is a big improvement over Fig. 9c, where all cables were negative for a portion of the motion.  

Thus, we must include the dynamic minimum torque estimation algorithm for challenging dynamic motions. 

The virtual generalized Cartesian forces are not shown for this case because they are identical to those of 

Fig. 10; for the identical Cartesian circle task, VF  will be identical regardless of including or not including the 

algorithm for estimating minimum actuator torques.   

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 t (sec)

 M
in

im
um

 T
or

qu
es

 (
N

m
)

 
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

 t (sec)

 T
or

qu
es

 (
N

m
)

 
Figure 11a.  Minimum Actuator Torques  Figure 11b.  Actual Actuator Torques 
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Figure 11c.  Actual Cable Tensions    Figure 12.  Simulated Tracking Error 
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 For the latter control case, including the dynamic minimum torque estimation algorithm, the simulated 

controller tracking error is shown in Fig. 12.  This plot shows the Euclidean norm of the tracking error,  
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( ) ( )22 yyxx RR −+− .  The simulation starts with an artificial error of 1 mm in the Y direction to demonstrate the 

error convergence.  In the former control case, without the dynamic minimum torque estimation algorithm, where 

one (or more) cable loses tension, the tracking error is much worse than Fig. 12 since all cable go slack at different 

times in the simulation, causing a large Cartesian error (not shown).  The control architecture will work well only if 

all cables are under tension at all times; therefore, the dynamic minimum torque estimation algorithm must be used. 

 

8.  CONCLUSION 

 This article introduces translational planar cable-direct-driven robots (CDDRs).  The motivation behind 

this work is to answer the serious cable interference and negative cable tensions possible with existing CDDRs that 

provide both translational and rotational motions.  Of course, a big disadvantage of translational CDDRs is that 

they may only be used for a subset of planar tasks, where no rotations or moment resistance is required at the end-

effector.  Kinematics and statics modeling is presented, followed by determination of the statics workspace (the 

space wherein all possible Cartesian forces may be exerted with only positive cable tensions).  Dynamics modeling 

and controls development with feedback linearization for translational planar CDDRs with one- or two- (and 

higher) degrees of actuation redundancy was presented.  The control architecture will work well only if sufficient 

tension is maintained on all cables at all times.  Simulations were given to compare the 4-cable CDDR in the same 

task, without and with the novel dynamic minimum torque estimation algorithm. 

It was found that the dynamic minimum torque estimation algorithm was required for CDDR motions with 

high velocities and accelerations.  Otherwise, the simulation revealed that each of the cables becomes slack during 

motion and thus control is lost.  The computed-torque, or feedback linearization technique performed perfectly in 

simulation, i.e. when we assume we know the dynamic model perfectly, the inertial effects and nonlinear dynamics 

terms are cancelled perfectly.  Therefore, in the future we will focus on implementing robust control techniques to 

preserve good error tracking despite modeling uncertainties.  Our future work plans also include dynamic stiffness 

modeling, more complete dynamics modeling (cable inertia and stiffness, Coulomb friction, among others), 

hardware implementation, and experimental validation of our results. 
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