## Metadata of the article that will be visualized in OnlineFirst

| 1 | Article Title | Cable-Direct-Driven Robot (CDDR) with Passive SCARA Support: Theory and Simulation |  |
| :---: | :---: | :---: | :---: |
| 2 | Journal Name | Journal of Intelligent and Robotic Systems |  |
| 3 |  | Family Name | Williams |
| 4 |  | Particle |  |
| 5 |  | Given Name | Robert L. |
| 6 | Corresponding | Suffix | 11 |
| 7 | Author | Organization | Ohio University |
| 8 |  | Division | Department of Mechanical Engineering |
| 9 |  | Address | 259 Stocker Center, Athens 45701-2979, OH, USA |
| 10 |  | e-mail | williar4@ohio.edu |
| 11 | Author | Family Name | Trevisani |
| 12 |  | Particle |  |
| 13 |  | Given Name | Alberto |
| 14 |  | Suffix |  |
| 15 |  | Organization | University of Padova |
| 16 |  | Division |  |
| 17 |  | Address | Padova, Italy |
| 18 |  | e-mail |  |
| 19 | Author | Family Name | Gallina |
| 20 |  | Particle |  |
| 21 |  | Given Name | Paolo |
| 22 |  | Suffix |  |
| 23 |  | Organization | University of Trieste |
| 24 |  | Division |  |
| 25 |  | Address | Trieste, Italy |
| 26 |  | e-mail |  |
| 27 | Schedule | Received | 6 April 2005 |
| 28 |  | Revised |  |
| 29 |  | Accepted | 2 May 2006 |
| 30 | Abstract | This article pres (CDDR) with ac motion plane wit (Selective Comp robot to resist c proposed robot resistance to fo workspace. Ano end-effector mo translational CD independent Ca and dynamics m | s a new planar translational cable-direct-driven robot tion redundancy and supported against loading normal to the passive planar two-degree-of-freedom SCARA-type nce Assembly Robot Arm) serial manipulator. This allows the sag without being supported on the motion plane. The hitecture may assure high payload-to-weight ratio, normal to the plane of motion, and a potentially large $r$ benefit is that the passive SCARA has structure to provide nt resistance, which is not possible with many proposed s. Moreover, the passive robot can also serve as an sian metrology system. This article derives the kinematics els for the proposed hybrid serial/parallel architecture. |

## AUTHOR'S PROOF

Additionally it proposes a dynamic Cartesian controller always ensuring positive cable tensions while minimizing the sum of all the torques exerted by the actuators. Simulation examples are also presented to demonstrate the novel CDDR concept, dynamics, and controller.
actuation redundancy - cable-direct-driven robots - dynamic minimum torque separated by ' - ' estimation - passive support

| 32Foot note Category (7) - System Modelling/Simulation/Control/Computer-Aided <br> information Design/Robot Control/Teleoperation/Moving Robots |
| :--- | :--- | :--- |

# Cable-Direct-Driven Robot (CDDR) with Passive SCARA Support: Theory and Simulation 

Alberto Trevisani • Paolo Gallina Robert L. Williams II

Received: 6 April 2005 / Accepted: 2 May 2006
© Springer Science+Business Media B.V. 2006


#### Abstract

This article presents a new planar translational cable-direct-driven robot 1 (CDDR) with actuation redundancy and supported against loading normal to the 2 motion plane with a passive planar two-degree-of-freedom SCARA-type (Selective 3 Compliance Assembly Robot Arm) serial manipulator. This allows the robot to resist cable sag without being supported on the motion plane. The proposed robot architecture may assure high payload-to-weight ratio, resistance to forces normal to the plane of motion, and a potentially large workspace. Another benefit is that the passive SCARA has structure to provide end-effector moment resistance, which is not possible with many proposed translational CDDRs. Moreover, the passive robot can also serve as an independent Cartesian metrology system. This article derives the kinematics and dynamics models for the proposed hybrid serial/parallel architecture. Additionally it proposes a dynamic Cartesian controller always ensuring positive cable tensions while minimizing the sum of all the torques exerted by the actuators. Simulation examples are also presented to demonstrate the novel CDDR concept, dynamics, and controller.3

Key words actuation redundancy $\cdot$ cable-direct-driven robots $\cdot$ dynamic minimumtorque estimation • passive support


[^0]A. Trevisani

University of Padova, Padova, Italy
P. Gallina

University of Trieste, Trieste, Italy
R. L. Williams II ( $\boxtimes$ )

Department of Mechanical Engineering, Ohio University, 259 Stocker Center, Athens, OH 45701-2979, USA
e-mail: williar4@ohio.edu
URL: http://www.ent.ohiou.edu/~bobw

## 1. Introduction

Cable-direct-driven robots (CDDRs) are a type of parallel manipulator wherein the end-effector link is supported in-parallel by $n$ cables with $n$ tensioning motors. In addition to the well-known advantages of parallel robots relative to serial robots, CDDRs can have lower mass than other parallel robots. Several CDDRs have been developed to date. An early CDDR is the RoboCrane [2] developed by the National Institute of Standards and Technology (NIST) for use in shipping ports. This device is similar to an upside-down six-degrees-of-freedom (dof) Stewart platform, with six cables instead of hydraulic-cylinder legs. In this system, gravity ensures that cable tension is maintained at all times throughout the system work volume. Another CDDR is Charlotte, developed by McDonnell-Douglas [4] for use on the International Space Station. Charlotte is a rectangular box driven in-parallel by eight cables, with eight tensioning motors mounted on-board (one on each corner). CDDRs can be made lighter, stiffer, safer, and more economical than traditional serial robots since their primary structure consists of lightweight, high load-bearing cables. In addition, a major advantage of CDDRs over existing parallel robots is a larger workspace. On the other hand, one major disadvantage is that cables can only exert tension and cannot push on the end-effector.

Other authors presenting CDDR developments are Aria et al. [1], Mikulas and Yang [7], Shanmugasundram and Moon [10], Yamamoto et al. [14], and Shiang et al. [12].

Roberts et al. [9] present inverse kinematics and fault tolerance of Charlottetype CDDRs, plus an algorithm to predict if all cables are under tension in a given configuration while supporting the robot weight only. Oh and Agrawal [8] developed a controller to ensure only positive cable tensions for CDDRs. Shen et al. [11] adapt manipulability measures to CDDRs. Choe et al. [5] present stiffness analysis for wiredriven robots. Barette and Gosselin [3] present general velocity and force analysis for planar cable-actuated mechanisms, including dynamic workspace, dependent on endeffector accelerations.

Most CDDRs are designed with actuation redundancy, i.e. more cables than Cartesian motion (or, in contact, wrench-exerting) degrees-of-freedom (except for the RoboCrane, where cable tensioning is provided by gravity) in attempt to avoid configurations where certain wrenches require an impossible pushing force in one or more cables. Despite actuation redundancy, there exist subspaces in the potential workspace where some cables can lose tension. This problem can be exacerbated by CDDR dynamics. A general dynamics controller has been proposed to enable CDDR motions with only positive cable tensions [13].

This article describes the new planar translational CDDR with passive SCARA support, followed by kinematics and dynamics modeling, controller development including a method for attempting to maintain positive cable tensions for all motion, and simulation examples to demonstrate these developments. The features of the proposed CDDR motivating this study include: 1. A high payload-to-weight ratio; 2. A large workspace; 3 . Independent Cartesian metrology when adding encoders to the passive SCARA robot; 4 . Out-of-plane cable sag can be resisted without supporting end-effector on the plane of motion; 5 . The concept can be extended to 3D motion with rotations by adding an active SCARA $Z$ axis and a robot wrist; and 6 . The passive SCARA also provides moment resistance at the end-effector, which is not enabled by most proposed CDDRs. For example, consider a drilling tool. If the tool

[^1]was connected to the end-effector of a translational-only CDDR, vibrations could 66 occur since torsional stiffness would be provided just by cables and end-effector's 67 inertia. Conversely, if the drilling tool was connected to the tip of the second link 68 of the passive SCARA, it would work correctly, since torsional stiffness would be 69 provided by the SCARA structure rather than just by cables. These features combine 7 to make the proposed system a good alternative to existing serial robots, in particular in those industrial applications where large and fast displacements of the end-effector are required while keeping high accuracy throughout the whole workspace (e.g. assembly, fluid dispensing, painting, testing and inspecting). Moreover the hybrid 74 parallel/serial architecture of the system provides superior stiffness even when heavy 75 payloads are handled, compared to existing robot systems.76

Of these six CDDR features, the first two are shared by any good cable robot. 77 However, items 3. through 6. are unique to our novel concept and this article.

## 2. System Description

The hybrid parallel/serial architecture of the Cable-Direct-Driven Robot (CDDR) 80 studied in this work is shown in Figure 1. The manipulator consists of a single end- 81 effector point that can translate in a rectangular planar workspace supported in 82 parallel by four cables controlled by four tensioning actuators. In order to reduce the 83 compliance of the CDDR in the direction normal to the plane of motion, the end- 84 effector is also connected to the free end of a passive planar two-degree-of-freedom 85 serial manipulator (2R SCARA-type) by means of a revolute joint at the end point.

Figure 1 CDDR with passive SCARA support.


In this work it is assumed that only translational degrees of freedom are provided by the four cables. Rotational freedoms could be provided by a serial wrist as proposed in [13]. The studied CDDR has therefore two degrees of actuation redundancy i.e. four cables are used to achieve the two Cartesian degrees-of-freedom $\mathbf{X}=\{x, y\}^{T}$.

Two reference frames are shown in Figure 1:

- reference frame $\{0\}$, whose origin is the centroid of the base polygon,
- reference frame $\{1\}$, whose origin is the center of the revolute joint connecting the SCARA serial manipulator to the frame,

The base polygon is a rectangle whose sides have the fixed lengths $L_{\mathrm{A}}$ and $L_{\mathrm{B}}$. The $i$ th cable $(i=1, \ldots, 4)$ winds around the ith pulley, whose angle is $\beta_{i}$, and is forced to pass through the fixed vertex $A_{i}$ of the base polygon. The length of the $i$ th cable, measured from the vertex $A_{i}$ to the end-effector point $\{x, y\}$, is denoted as $L_{i}$, and the cable angle is $\theta_{i}$. Finally, $z_{1}$ and $z_{2}$ are the lengths of the two links of the serial manipulator, and $\varphi_{1}$ and $\varphi_{2}$ are the absolute angles between the frame and the links. The symbol $\varphi_{2}^{r}$ instead denotes the relative angle between link 1 and link 2. The serial manipulator is supposed to be attached to the frame at the midpoint of one side of the base polygon. It can be easily proved that such a choice minimizes the overall length of the support links.

## 3. Kinematics Modeling

This section presents the forward and inverse kinematics analysis for the studied planar CDDR. Kinematics analysis is concerned with relating the active joint variables and rates (i.e. $\boldsymbol{\beta}, \dot{\boldsymbol{\beta}}$ and $\ddot{\boldsymbol{\beta}}$, where $\boldsymbol{\beta} \in \mathbb{R}^{4}$ is the vector of the pulley angles: $\boldsymbol{\beta}=\left\{\beta_{1}, \beta_{2}\right.$, $\left.\beta_{3}, \beta_{4}\right\}^{T}$ ) to the Cartesian position and rate variables of the end-effector point (i.e. $\mathbf{X}$, $\dot{\mathbf{X}}$ and $\ddot{\mathbf{X}}$, with $\mathbf{X} \in \mathbb{R}^{2}$ ) and the serial manipulator joint variables and rates (i.e. $\varphi, \dot{\varphi}$, and $\ddot{\varphi}$ where $\varphi \in \mathbb{R}^{2}$ is the vector of the joint angles: $\left.\varphi=\left\{\varphi_{1} \varphi_{2}\right\}^{T}\right)$.

Since the joints of the passive serial manipulator are not actuated directly, their values and rates can be always determined indirectly through the Cartesian position and rate variables of the end-effector point. It is therefore appropriate to keep the computation of the $\varphi, \dot{\varphi}$, and $\ddot{\varphi}$ separate from the computation of the relations among the joint variables $\boldsymbol{\beta}, \dot{\boldsymbol{\beta}}$ and $\ddot{\boldsymbol{\beta}}$, and the Cartesian variables $\mathbf{X}, \dot{\mathbf{X}}$ and $\ddot{\mathbf{X}}$. If all the cables always remain in tension, the studied CDDR kinematics is similar to in-parallelactuated robot kinematics, combined with serial robot kinematics. However, with CDDRs the joint space is overconstrained with respect to the Cartesian space due to the redundant actuation.

### 3.1. Position Kinematics

The objective of the forward position kinematics problem is determining the Cartesian position $\mathbf{X}$ of the end-effector given the pulley angles $\boldsymbol{\beta}$. This problem is overconstrained. Once $\mathbf{X}$ is determined, in order to complete the analysis it is also necessary to determine the joint angles $\varphi$ via the serial robot inverse pose kinematics. Let $L_{0}=\sqrt{\left(L_{\mathrm{A}} / 2\right)^{2}+\left(L_{\mathrm{B}} / 2\right)^{2}}$ be the length of each cable when the end-effector is at the origin of the reference frame $\{0\}$ (i.e. $\{x, y\} 0=\{0,0\}_{0}$ ). Also assume that all Springer
angles $\beta_{i}$ are set to zero at this point. At any position, the length $L_{i}$ of the ith cable 128 can be computed from the measured pulley angles through the following equation:

$$
\begin{equation*}
L_{i}=L_{0}-r_{i} \beta_{i} \tag{1}
\end{equation*}
$$

where $r_{i}$ is the radius of the ith pulley. In this work it is assumed that all the pulley 130 radii are identical: $r_{i}=r$. Because the forward position problem is overconstrained,131 once the length of two cables is known, it is possible to compute the two Cartesian 132 coordinates $\{x, y\} 0$. Any two cables could be used to obtain the solution. Henceforth, 133 the cables 1 and 2 will be used. The solution to the problem can be computed by the intersection of two circles, one centered at $A_{1}$, with radius $L_{1}$, and the second centered at $A_{2}$ with radius $L_{2}$. The result, expressed in frame $\{0\}$, is:134

$$
\mathbf{X}=\left\{\begin{array}{c}
\frac{L_{\mathrm{B}}^{2}+L_{1}^{2}-L_{2}^{2}-L_{\mathrm{B}}}{2 L_{\mathrm{B}}}  \tag{2}\\
\sqrt{L_{1}^{2}-\left(\frac{L_{\mathrm{B}}^{2}+L_{1}^{2}-L_{2}^{2}}{2 L_{\mathrm{B}}}\right)^{2}}-\frac{L_{\mathrm{A}}}{2}
\end{array}\right\}_{0}
$$

By combining (1) and (2) it is possible to get an explicit expression for the Cartesian position $\mathbf{X}=\mathbf{X}(\boldsymbol{\beta})$. In particular, when considering cables 1 and $2, \mathbf{X}(\boldsymbol{\beta})$ takes the 138 form:

$$
\mathbf{X}=\left\{\begin{array}{c}
\frac{r^{2}\left(\beta_{1}^{2}-\beta_{2}^{2}\right)}{2 L_{\mathrm{B}}}+\frac{r L_{0}\left(\beta_{2}-\beta_{1}\right)}{L_{\mathrm{B}}}  \tag{3}\\
\sqrt{\left(L_{0}-\beta_{1} r\right)^{2}-\left(\frac{L_{\mathrm{B}}}{2}+\frac{r^{2}\left(\beta_{1}^{2}-\beta_{2}^{2}\right)}{2 L_{\mathrm{B}}}+\frac{r L_{0}\left(\beta_{2}-\beta_{1}\right)}{L_{\mathrm{B}}}\right)^{2}}-\frac{L_{\mathrm{A}}}{2}
\end{array}\right\}_{0}
$$

When the position $\mathbf{X}$ of the end-effector is known in the reference frame $\{0\}$, the 140 position of the CDDR links (i.e. the joint coordinates $\varphi=\left\{\varphi_{1} \varphi_{2}\right\}^{T}$ ) can be determined by solving the inverse kinematics problem for the serial manipulator. It is well known that there exists an analytical solution to this problem, with two solution branches (see e.g. [6]). If we first compute the end-effector position in the reference frame $\{1\}$ by the relation $\{\mathbf{X}\}_{1}=\left\{x_{1} y_{1}\right\}^{T}=\{\mathbf{X}\}_{0}+\left\{0 L_{A} / 2\right\}^{T}$, then it is possible to determine the angle $\varphi_{2}^{r}$ through the relation: 139

$$
\cos \varphi_{2}^{r}=\frac{x_{1}^{2}+y_{1}^{2}-z_{2}^{2}-z_{1}^{2}}{2 z_{1} z_{2}} \Rightarrow \varphi_{2}^{r} \operatorname{a} \tan _{2}\left( \pm \sqrt{1-\cos ^{2} \varphi_{2}^{r}}, \cos \varphi_{2}^{r}\right)
$$

The result is:

$$
\boldsymbol{\varphi}=\left\{\begin{array}{c}
\varphi_{1} \\
\varphi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\operatorname{atan}_{2}\left(y_{1}, x_{1}\right)-\operatorname{atan}_{2}\left(z_{2} \sin \varphi_{2}^{r}, z_{2} \cos \varphi_{2}^{r}+z_{1}\right) \\
\varphi_{2}^{r}+\varphi_{1}
\end{array}\right\} .
$$

Conversely, the end-effector coordinates in the reference frame $\{0\}$ are related to the joint coordinates by the simple forward position relationship:

$$
\mathbf{X}=\left\{\begin{array}{c}
z_{1} \cos \varphi_{1}+z_{2} \cos \varphi_{2}  \tag{149}\\
-\frac{L_{\mathrm{A}}}{2}+z_{1} \sin \varphi_{1}+z_{2} \sin \varphi_{2}
\end{array}\right\}_{0}
$$

Hereafter it will be assumed that all the Cartesian coordinates are expressed in the reference frame $\{0\}$ and the subscript ' 0 ' will hence be omitted. The objective of the inverse position kinematics problem is determining the pulley angles $\beta$ given

### 3.2. Velocity Kinematics

The time derivative of (6) provides the solution to the inverse velocity kinematics problem for the CDDR:

$$
\dot{\boldsymbol{\beta}}=\frac{\partial \dot{\boldsymbol{\beta}}}{\partial \mathbf{X}} \dot{\mathbf{X}}=-\frac{1}{r}\left[\begin{array}{cc}
\frac{x-A_{1 x}}{L_{1} A_{2 x}} & \frac{y-A_{1 y}}{L_{1}}  \tag{7}\\
\frac{y-A_{2 y}}{L_{2}} & \frac{L_{2}}{L_{2}} \\
\frac{x-A_{3 x}}{L_{3} A_{3 y}} & \frac{y-A_{3 y}}{L_{3}} \\
\frac{x-A_{4 x}}{L_{4}} & \frac{y-A_{4 y}}{L_{4}}
\end{array}\right]\left\{\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right\}
$$

160
Unlike the inverse velocity (7), the forward velocity solution is subject to singularities. The singularity conditions are derived from the determinants of the three possible $2 \times 2$ square submatrices of the Jacobian matrix $\frac{\partial \beta}{\partial \mathbf{X}}$. Practically, as proved by Williams and Gallina [13], the singularities occur when two cables lie along a straight line, at the edges of the theoretical kinematic workspace. Below, the solution $\dot{\mathbf{X}}$ of the forward velocity problem is computed from the angular velocities of two arbitrarily chosen pulleys. As in the previous section, cables 1 and 2 are used. Instead of inverting the submatrix composed by the first two rows of $\frac{\partial \dot{\beta}}{\partial \mathbf{X}}$, we get the solution by directly differentiating (3) with respect to time:

$$
\dot{\mathbf{X}}=\left\{\begin{array}{c}
\dot{x}  \tag{8}\\
\dot{y}
\end{array}\right\}=\frac{\partial \mathbf{X}}{\partial \boldsymbol{\beta}_{12}} \dot{\boldsymbol{\beta}}_{12}=\left[\begin{array}{cc}
\frac{\partial x}{\partial \beta_{1}} & \frac{\partial x}{\partial \beta_{2}} \\
\frac{\partial y}{\partial \beta_{1}} & \frac{\partial y}{\partial \beta_{2}}
\end{array}\right]\left\{\begin{array}{l}
\dot{\beta}_{1} \\
\dot{\beta}_{2}
\end{array}\right\}
$$

169 where $\dot{\boldsymbol{\beta}}_{12} \in \mathbb{R}^{2}$ is the vector $\left\{\dot{\beta}_{1}, \dot{\beta}_{2}\right\}^{T}$ containing the first two pulley rates and:

$$
\begin{aligned}
& \frac{\partial x}{\partial \beta_{1}}=\frac{r^{2} \beta_{1}}{L_{\mathrm{B}}}-\frac{r L_{0}}{L_{\mathrm{B}}} ; \frac{\partial x}{\partial \beta_{2}}=-\frac{r^{2} \beta_{2}}{L_{\mathrm{B}}}+\frac{r L_{0}}{L_{\mathrm{B}}} \\
& \frac{\partial y}{\partial \beta_{1}}=\frac{1}{y+\frac{L_{\mathrm{A}}}{2}}\left[-r L_{0}+r^{2} \beta_{1}-\frac{\partial x}{\partial \beta_{1}}\left(x+\frac{L_{\mathrm{B}}}{2}\right)\right] ; \frac{\partial y}{\partial \beta_{2}}=-\frac{1}{y+\frac{L_{\mathrm{A}}}{2}}\left(x+\frac{L_{\mathrm{B}}}{2}\right) \frac{\partial x}{\partial \beta_{2}}
\end{aligned}
$$

These equations show that when the end effector lies on $\overline{A_{1} A_{2}}$ (i.e. when $y=-\frac{L_{\mathrm{A}}}{2}$ ), 170 both $\frac{\partial y}{\partial \beta_{1}}$ and $\frac{\partial y}{\partial \beta_{2}}$ become infinite and the CDDR is in a singular configuration. In 171 order to complete the solution of the velocity kinematics problem, we also require 172 the serial manipulator joint angle rates. By differentiating (4) with respect to time, 173 the result is:

$$
\dot{\mathbf{X}}=\left\{\begin{array}{c}
\dot{x}  \tag{9}\\
\dot{y}
\end{array}\right\}=\left[\begin{array}{cc}
-z_{1} \sin \varphi_{1} & -z_{2} \sin \varphi_{2} \\
z_{1} \cos \varphi_{1} & z_{2} \cos \varphi_{2}
\end{array}\right]\left\{\begin{array}{c}
\dot{\varphi}_{1} \\
\dot{\varphi}_{2}
\end{array}\right\}:=\mathbf{J}_{\mathbf{k}} \dot{\boldsymbol{\varphi}}
$$

The computation of $\dot{\varphi}$ is possible only if the determinant of the Jacobian matrix $\mathbf{J}_{\mathbf{k}}$ is 175 not zero (i.e. if $\varphi_{2} \neq \varphi_{1}, \varphi_{2} \neq \varphi_{1}+\pi$ ). If the Jacobian matrix $\mathbf{J}_{\mathbf{k}}$ is non-singular, the 176 serial inverse velocity solution is:

$$
\begin{equation*}
\dot{\varphi}=\mathbf{J}_{\mathbf{k}}^{-1} \dot{\mathbf{X}} \tag{10}
\end{equation*}
$$

Hence the presence of the passive serial manipulator introduces further singular

### 3.3. Acceleration Kinematics

The solution to the CDDR forward acceleration kinematics problem can be obtained

$$
\begin{equation*}
\ddot{\mathbf{X}}=\frac{\partial \mathbf{X}}{\partial \boldsymbol{\beta}_{12}} \ddot{\boldsymbol{\beta}}_{12}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \mathbf{X}}{\partial \boldsymbol{\beta}_{12}}\right) \dot{\boldsymbol{\beta}}_{12}=\frac{\partial \mathbf{X}}{\partial \boldsymbol{\beta}_{12}} \ddot{\boldsymbol{\beta}}_{12}+\mathbf{C}_{\mathbf{a}} \dot{\boldsymbol{\beta}}_{12}^{2}+\mathbf{C}_{\mathbf{b}} \dot{\boldsymbol{\beta}}_{1} \dot{\beta}_{2} \tag{11}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{a}}=\left[\begin{array}{cc}
\frac{\partial^{2} x}{\partial \beta_{1}^{2}} & \frac{\partial^{2} x}{\partial \beta_{2}^{2}} \\
\frac{\partial^{2} y}{\partial \beta_{1}^{2}} & \frac{\partial^{2} y}{\partial \beta_{2}^{2}}
\end{array}\right] ; \dot{\boldsymbol{\beta}}_{12}^{2}=\left\{\begin{array}{c}
\dot{\beta}_{1}^{2} \\
\dot{\beta}_{2}^{2}
\end{array}\right\} ; \\
& \mathbf{C}_{\mathbf{b}}=\left\{\begin{array}{c}
2 \frac{\partial^{2} x}{\partial \beta_{1} \partial \beta_{2}} \\
2 \frac{\partial^{2} y}{\partial \beta_{1} \partial \beta_{2}}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
\left.2 \frac{\partial x}{\partial \beta_{2}}\left[\frac{\partial y}{\partial \beta_{1}}\left(x+\frac{L_{\mathrm{B}}}{2}\right)-\frac{\partial x}{\partial \beta_{1}}\left(y+\frac{L_{\mathrm{A}}}{2}\right)\right] /\left(y+\frac{L_{\mathrm{A}}}{2}\right)^{2}\right\}
\end{array}\right.
\end{aligned}
$$

The elements of matrix $\mathbf{C}_{\mathbf{a}}$ can be computed as follows:

$$
\frac{\partial^{2} x}{\partial \beta_{1}^{2}}=\frac{r^{2}}{L_{\mathrm{B}}} ; \frac{\partial^{2} x}{\partial \beta_{2}^{2}}=-\frac{r^{2}}{L_{\mathrm{B}}}
$$

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial \beta_{1}^{2}}= & \left\{\left[r^{2}-\left(\frac{\partial x}{\partial \beta_{2}}\right)^{2}-\left(x+\frac{L_{\mathrm{B}}}{2}\right) \frac{r^{2}}{L_{\mathrm{B}}}\right]\left(y+\frac{L_{\mathrm{A}}}{2}\right)\right. \\
& \left.-\left[r L_{0}+r^{2} \beta_{1}-\frac{\partial x}{\partial \beta_{1}}-\left(x+\frac{L_{\mathrm{B}}}{2}\right)\right]\left(\frac{\partial y}{\partial \beta_{1}}\right)\right\} /\left(y-\frac{L_{\mathrm{A}}}{2}\right)^{2} \\
\frac{\partial^{2} y}{\partial \beta_{1}^{2}}=- & \left\{\left[\left(\frac{\partial x}{\partial \beta_{2}}\right)^{2}+\left(x+\frac{L_{\mathrm{B}}}{2}\right)\left(-\frac{r^{2}}{L_{\mathrm{B}}}\right)\right]\left(y+\frac{L_{\mathrm{A}}}{2}\right)\right. \\
& \left.-\frac{\partial x}{\partial \beta_{2}} \frac{\partial y}{\partial \beta_{2}}\left(x+\frac{L_{\mathrm{B}}}{2}\right)\right\} /\left(y+\frac{L_{\mathrm{A}}}{2}\right)^{2}
\end{aligned}
$$

187 Finally, the solution to the CDDR inverse acceleration kinematics problem is:

$$
\begin{align*}
& \ddot{\boldsymbol{\beta}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}\right) \dot{\mathbf{X}}+\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}} \ddot{\mathbf{X}} \\
&=-\frac{1}{r}\left[\begin{array}{l}
\frac{x-A_{1 x}}{L_{1}} \frac{y-A_{1 y}}{L_{1}} \\
\frac{x-A_{2 x}}{L_{2}} \frac{y-A_{2 y}}{L_{2}} \\
\frac{x-A_{3 x}}{L_{3}} \frac{y-A_{3 y}}{L_{3}} \\
\frac{x-A_{4 x}}{L_{4}} \frac{y-A_{4 y}}{L_{4}}
\end{array}\right]\left\{\begin{array}{l}
\ddot{x} \\
\ddot{y}\}
\end{array}\right\}-\frac{1}{r}\left[\begin{array}{l}
\frac{L_{1}^{2}-\left(x-A_{1 x}\right)^{2}}{L_{1}^{3}} \frac{L_{1}^{2}-\left(y-A_{1 y}\right)^{2}}{L_{1}^{3}} \\
\frac{L_{2}^{2}-\left(x-A_{2 x}\right)^{2}}{L_{2}^{3}} \frac{L_{2}^{2}-\left(y-A_{2 y}\right)^{2}}{L_{2}^{3}} \\
\frac{L_{3}^{2}-\left(x-A_{3 x}\right)^{2}}{L_{3}^{3}} \frac{L_{3}^{3}-\left(y-A_{3 y}\right)^{2}}{L_{3}^{3}} \\
\frac{L_{4}^{2}-\left(x-A_{4 x}\right)^{2}}{L_{4}^{3}} \frac{L_{4}^{2}-\left(y-A_{4 y}\right)^{2}}{L_{4}^{3}}
\end{array}\right] \\
&\left\{\begin{array}{l}
\frac{\left(x-A_{1 x}\right)\left(y-A_{1 y}\right)}{L_{1}^{3}} \\
\dot{x}^{2} \\
\dot{y}^{2}
\end{array}\right]-\frac{\left(x-A_{2 x}\right)\left(y-A_{2 y}\right)}{L_{2}^{3}}\left[\begin{array}{l}
\frac{\left(x-A_{3 x}\right)\left(y-A_{3 y}\right)}{L_{3}^{3}} \\
\frac{\left(x-A_{3 x}\right)\left(y-A_{4 y}\right)}{L_{4}^{3}}
\end{array}\right] \tag{12}
\end{align*}
$$

188 and for the serial manipulator:

$$
\begin{align*}
\left\{\begin{array}{l}
\ddot{\varphi}_{1} \\
\ddot{\varphi}_{2}
\end{array}\right\}= & {\left[\begin{array}{cc}
-z_{1} \sin \varphi_{1} & -z_{2} \sin \varphi_{2} \\
z_{1} \cos \varphi_{1} & z_{2} \cos \varphi_{2}
\end{array}\right]^{-1} } \\
& \left\{\left\{\begin{array}{c}
\ddot{x}_{1} \\
\ddot{y}_{2}
\end{array}\right\}-\left[\begin{array}{cc}
-z_{1} \cos \varphi_{1} & -z_{2} \cos \varphi_{2} \\
z_{1} \sin \varphi_{1} & -z_{2} \sin \varphi_{2}
\end{array}\right]\left\{\begin{array}{c}
\dot{\varphi}_{1}^{2} \\
\dot{\varphi}_{2}^{2}
\end{array}\right\}\right\}:=\mathbf{J}_{\mathbf{k}}^{-1} \ddot{\mathbf{X}}-\mathbf{W}\left\{\mathbf{J}_{\mathbf{k}}^{-1} \dot{\mathbf{X}}\right\}^{2} \tag{13}
\end{align*}
$$

189 where the matrix $\mathbf{J}_{\mathbf{k}}$ is defined in (9) and

$$
\mathbf{W}=\left[\begin{array}{rl}
-z_{1} \sin \varphi_{1} & -z_{2} \sin \varphi_{2} \\
z_{1} \cos \varphi_{1} & z_{2} \cos \varphi_{2}
\end{array}\right]^{-\mathbf{1}}\left[\begin{array}{ll}
-z_{1} \cos \varphi_{1} & -z_{2} \cos \varphi_{2} \\
-z_{1} \sin \varphi_{1} & -z_{2} \sin \varphi_{2}
\end{array}\right] .
$$

## 4. Dynamics Modeling

This section presents dynamics modeling for the studied planar CDDR with passive SCARA support. Dynamics modeling is concerned with relating the Cartesian192 translational motion of the moving CDDR point to the required active joint torques.193 In the dynamics model derived in this section Coulomb friction is ignored and it is 194 assumed that the links are rigid and the cables are massless and perfectly stiff (i.e. the 195 cables inertias and spring stiffnesses are neglected). Gravity is also ignored because 196 it is assumed to be perpendicular to the CDDR plane. Despite these simplifications,197 the resulting model is coupled and nonlinear. The overall system dynamics model is 198 obtained by combining the equations of motion of the three CDDR sub-systems: The 199 end-effector, the actuators, and the serial manipulator.

### 4.1. End-Effector Dynamics Model

Figure 2 shows the free-body diagram (FBD) for the end effector. Let $m$ be the mass of the end-effector, $\mathbf{F}_{\mathbf{T}}=\left\{F_{\mathrm{T} x} F_{\mathrm{T} y}\right\}^{\mathrm{T}}$ be the resultant of all four cable tensions $t_{i}$, and203 $\mathbf{F}_{\mathbf{S}}=\left\{F_{\mathrm{S} x} F_{\mathrm{S} y}\right\}^{\mathrm{T}}$ be the force exerted on the end effector by the serial manipulator. The dynamics model for the end-effector is given by:

$$
\begin{equation*}
\mathbf{F}_{\mathbf{T}}+\mathbf{F}_{\mathbf{S}}=\mathbf{m} \ddot{\mathbf{X}} \tag{14}
\end{equation*}
$$

where $\mathbf{m}=\left(\begin{array}{cc}m & 0 \\ 0 & m\end{array}\right)$ is the Cartesian mass matrix of the end-effector. The force $\mathbf{F}_{\mathbf{T}} 206$ exerted by the cables on the end-effector can be computed through the following 207 expression:

$$
\mathbf{F}_{\mathbf{T}}=\left\{F_{\mathrm{T} x} F_{\mathrm{T} y}\right\}^{\mathrm{T}}=\left[\begin{array}{cccc}
-\cos \theta_{1} & -\cos \theta_{2} & -\cos \theta_{3} & -\cos \theta_{4}  \tag{15}\\
-\sin \theta_{1} & -\sin \theta_{2} & -\sin \theta_{3} & -\sin \theta_{4}
\end{array}\right]\left\{t_{1} t_{2} t_{3} t_{4}\right\}^{T}:=\mathbf{S T}
$$

where $\mathbf{T} \in \mathbb{R}^{4}$ is the vector of cable tensions, and $\mathbf{S}$ is the $2 \times 4$ pseudostatics Jacobian 209 matrix whose elements are trigonometric functions of the cable angles, which are 210 calculated as:

$$
\begin{equation*}
\theta_{i}=\operatorname{atan}_{2}\left(\frac{y-A_{i y}}{x-A_{i x}}\right) \tag{16}
\end{equation*}
$$

Figure 2 End-effector point mass FBD.


Figure 3 ith Actuator/Pulley FBD.


### 4.2. Actuator Dynamics Model

The CDDR end-effector is driven by four cables winding around four independent pulleys. Each pulley is actuated by a motor exerting torque $\tau_{i}$. A lumped rotational inertia $J_{i}$ is introduced in the model for each motor shaft/pulley system. A linear model for friction is also provided in the model through viscous damping coefficients $c_{i}$. The free-body diagram of the $i$ th actuator is shown in Figure 3. The actuators' dynamics equations are expressed by the matrix relationship:

$$
\begin{equation*}
\boldsymbol{\tau}-\mathbf{J} \ddot{\boldsymbol{\beta}}-\mathbf{C} \dot{\boldsymbol{\beta}}=r \mathbf{T} \tag{17}
\end{equation*}
$$

220 where $\mathbf{J}=\left[\begin{array}{lll}J_{1} & & \\ & & 0 \\ & \ddots & \\ 0 & & J_{4}\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{lll}c_{1} & & 0 \\ & \ddots & \\ 0 & & c_{4}\end{array}\right]$ are diagonal matrices with the actua-
tors' rotational inertias and rotational viscous damping coefficients on the diagonal. (17) only holds true when torque on each motor is large enough to make all cables remain in tension at all times.

### 4.3. Serial Manipulator Dynamics Model

Under the positive tension assumption just made, by combining (14), (15), and (17), the following equation can be obtained for the CDDR dynamics:

$$
\begin{equation*}
\mathbf{S} \boldsymbol{\tau}=r \mathbf{m} \ddot{\mathbf{X}}+\mathbf{S J} \ddot{\boldsymbol{\beta}}+\mathbf{S} \mathbf{C} \dot{\boldsymbol{\beta}}-r \mathbf{F}_{\mathrm{S}} \tag{18}
\end{equation*}
$$

The force $\mathbf{F}_{\mathbf{S}}$ exerted by the serial manipulator on the end-effector can be computed by direct application of the Newton-Euler's laws to the two links comprising the serial manipulator [6]. The free body diagrams for the two links are shown in Figure 4. For simplicity, in Figure 4 the links are drawn as straight rods, and the link centers of mass are placed at the midpoints of the links (i.e. uniform mass density is assumed). However, the equilibrium equations adopted hold for any link shape and mass distribution. Moreover, it is important to recall that the joints of the passive supporting SCARA manipulator are not directly actuated. As a consequence the joint inertias, as well as Coulomb and viscous friction, are likely to be negligible, and therefore are not accounted for in the model.

The dynamics equations for link 1 and 2 are, respectively:

$$
\left\{\begin{array}{c}
X_{1}^{r}+X_{2}^{r}+F_{\text {in } 1 x}=0  \tag{19}\\
Y_{1}^{r}+Y_{2}^{r}+F_{\text {in } 1 y}=0 \\
C_{\text {in } 1}^{0}-z_{1} X_{2}^{r} \sin \varphi_{1}+z_{1} Y_{2}^{r} \cos \varphi_{1}=0
\end{array}\right.
$$

J Intell Robot Syst
Figure 4 Serial robot link FBDs.


$$
\left\{\begin{array}{c}
-X_{2}^{r}+F_{\mathrm{in} 2 x}-F_{\mathrm{S} x}=0  \tag{20}\\
-Y_{2}^{r}+F_{\mathrm{in} 2 y}-F_{\mathrm{S} y}=0 \\
C_{\mathrm{in} 2}^{G_{2}}-z_{2 A} X_{2}^{r} \sin \varphi_{2}+z_{2 A} Y_{2}^{r} \cos \varphi_{2}+z_{2 B} F_{\mathrm{S} x} \sin \varphi_{2}-z_{2 B} F_{\mathrm{S} y} \cos \varphi_{2}=0
\end{array}\right.
$$

where the subscript in denotes the inertial terms: For example, $F_{\text {in } 1 x}$ is the opposite of 239 the product of the mass of link 1 and the component along the axis $x_{0}$ (see Figure 1) 240 of the acceleration of the center of mass $G_{1}$, while $C_{\text {in } 2}^{G_{2}}$ is the opposite of the product 241 of the moment of inertia of link 2 about $G_{2}\left(I_{2}^{G_{2}}\right)$ and the angular acceleration of the 242 link. By combining (19) and (20), it is possible to eliminate the reaction forces $X_{j}^{r}$ and 243 $Y_{j}^{r}(j=1,2)$ and to obtain $\mathbf{F}_{\mathbf{s}}$. The following expression holds in matrix form:

$$
\begin{equation*}
\mathbf{F}_{\mathbf{S}}=\mathbf{M}_{\mathbf{S}} \ddot{\mathbf{X}}_{\mathbf{G}_{2}}+\mathbf{I}_{\mathbf{N} \mathbf{S}} \ddot{\varphi} \tag{21}
\end{equation*}
$$

where $\mathbf{M}_{\mathbf{S}}$ and $\mathbf{I}_{\mathbf{N S}}$ are the matrices collecting the terms which multiply the transla- 245 tional acceleration $\ddot{\mathbf{X}}_{\mathbf{G}_{2}}=\left\{\ddot{x}_{G_{2}} \ddot{y}_{G_{2}}\right\}^{T}$ of the center of mass of link 2 and the angular 246 accelerations of the two links $\ddot{\varphi}=\left\{\ddot{\varphi}_{1} \ddot{\varphi}_{2}\right\}^{T}$ :

$$
\left.\begin{array}{rl}
\mathbf{M}_{\mathbf{S}}= & \frac{1}{z_{1}\left(z_{2 A}+z_{2 B}\right) \sin \left(\varphi_{1}-\varphi_{2}\right)} \\
& {\left[\begin{array}{c}
m_{2} z_{1} \sin \varphi_{2}\left[-\left(z_{2 A}+z_{2 B}\right) \cos \varphi_{2}+z_{2 A} \cos \varphi_{1}\right] \\
-m_{2} z_{1} z_{2 B} \sin \varphi_{1} \sin \varphi_{2}
\end{array}\right.} \\
& -m_{2} z_{1}\left[\left(z_{2 A}+z_{2 B}\right) \cos \varphi_{1} \sin \varphi_{2}+z_{2 A} \sin \varphi_{1} \cos \varphi_{2}\right]
\end{array}\right] \quad \begin{array}{ll}
\mathbf{I}_{\mathbf{N S}}= & \frac{1}{z_{1}\left(z_{2 A}+z_{2 B}\right) \sin \left(\varphi_{1}-\varphi_{2}\right)}\left[\begin{array}{ll}
I_{1}^{0}\left(z_{2 A}+z_{2 B}\right) \cos \varphi_{2} & -I_{2}^{G_{2}} z_{1} \cos \varphi_{1} \\
I_{1}^{0}\left(z_{2 A}+z_{2 B}\right) \sin \varphi_{2} & -I_{2}^{G_{2}} z_{1} \sin \varphi_{1}
\end{array}\right]
\end{array}
$$

A more useful expression for $\mathbf{F}_{\mathbf{S}}$ can be obtained by making explicit the dependence of $\ddot{\mathbf{X}}_{G_{2}}$ and $\ddot{\varphi}$ on the Cartesian position velocity and acceleration of the end-effector. In (13) the dependence has already been established for $\ddot{\boldsymbol{\varphi}} ; \ddot{\mathbf{X}}_{G_{2}}$ can instead been computed as follows:

$$
\begin{align*}
\ddot{\mathbf{X}}_{G_{2}}= & \left\{\begin{array}{c}
\ddot{x}_{G_{2}} \\
\dot{y}
\end{array}\right\}=\left[\begin{array}{cc}
-z_{1} \sin \varphi_{1} & -z_{2 A} \sin \varphi_{2} \\
z_{1} \cos \varphi_{1} & z_{2 A} \cos \varphi_{2}
\end{array}\right]\left\{\begin{array}{c}
\dot{\beta}_{1} \\
\dot{\beta}_{2}
\end{array}\right\} \\
& \left\{\begin{array}{c}
\ddot{\varphi}_{1} \\
\ddot{\varphi}_{2}
\end{array}\right\}+\left[\begin{array}{cc}
-z_{1} \cos \varphi_{1} & -z_{2 A} \cos \varphi_{2} \\
-z_{1} \sin \varphi_{1} & -z_{2 A} \sin \varphi_{2}
\end{array}\right]\left\{\begin{array}{c}
\ddot{\varphi}_{1}^{2} \\
\varphi_{2}^{2}
\end{array}\right\}:=\mathbf{F} \ddot{\varphi}+\mathbf{G} \dot{\varphi}^{2} \tag{22}
\end{align*}
$$

By combining (10), (13), (21) and (22), after some algebraic manipulations, $\mathbf{F}_{\mathbf{S}}$ is obtained:

$$
\begin{equation*}
\mathbf{F}_{\mathbf{S}}=\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N S}}\right) \mathbf{J}_{\mathbf{S}}^{-\mathbf{1}} \ddot{\mathbf{X}}+\left[\mathbf{M}_{\mathbf{S}} \mathbf{G}-\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N S}}\right) \mathbf{W}\right]\left(J_{\mathbf{k}}^{-\mathbf{1}} \dot{\mathbf{X}}\right)^{\mathbf{2}} \tag{23}
\end{equation*}
$$

### 4.4. Overall System Dynamics Model

In order to obtain the overall system dynamics equations of motion, expressed in a standard Cartesian form for robotic systems, we substitute (23) into (18):

$$
\begin{align*}
\mathbf{S} \boldsymbol{\tau}= & {\left[r \mathbf{m}+\mathbf{S} \mathbf{J} \frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}-r\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N S}}\right) \mathbf{J}_{\mathbf{k}}^{-1}\right] \ddot{\mathbf{X}}+\left[\mathbf{S C} \frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}+\mathbf{S J} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}\right)\right] \dot{\mathbf{X}} } \\
& -r\left[\mathbf{M}_{\mathbf{S}} \mathbf{G}-\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N} \mathbf{S}}\right) \mathbf{W}\right]\left(\mathbf{J}_{\mathbf{k}}^{-\mathbf{1}} \dot{\mathbf{X}}\right)^{2} \tag{24}
\end{align*}
$$

The expression above can be rewritten in standard matrix form:

$$
\begin{equation*}
\mathbf{S}(\mathbf{X}) \tau=\mathbf{M}_{\mathrm{eq}} \mathbf{X}(\mathbf{X}) \ddot{\mathbf{X}}+\mathbf{N}_{\mathbf{X}}(\mathbf{X}, \dot{\mathbf{X}}) \tag{25}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathbf{M}_{\mathbf{e q} \mathbf{X}} & =\left[r \mathbf{m}+\mathbf{S} \mathbf{J} \frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}-r\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N S}}\right) \mathbf{J}_{\mathbf{k}}^{-1}\right] \\
\mathbf{N}_{\mathbf{X}} & =\left[\mathbf{S C} \frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}+\mathbf{S J} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{X}}\right)\right] \dot{\mathbf{X}}-r\left[\mathbf{M}_{\mathbf{S}} \mathbf{G}-\left(\mathbf{M}_{\mathbf{S}} \mathbf{F}+\mathbf{I}_{\mathbf{N S}}\right) \mathbf{W}\right]\left(\mathbf{J}_{\mathbf{k}}^{-\mathbf{1}} \dot{\mathbf{X}}\right)^{\mathbf{2}}
\end{aligned}
$$

and the dependence of the matrices on the Cartesian coordinates and velocities are made explicit.

## 5. Model Based Control Architecture

A control scheme suitable for CDDRs must not only ensure that the robot follows the desired reference trajectory but also guarantee that all cable tensions ti always keep positive values. In this work a control scheme based on the overall system Cartesian dynamics equations of motion is proposed to determine the Cartesian control force $\mathbf{S}(\mathbf{X}) \boldsymbol{\tau}$ that the cables have to exert on the end-effector. Then, due to redundant actuation, a choice has to be made among the $\infty^{2}$ possible solutions to the motor torque vector $\tau$ that can exert the desired control force. A method is proposed, which is based on the solution of a linear programming problem, and which ensures all cable tensions are positive while minimizing the sum of all torques exerted by the motors.

### 5.1. Control Law

The following nonlinear-model-based control law is adopted:

$$
\begin{equation*}
\mathbf{S}(\mathbf{X}) \tau=\mathbf{M}_{\mathrm{eq}} \mathbf{X}(\mathbf{X})\left(\ddot{\mathbf{X}}_{\mathrm{ref}}+\mathbf{K}_{\mathrm{d}} \dot{\mathbf{e}}+\mathbf{K}_{\mathrm{p}} \mathbf{e}\right)+\mathbf{N}_{\mathbf{X}}(\mathbf{X}, \dot{\mathbf{X}}) \tag{26}
\end{equation*}
$$

where $\ddot{\mathbf{X}}_{\text {ref }} \in \mathbb{R}^{2}$ is the second derivative of the desired reference trajectory $\mathbf{X}_{\text {ref }}=273$ $\left\{x_{r e f} y_{r e f}\right\}^{T}, \mathbf{e} \in \mathbb{R}^{2}$ is the tracking error between the desired and the actual tra- 274 jectory $\left(\mathbf{e}=\mathbf{X}_{\text {ref }}-\mathbf{X}\right) \dot{\mathbf{e}} \in \mathbb{R}^{2}$ is the tracking error rate, and $\mathbf{K}_{\mathbf{p}}=\left[\begin{array}{cc}K_{p_{x}} & 0 \\ 0 & K_{p_{y}}\end{array}\right]$ and 275 $\mathbf{K}_{\mathbf{d}}=\left[\begin{array}{cc}K_{d_{x}} & 0 \\ 0 & K_{d_{y}}\end{array}\right]$ are the diagonal matrices of the proportional and derivative gains 276 introduced in the control law to reduce the tracking error $e$. In the proposed control 277 law, the control action $\mathbf{S}(\mathbf{X}) \boldsymbol{\tau}$ is divided into two portions; a model-based portion: 278

$$
[\mathbf{S}(\mathbf{X}) \boldsymbol{\tau}]_{\mathrm{MB}}=\mathbf{M}_{\mathrm{eq} \mathbf{X}}(\dot{\mathbf{X}}) \dot{\mathbf{X}}_{\mathrm{ref}}+\mathbf{N}_{\mathbf{X}}(\mathbf{X}, \dot{\mathbf{X}})
$$

and a proportional-derivative servo portion:

$$
[\mathbf{S}(\dot{\mathbf{X}}) \boldsymbol{\tau}]_{S}=\mathbf{M}_{\mathbf{e q} \mathbf{X}}(\mathbf{X})\left(\mathbf{K}_{\mathbf{d}} \dot{\mathbf{e}}+\mathbf{K}_{\mathbf{p}} \mathbf{e}\right)
$$

The chief advantage of such a scheme is that it allows linearizing of the system 280 dynamics model, and in particular making the system appear as a unit mass. By 281 combining (25) and (26) we get the following dynamic equation for the tracking error: 282

$$
\ddot{\mathbf{e}}+\mathbf{K}_{\mathbf{d}} \dot{\mathbf{e}}+\mathbf{K}_{\mathbf{p}} \mathbf{e}=0 .
$$

The design of the servo portion then is straight-forward: Gains are chosen to obtain 283 some desired closed loop stiffness (by directly setting the elements of matrix $\mathbf{K}_{\mathbf{p}}$ ) and 284 specifying critical damping (i.e. $\mathbf{K}_{\mathbf{d}}=2 \sqrt{\mathbf{K}_{\mathbf{p}}}$ ). It is important to note that since the 285 gain matrices $\mathbf{K}_{\mathbf{p}}$ and $\mathbf{K}_{\mathbf{d}}$ are chosen as diagonal, the servo control is accomplished 286 independently for the $x$ and $y$ motions, even though the dynamics model is coupled.287

### 5.2. Linear Programming Problem

The computation of the vector $\boldsymbol{\tau} \in \mathbb{R}^{4}$ of the cable torques producing the desired 28 control force $\mathbf{S}(\mathbf{X}) \boldsymbol{\tau}$ has the problem to invert the matrix $\mathbf{S}(\mathbf{X})$ which is non-square, 290 but is underconstrained. As mentioned previously, among the $\infty^{2}$ possible solutions 291 to this problem, it is necessary to choose a solution which always guarantees positive 292 cable tensions. In this work a linear programming problem is solved to meet this
subject to the constraints:

$$
\begin{align*}
& \left\{\begin{array}{c}
\sum_{i=1}^{4}-\tau_{i} \cos \theta_{i}=\mathfrak{J}_{x} \\
\sum_{i=1}^{4}-\tau_{i} \sin \theta_{i}=\mathfrak{J}_{y}
\end{array}\right. \\
& \mathbf{T} \geq 0 \Rightarrow \boldsymbol{\tau} \geq \mathbf{J} \ddot{\boldsymbol{\beta}}+\mathbf{C} \ddot{\boldsymbol{\beta}} \Rightarrow\left\{\begin{array}{c}
\tau_{i} \geq J_{1} \ddot{\beta}_{1}+c_{1} \dot{\beta}_{1} \\
\vdots \\
\tau_{4} \geq J_{4} \ddot{\beta}_{4}+c_{4} \dot{\beta}_{4}
\end{array}\right. \tag{28}
\end{align*}
$$

requirement and to minimize the sum of the torques exerted by the motors. The problem is stated as follows:

$$
\begin{equation*}
\min _{\tau} \sum_{i=1}^{4} \tau_{i} \tag{27}
\end{equation*}
$$

where the symbols $\mathfrak{J}_{x}$ and $\mathfrak{J}_{y}$ have been adopted to denote the components along the $x_{0}$ axis and the $y_{0}$ axis of the Cartesian control force $\mathbf{S}(\mathbf{X}) \tau$. The well-known simplex method for linear programming can be employed to solve such a problem.

Figure 5 shows a block diagram of the proposed control scheme. In order to simplify the task definition, trajectory planning is performed in the Cartesian space. However, since the Cartesian position $\mathbf{X}$ and its rate $\dot{\mathbf{X}}$ cannot be measured directly, it is necessary to calculate these values using the feedback for pulley angles $\boldsymbol{\beta}$ and velocities $\dot{\boldsymbol{\beta}}$ (output of the 'CDDR' block) as the inputs to the forward position $(\mathbf{X}=\mathbf{X}(\boldsymbol{\beta}))$ and velocity $(\dot{\mathbf{X}}=\dot{\mathbf{X}}(\boldsymbol{\beta}, \dot{\boldsymbol{\beta}}))$ kinematics problems. The analytical solutions to these problems have been presented in the sections above. Alternatively, if the measurement and calculation of Cartesian position via encoders on the pulley angles is not reliable, due to difficulties in measuring through the direct loading path and possible cable stretch and other uncertainties, the passive SCARA may be equipped with two encoders, from which the Cartesian position may be determined. The knowledge of the reference and actual Cartesian position, velocity and acceleration


Figure 5 Proposed controller architecture.

J Intell Robot Syst

Table I Simulation parameters

| Parameter | Value | Units |
| :--- | :--- | :--- |
| $L_{\mathrm{A}}$ | 0.7 | m |
| $L_{\mathrm{B}}$ | 1.1 | m |
| $z_{1}, z_{2}$ | 0.49 | m |
| $w$ | $6.3 \cdot 10^{-2}$ | m |
| $h$ | $9 \cdot 10^{-2}$ | m |
| $s$ | $4 \cdot 10^{-4}$ | m |
| $M$ | 4.2 | kg |
| $J_{i}(i=1, \ldots, 4)$ | $8 \cdot 10^{-4}$ | $\mathrm{~kg} \cdot \mathrm{~m}^{2}$ |
| $c_{i}(i=1, \ldots, 4)$ | 0.01 | $\mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}$ |
| $r$ | $9 \cdot 10^{-3}$ | m |
| $m$ | 20 | kg |

t1.1
t1.2
makes it possible to compute the model-based and the servo portions of the Cartesian 312 control force $\mathbf{S}(\mathbf{X}) \boldsymbol{\tau}$. Then, the solution of the above mentioned linear programming problem allows computing the actual torques to be exerted by the motors (output of the 'Torque computation' block).
6. Numerical Validation

The effectiveness of the proposed model-based control architecture is shown in 317 this section by two simulation examples. The simulated tasks are for the CDDR 318


Figure $6 X$ and $Y$ step responses and errors.
end-effector point $X$ to trace a straight line and a circle in the plane. The results shown in this section have been obtained by assuming a CDDR payload $m$ of 20 kg .

The geometric and inertial features of the CDDR are reported in Table I. In particular, the lengths $L_{\mathrm{A}}$ and $L_{\mathrm{B}}$ of the sides of the base polygon have been chosen as a rectangular workspace area comparable to the conventional industrial robot Adept SCARA 550 (top-view) workspace. The serial manipulator lengths $z_{1}$ and $z_{2}$ have been determined to allow the CDDR reach any point within the base polygon. Equal lengths have been chosen for the links. In order to prevent singular configurations, $z_{1}$ and $z_{2}$ have been taken slightly larger than the minimum theoretical value $0.5 * \sqrt{L_{\mathrm{A}}^{2}+\left(L_{\mathrm{B}} / 2\right)^{2}}$ (i.e. half the distance between the origin of reference frame $\{1\}$ and the vertex $A_{3}$ or $A_{4}$ ). The links are assumed to be identical slender and hollow steel bars with rectangular cross-section. In Table I the link crosssection width is $w$, the height is $h$, the steel thickness is $s$, and the overall link mass is $M$. The link geometry has been determined so as to get a light structure ensuring limited and predictable off-the-plane deflections of the system with a payload up to 20 kg ( 3.6 times higher than the allowable SCARA 550 payload). Our proposed hybrid architecture CDDR has a high payload-to-weight ratio and a large workspace, which makes it an interesting prospective alternative to common industrial serial robots.

The servo portion of the controller has been tuned in simulation so as to get a satisfactory step response of the system. The gain matrix $\mathbf{K}_{\mathbf{p}}$ has been chosen with


Figure 7 Simulated actuator torques and cable tensions.
equal gains of 289 on the diagonal. Consequently, critically damped response of the system is yielded by a diagonal matrix $\mathbf{K}_{\mathbf{d}}$ with equal gains of $2 \sqrt{289}=34$ on the diagonal. As an example, Figure 6 shows the response of the system when identical step changes from 0 to 0.1 m are applied to the two components of the Cartesian reference $\mathbf{X}_{\text {ref }}$.

Figure 7 shows the computed actuator torques and cable tensions. Note that the actuator torques are assumed to be limited to 20 Nm . The atypical transient response of the system shown in Figure 6 immediately after the step changes are applied (slight negative motion), is a consequence of actuator saturation. No overshoot occurs and zero steady-state error is ensured. Figure 7 (right) shows the effectiveness of the method proposed to achieve positive cable tensions for all motion.

In Figures $8-10$, the system capability in following a linear path is assessed. The path is a straight line from the origin of $\{0\}$ to the point $\{0.3 \mathrm{~m} 0.3 \mathrm{~m}\}$, in 1 s . The initial and final Cartesian velocities and accelerations of the end-effector are prescribed to be zero. Quintic polynomials are adopted to satisfy the Cartesian position, velocity and acceleration constraints defined at the beginning and at the end of the path [6].355

In Figure 8 the sequence of positions of the serial manipulator links during the 356 simulated task are plotted to scale. For clarity, the cables are only shown in dashed lines at the starting and ending positions. Figure 9 shows that the proposed control scheme enables low tracking errors along both Cartesian axes, including a prompt return to zero error at the path end. Figure 10 shows the actuator torques and the357359
? )


Figure 8 Straight-line motion dynamic simulation.


Figure $9 X$ and $Y$ responses and errors for straight-line motion.


Figure 10 Straight-line motion actuator torques and cable tensions.

## AUTHOR'S PROOF

J Intell Robot Syst


Figure 11 Circular motion dynamic simulation.


Figure $12 X$ and $Y$ responses and errors for circular motion.


Figure 13 Circular motion actuator torques and cable tensions.
cable tensions for the prescribed dynamic motion. The former are always below the maximum value of 20 Nm ; the latter are always positive, therefore meeting the fundamental requirement for CDDRs.

A final simulation test to assess the proposed control scheme performances is requiring the end-effector to trace a circular trajectory in 2 s . The circle is centered at point $\{-0.2 \mathrm{~m} 0.1 \mathrm{~m}\}$ with a radius of 0.18 m . Figure 11 shows the simulated task to scale. The cables are shown in dashed lines at the starting and midpoint of the path. In this test the polar angle is defined as the independent parameter for the circle. When the polar angle is equal to zero or $2 \pi$ the end-effector is at point $\{-0.020 .1 \mathrm{~m}\}$, the starting and ending point of the path. The initial and final angular velocities and accelerations are set to zero. A quintic polynomial is employed to interpolate the initial and final polar angle values and to satisfy the angular velocities and accelerations constraints. The simulated results are summarized in Figures 12 and 13. Figure 12 shows that the tracking error is kept small, even when the velocity of the end-effector reaches the highest values (e.g. from time $t=0.828$ to $t=1.176 \mathrm{~s}$, the instantaneous tangential end-effector velocity magnitude is greater than $1 \mathrm{~m} / \mathrm{s}$ ). The error promptly goes to zero when the system reaches steady-state. Figure 13 again confirms that the proposed control scheme keeps the actuator torques below 20 Nm , while all the cable tensions are enforced to be positive. This is a consequence of the favorable payload-to-weight ratio of the designed CDDR, and implies that the actuators can exert the desired control force $\left\{\mathfrak{J}_{x} \mathfrak{J}_{y}\right\}^{T}$ on the end-effector. The low weight of the manipulator also allows low cable tensions, which simplifies the choice

J Intell Robot Syst

of cable material and cross-section (e.g. reinforced-nylon cables with a diameter of 3 mm would be adequate for the tasks considered in these simulations).

## 7. Conclusion

This article has presented a novel planar translational cable-direct-driven robot (CDDR). The primary novelty is inclusion of a passive planar two-degree-of-freedom
SCARA-type serial robot to provide stiffness normal to the plane of motion. This allows the robot to be suspended rather than supported by the plane of motion. Also, the passive robot, if instrumented with two joint encoders at the passive $R$ joints, can serve as an independent Cartesian metrology system. This could improve the required Cartesian feedback in the case of high masses and accelerations, when the encoder feedback from the active actuators may become unreliable due to measuring through the load path, cable stretch, and other uncertainties. Yet another potential benefit is that with the passive SCARA, there is structure at the end-effector which can provide moment resistance - this is not possible with many translation-only CDDRs that have been proposed.
The proposed robot has a high payload-to-weight ratio (despite the additional mass of the passive serial robot, which is much lighter than a comparable active serial robot) and resistance to forces normal to the plane of motion, due to gravity and environment interaction forces. Though this is a translational CDDR, end-effector rotations may be achieved by adding a robot wrist to the end of the passive serial arm (increasing the end-effector mass). Also, though the CDDR is planar, we can achieve 3D workspace by adding an active $Z$ axis to the passive SCARA in the normal manner (also increasing the end-effector mass).

This paper has presented the novel CDDR with passive SCARA support, followed by the derivation of kinematics and dynamics equations and solutions, and a Cartesian controller architecture including a means of maintaining positive cable tensions for all dynamic motion while minimizing the total actuation torque. Simulation examples were presented for a double Cartesian step input, straight-line motion, and a circular trajectory. Simulation results show that the motions can be made subject to actuator torque limitations, with only positive cable tensions.

## References

[^2]6. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall, Upper Saddle River, New Jersey (2005)
7. Mikulas, M.M. Jr., Yang, L.F.: Conceptual design of a multiple cable crane for planetary surface operations, NASA Technical Memorandum 104041, NASA LaRC. Hampton, Virginia (1991)
8. Oh, S.R., Agrawal, S.K.: Cable-suspended planar parallel robots with redundant cables: Controllers with positive cable tensions, IEEE International Conference on Robotics and Automation, pp. 3023-3028. Taipei (2003)
9. Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J. Robot. Syst. 15(10), 581-597 (1998)
10. Shanmugasundram, A.P., Moon, F.C.: Development of a parallel link crane: Modeling and control of a system with unilateral cable constraints, DSC 57-1, ASME International Mechanical Engineering Congress and Exposition, pp. 55-65. San Francisco California (1995)
11. Shen, Y., Osumi, H., Arai, T.: Manipulability measures for multi-wire driven parallel mechanisms. IEEE International Conference on Industrial Technology, pp. 550-554 (1994)
12. Shiang, W.J., Cannon, D., Gorman, J.: Dynamic analysis of the cable array robotic crane. IEEE Int. Conf. Robot. Autom. 4, 2495-2500 (1999) (Detroit Michigan)
13. Williams, R.L. II, Gallina, P.: Translational planar cable-direct-driven robots. J. Int. Robot. Syst. 37, 69-96 (2003)
14. Yamamoto, M., Yanai, N., Mohri, A.: Inverse dynamics and control of crane-type manipulator. IEEE/RSJ Int. Conf. Intel. Robot. Syst. 2, 1228-1233 (1999) (Kyongju, Korea)

## AUTHOR QUERY

NO QUERY


[^0]:    Category (7) - System Modelling/Simulation/Control/Computer-Aided Design/
    Robot Control/Teleoperation/Moving Robots

[^1]:    4) Springer
[^2]:    1. Aria, T., Osumi, H., Yamaguchi, H.: Assembly robot suspended by three wires with seven414 degrees of freedom, MS90-807, 11th International Conference on Assembly Automation. SME, 415 Dearborn, Michigan (1990)416
    2. Albus, J.S., Bostelman, R., Dagalakis, N.G.: The NIST RoboCrane. J. Robot. Syst. 10(5), 709-724 417 (1993)
    3. Barette, G., Gosselin, C.M.: Kinematic analysis and design of planar parallel mechanisms actu- 419 ated with cables. ASME Design Technical Conferences, Baltimore, MD (2000)420
    4. Campbell, P.D., Swaim, P.L., Thompson, C.J.: Charlotte robot technology for space and ter- 421 restrial applications, Article 951520, 25th International Conference on Environmental Systems. 422 San Diego, SAE (1995)
    5. Choe, W., Kino, H., Katsuta, K., Kawamura, S.: A design of parallel wire-driven robots for 424 ultrahigh speed motion based on stiffness analysis. ASME Japan/USA Symp. Flexible Autom. 425 1, 159-166 (1996)
