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Omni-directional mobile robot controller based on trajectory linearization
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Abstract

In this paper, a nonlinear controller design for an omni-directional mobile robot is presented. The robot controller consists of an outer-loop
(kinematics) controller and an inner-loop (dynamics) controller, which are both designed using the Trajectory Linearization Control (TLC) method
based on a nonlinear robot dynamic model. The TLC controller design combines a nonlinear dynamic inversion and a linear time-varying regulator
in a novel way, thereby achieving robust stability and performance along the trajectory without interpolating controller gains. A sensor fusion
method, which combines the onboard sensor and the vision system data, is employed to provide accurate and reliable robot position and orientation
measurements, thereby reducing the wheel slippage induced tracking error. A time-varying command filter is employed to reshape an abrupt
command trajectory for control saturation avoidance. The real-time hardware-in-the-loop (HIL) test results show that with a set of fixed controller
design parameters, the TLC robot controller is able to follow a large class of 3-degrees-of-freedom (3DOF) trajectory commands accurately.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An omni-directional mobile robot is a type of holonomic
robots. It has the ability to move simultaneously and
independently in translation and rotation. The inherent
agility of the omni-directional mobile robot makes it widely
studied for dynamic environmental applications [1,2,15]. The
annual international Robocup competition in which teams
of autonomous robots compete in soccer-like games, is an
example where the omni-directional mobile robot is used.

The Ohio University (OU) Robocup Team’s entry Robocat is
for the Robocup small-size league competition. The current OU
Robocup robots are Phase V omni-directional mobile robots,
as shown in Fig. 1. The Phase V Robocat has three omni-
directional wheels, arranged 120 deg apart. Each wheel is
driven by a DC motor installed with an optical shaft encoder. An
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overhead camera above the field of play senses the position and
the orientation of the robots using a real-time image processing
algorithm and the data are transmitted to the robot through an
unreliable wireless communication channel.

A precise trajectory tracking control is a key component for
applications of omni-directional robots. The trajectory tracking
control of an omni-directional mobile robot can be divided
into two tasks, path planning and trajectory following [3,
5]. Path planning calls for computing a feasible and optimal
geometric path. Optimal trajectory path planning algorithms for
the omni-directional mobile robots are discussed in [3,4,14,16–
18]. In [14], the dynamic path planning for omni-directional
robot is studied considering the robot dynamic constraints. In
this paper, the main focus is on accurate trajectory following
control, given a feasible trajectory command within the robot
physical limitations. While optimal dynamic path planning is
not within the scope of the paper, an ad hoc yet effective
time-varying bandwidth command shaping filter is employed
for actuator saturation and integrator windup avoidance, in the
presence of an abrupt command trajectory violating the robot’s
dynamic constraints.
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Nomenclature

Body frame

r Angular rate of body rotation (rad/s)
u, v Velocity component in the body frame (m/s)
f1, f2, f3 Traction force of each wheel (N)
E1, E2, E3 Applied voltage on each motor (V)
ωm1, ωm2, ωm3 Motor shaft speed (rad/s)

World frame

(x, y) Robot location (m)
Ψ Robot orientation angle (rad)

Mechanical constants

m Robot mass (kg)
Iz Robot moment inertia (kg m2)
R Wheel radius (m)
L Radius of robot body (m)
n Gear ratio
δ Wheel orientation angle (30◦) (deg)

The omni-directional robot controller design has been
studied based on different robot dynamics models. In an early
version of Robocat controller [6,14], which is similar to [16],
only kinematics are considered in the controller design. Each
motor is controlled by an individual PID controller to follow the
speed command from inverse kinematics. Without considering
the coupled nonlinear dynamics explicitly in the controller
design, the trial-and-error process of tuning the PID controller
gains is tedious [14]. In [3,17,19], kinematics and dynamics
models of omni-directional mobile robots have been developed,
which include the motor dynamics but ignored the nonlinear
coupling between the rotational and translational velocities.
Thus the robot dynamics model is simplified as a linear
system. In [3,4,17], optimal path planning and control strategies
have been developed for position control without considering
orientation control, and the designed controller was tested in
simulations and experiment. In [19], two independent PID
controllers are designed for controlling position and orientation
separately based on the simplified linear model. In [6–8,14],
a nonlinear dynamic model including the nonlinear coupling
terms has been developed. In [7], a resolved-acceleration
control with PI and PD feedback has been developed to
control the robot speed and orientation angle. It is essentially
a feedback linearization control. That controller design is
tested on the robot hardware. In [8], based on the same
model in [7], PID, self tuning PID, and fuzzy control of
omni-directional mobile robots have been studied. In [12], a
variable-structure-like nonlinear controller has been developed
for general wheel robot with kinematics disturbance, in which
a globally uniformly ultimately bounded stability (GUUB) is
achieved. In [27], feedback linearization control for wheeled
mobile robot kinematics has been developed and tested on
a two-wheel nonholonomic robot. In [28], a fuzzy tracking
Fig. 1. Phase V Robocat robot.

controller has been developed for a four-wheel differentially
steered robot without explicit model of the robot dynamics.

In this paper first, a detailed nonlinear dynamics model
of the omni-directional robot is presented, in which both
the motor dynamics and robot nonlinear motion dynamics
are considered. Instead of combining the robot kinematics
and dynamics together as in [6–8,14], the robot model is
represented by the separated kinematics equation and the body
frame dynamics equation. Such representation facilitates the
robot motion analysis and controller design.

Second, based on the nonlinear robot model, a 3-degrees-
of-freedom (3DOF) robot tracking controller design, using
a nonlinear control method, is presented. To simplify the
design, a two-loop controller architecture is employed based
on the time-scale separation principle and singular perturbation
theory. The outer-loop controller is a kinematics controller.
It adjusts the robot position and orientation to follow the
commanded trajectory. The inner-loop is a dynamics controller
which follows the body rate command given by the outer-
loop controller. Both outer-loop and inner-loop controllers
employ a nonlinear control method based on linearization along
a nominal trajectory. It is known as trajectory linearization
control (TLC) [10]. Preliminary results of the proposed robot
TLC controller have been summarized in [9]. It is worth
noting that the presented controller can be used as a velocity
and orientation controller, which is similar to the controller
structure in [7]. TLC combines the nonlinear dynamic inversion
and linear time-varying eigenstructure assignment in a novel
way, and has been successfully applied to missile and reusable
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launch vehicle flight control systems [10,11]. The nonlinear
tracking and decoupling control by trajectory linearization can
be viewed as an ideal gain-scheduling controller designed at
every point on the trajectory. TLC can achieve exponential
stability along the nominal trajectory, therefore it provides
robust stability and performance along the trajectory without
interpolation of controller gains. The developed robot TLC
controller serves as both position controller and trajectory
following control with the same set controller parameters.
Compared with the nonlinear controllers in [12,27], the
proposed TLC mobile robot controller deals with both
kinematic disturbances (outer-loop controller) and dynamic
disturbance (inner-loop controller). Compared with [12], the
TLC controller can achieve robust performance under less
strict assumptions, while eliminating the chattering control
signals in [12]. It should be noted that the structure of
TLC is different from another nonlinear control method—
feedback linearization control (FLC) [30–32]. In an FLC
design, a nonlinear dynamic system is transformed to a
linear system via a nonlinear coordinate transformation and a
nonlinear state feedback that cancels the nonlinearity in the
transformed coordinates. Then a linear time-invariant (LTI)
controller is designed for the transformed linear system to
satisfy the disturbance and robustness requirements for the
overall system. The FLC relies on the nonlinearity cancellation
in the transformed coordinate via nonlinear state feedback.
In an actual control system, the cancellation of nonlinear
terms will not be exact due to modeling errors, uncertainties,
measurement noise and lag, and the existence of parasitic
dynamics. The LTI feedback controller designed under the
nominal conditions may not effectively handle the nonlinear
time-varying residual dynamics.

Third, a sensor fusion scheme for robot position and
orientation measurements is presented. From real-time
experiments, it is observed that the accurate position and ori-
entation measurements are essential for the controller perfor-
mance. On-board sensors, such as motor shaft encoders, can
be used to estimate robot location and orientation by integrat-
ing the measured robot velocity. Such estimation is fast, but
also has inevitable cumulative errors introduced by the wheel
slippage and the sensor noise. Calibration methods for mobile
robot odometry have been developed to reduce the position
estimation error [25,26]. While these methods have enhanced
the accuracy of odometry position estimation, the estimation
drift cannot be eliminated without an external reference. On the
other hand, global position reference sensors, such as a vision
system using a roof camera senses the robot location and ori-
entation directly without drifting. However, it is relatively slow
and sometimes unreliable due to the image processing and com-
munication errors. Thus, a sensor fusion technique is presented,
which combines both the global vision system and on-board
sensor estimation to provide an accurate and reliable location
measurement. It is based on a nonlinear Kalman filter using tra-
jectory linearization.

In Section 2, the omni-directional mobile robot dynamics
model is presented. Based on this model, in Section 3, a dual-
loop robot TLC controller is developed. In Section 4, the sensor
fusion method is described. In Section 5, controller parameter
tuning and the time-varying bandwidth command shaping filter
are discussed. In Section 6, real-time hardware-in-the-loop
(HIL) test results are presented.

2. The omni-directional mobile robot model

In this section, the robot equations of motion are derived
based on some typical simplifying assumptions. It is assumed
that the wheels have no slippage in the direction of traction
force. Only viscous friction forces on the motor shaft and
gear are considered. The wheel contact friction forces that
are not in the direction of traction force are neglected. The
motor electrical time constant is also neglected. The developed
dynamics model is similar to those in [6–8,14]. The unmodeled
slippage has been studied in [13]. In the controller design, the
slippage, as well as other ignored dynamics, are considered
as perturbations to the simplified dynamics model. The close-
loop controller based on the simplified model is capable of
compensating for disturbances and perturbations. Moreover, the
slippage of the wheels also introduces measurement when the
motor shaft encoder readings are used to estimate the robot
position and orientation. In this paper, such measurement errors
are compensated by the sensor fusion scheme described in
Section 4.

There are two coordinate frames used in the modeling: the
body frame {B} and the world frame {W}. The body frame is
fixed on the moving robot with the origin in the robot geometric
center, which is assumed to be the center of gravity, as shown
in Fig. 2(a). The world frame is fixed on the field of play, as
shown in Fig. 2(b). Symbols used in the robot dynamic model
are listed in the nomenclature.

From the force analysis shown in Fig. 2(c), in the body frame
we haveu̇

v̇

ṙ

 =

 rv

−ru
0
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 f1
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From the mobile robot geometry, we haveu
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 . (2)
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(a) Body frame {B}. (b) World frame {W}.

(c) Force analysis.

Fig. 2. Coordinate frames and force analysis.
The dynamics of each DC motor are described using the
following equations

La
dia

dt
+ Raia + k3ωm = E and

J0ω̇m + b0ωm +
R f

n
= k2ia,

where E is the applied armature voltage, ia is the armature
current, ωm is the motor shaft speed, La is the armature
inductance, Ra is the armature resistance, k3 is the back emf
constant, k2 is the motor torque constant, J0 is the combined
inertia of the motor, gear train and wheel referred to the motor
shaft, b0 is the viscous-friction coefficient of the motor, gear
and wheel combination, R is the wheel radius, f is the wheel
traction force, and n is the motor to wheel gear ratio. Since the
electrical time constant of the motor is very small compared
to the mechanical time constant, we can neglect the motor
electric circuit dynamics, which leads to La

dia
dt = 0 and ia =

1
Ra

(E−k3ωm). With this assumption, and using vector notation,
the dynamics of the three identical motors can be written as

J0

ω̇m1
ω̇m2
ω̇m2

 + b0

ωm1
ωm2
ωm3

 +
R

n

 f1
f2
f3


=

k2

Ra

E1
E2
E3

 −
k2k3

Ra

ωm1
ωm2
ωm3

 . (3)

By combining (1)–(3), we get the dynamics model of the
mobile robot in the body frame {B} with the applied motor
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Fig. 3. Robot TLC controller structure.
voltages E1, E2, E3 as the control inputu̇
v̇

ṙ

 = G−1

 rv

−ru
0

 − G−1 H B BT
(

k2 · k3

Ra
+ b0

)

×
n2

R2

u
v

r

 + G−1 H B
k2n

R · Ra

E1
E2
E3

 , (4)

where G = (I + H B BT n2 J0
R2 ).

The kinematics of the robot is given by a coordinate
transformation from the body frame to the world frame ẋ

ẏ
Ψ̇

 =

cos Ψ (t) − sin Ψ (t) 0
sin Ψ (t) cos Ψ (t) 0

0 0 1

 u
v

r

 . (5)

The equations of motion (4) and (5) describe the simplified
robot behavior. In this model the friction constant b0 can
be determined experimentally. Eqs. (4) and (5) show that
omni-directional mobile robot has coupled MIMO nonlinear
dynamics. The nonlinear term G−1

[
rv −ru 0

]T in (4) is
introduced by robot rotation. The robot nonlinear dynamics
can be reduced to a linear system if either the robot does
not rotate while in translation, or the robot rotates at a fixed
position without translation. In both the cases, linear controllers
can be applied to the dynamics equation (4), as in [3,17,19].
While the kinematics equation (5) can be easily inverted to
yield an open-loop kinematics controller, the position tracking
error dynamics are nonetheless coupled, nonlinear and time-
varying (when r 6= 0), rendering the feedback position tracking
error stabilization control a challenge for LTI controller design
techniques.

When linear time-invariant controllers are used for 3DOF
command trajectories, especially for commands with high
translational and rotational velocities, the nonlinear robot
kinematics and dynamics can no longer be ignored. For
example, the maximum translational and rotational velocities
of the Phase V Robocat robot are estimated at 1.18 (m/s) and
16.86 (rad/s), respectively [14]. This yields a perturbation in
acceleration to the linearized dynamics model [14] as high
as supt ‖G−1

[ r(t)v(t) −r(t)u(t) 0 ]
T
‖∞ = 2.5 (m/s2),

which is not accounted for by the linear controller design. This
perturbation will significantly reduce the domain of stability,
or even destabilize the system due to other modeling errors
and disturbances. In order to maintain stability of the robot
controller, different feedback gains have to be scheduled for
different trajectories, or the command trajectories have to
be restricted to separate translation trajectories and rotation
trajectories. The early version of Robocat robot employed a
linear controller similar to those in [3,17,19]. It was observed
that the robot lost stability when it was given a command
with both translational and rotational motions. To achieve
better performance, a nonlinear controller design, which can
directly deal with the intrinsic nonlinearity and the coupling of
robot motions while tracking any given feasible trajectories, is
desired.

3. Trajectory linearization controller design

In the previous Robocat controller design, three independent
motor speed controllers are employed. As for most omni-
directional robots, the open-loop command of each motor
controller is computed by dynamic inversion of the robot
kinematics. However, due to the inevitable errors in the open-
loop controller, in most experiments the robot cannot follow the
desired trajectories with satisfactory performance.

In this section, a controller design based on Trajectory
Linearization Control (TLC) is presented. A two-loop
controller architecture is employed, as shown in Fig. 3. The
outer-loop controller adjusts the robot position to follow the
commanded trajectory. The inner-loop is a body rate controller
which follows the body rate command from the outer-loop
controller. In both outer-loop and inner-loop controllers, TLC
is employed. A TLC controller consists of two parts. The first
part is an open-loop controller which computes the nominal
control and nominal trajectory using a pseudo-dynamic inverse
of the plant model. The second part is a feedback controller
which stabilizes the system tracking error dynamics along
the nominal trajectory. The dual-loop design is based on the
singular perturbation theory, commonly known as the time-
scale separation principle, which assumes that the inner-loop
is exponentially stable and the inner-loop’s bandwidth is much
higher than the outer-loop dynamics, so that the outer-loop
controller can be designed by ignoring the inner-loop dynamics.
This assumption is satisfied by assigning appropriate closed-
loop PD-eigenvalues [34] to both the control loops. Controller
parameter tuning is discussed in Section 5.1.
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3.1. Outer-loop controller

First, from (5), the nominal body rate for a desired trajectory[
x(t) y(t) Ψ(t)

]T
isu

v

r

 =

 cos Ψ (t) sin Ψ (t) 0
− sin Ψ (t) cos Ψ (t) 0

0 0 1

  ẋ(t)
ẏ(t)
˙Ψ(t)

 , (6)

where
[
ẋ(t) ẏ(t) ˙Ψ(t)

]T
and

[
x(t) y(t) Ψ(t)

]T
are

calculated using a pseudo-differentiator from the command[
xcom(t) ycom(t) Ψcom(t)

]T. The general form of a second-
order pseudo-differentiator is illustrated by the following
generic state space model for x(t).

d
dt

[
x(t)
ẋ(t)

]
=

[
0 1

−ad1(t) −ad2 (t)

] [
x(t)
ẋ(t)

]
+

[
0

ad1(t)

]
xcom(t), (7)

where x(t) is a lowpass-filtered xcom(t), and ẋ(t) is the
approximated derivative of xcom(t). For a fixed bandwidth
pseudo-differentiator, ad1(t) = ω2

n,diff, ad2(t) = 2ζωn,diff,
where ζ is the damping ratio; ωn,diff is the natural frequency,
which is proportional to the bandwidth of the lowpass filter that
attenuates high-frequency gain, thereby making the pseudo-
differentiator causal and realizable. This pseudo-differentiator
can also be used as an automatic command shaping filter
with time-varying bandwidth. It will be further discussed in
Section 5.2.

Defining[
ex ey eΨ

]T
=

[
x(t) y(t) Ψ(t)

]T

−
[
x(t) y(t) Ψ(t)

]T[
ũ ṽ r̃

]T
=

[
u v r

]T
−

[
u(t) v(t) r(t)

]T

and linearizing (5) along the nominal trajectories [x(t) y(t)
Ψ(t)]T and the nominal input [u(t) v(t) r(t)]T yields the error
dynamics ėx

ėy
ėΨ

 = A1 (t)

 ex
ey
eΨ

 + B1 (t)

ũ
ṽ

r̃

 (8)

where

A1 (t) =

0 0 −u (t) sin Ψ (t) − v (t) cos Ψ (t)
0 0 u (t) cos Ψ (t) − v (t) sin Ψ (t)
0 0 0


B1 (t) =

cos Ψ (t) − sin Ψ (t) 0
sin Ψ (t) cos Ψ (t) 0

0 0 1

 .

Now, a proportional-integral (PI) feedback control law is
designed to stabilize the tracking error.
ũ
ṽ

r̃

 = −KP1

 ex
ey
eΨ

 − KI1


∫

ex (t)dt∫
ey(t)dt∫
eΨ (t)dt

 . (9)

Define the augmented outer-loop tracking error vector by

γ =
[
γ1 γ2 γ3 γ4 γ5 γ6

]T

=

[∫
ex (t)dt

∫
ey(t)dt

∫
eΨ (t)dt ex ey eΨ

]T

.

Then the closed-loop tracking error state equation can be
written as

γ̇ = A1cγ =

[
O3 I3

−B1 K I 1 A1 − B1 K P1

]
γ,

where O3 denotes the 3×3 zero matrix, and I3 denotes the 3×3
identity matrix. Now select KI1 and KP1 to achieve the desired
closed-loop tracking error dynamics

A1c

=

[
O3 I3

diag
[
−a111 −a121 −a131

]
diag

[
−a112 −a122 −a132

]] ,

where, for time-invariant closed-loop dynamics, a1 j1 > 0,
a1 j2 > 0, j = 1, 2, 3, are the coefficients of the desired
closed-loop characteristic polynomial of each channel given by
λ2

+ a1 j2λ + a1 j1. It can be verified that

K I 1 = −B−1
1 diag

[
−a111 −a121 −a131

]
(10)

K P1 = B−1
1

(
A1 − diag

[
−a112 −a122 −a132

])
.

The body rate command to the inner-loop is given byucom
vcom
rcom

 =

u
v

r

 +

ũ
ṽ

r̃

 . (11)

3.2. Inner-loop controller

From (4), the nominal motor control input voltages
[E1(t) E2(t) E3(t)]T for the nominal body rate [u(t) v(t)
r(t)]T are given byE1

E2

E3

 = (H B)−1 R · Ra

k2n
G

u̇
v̇

ṙ

 − (H B)−1 R Ra

k2n

 rv

−ru
0


+ BT Ran

k2 R

(
k2k3

Ra
+ b0

) u
v

r

 , (12)

where [u̇(t) v̇(t) ṙ(t)]T are calculated from [u(t) v(t) r(t)]T

using the pseudo-differentiator given in (7).
Defining[

eu ev er
]T

=
[
u v r

]T
−

[
u(t) v(t) r(t)

]T[
Ẽ1 Ẽ2 Ẽ3

]T
=

[
E1 E2 E3

]T
−

[
E1 E2 E3

]T
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and linearizing (4) along the nominal trajectories [u(t) v(t)
r(t)]T and the nominal motor control [E1 E2 E3]

T yields the
linearized inner-loop tracking error dynamicsėu

ėv

ėr

 = A2 (t)

eu
ev

er

 + B2

Ẽ1

Ẽ2

Ẽ3

 , (13)

where

A2 (t) = G−1

 0 r (t) v (t)
−r (t) 0 −u (t)

0 0 0


− G−1 H B BT

(
k2 · k3

Ra
+ b0

)
n2

R2

B2 = G−1 H B ·
k2n

R · Ra
.

Design the PI feedback control law by

Ẽ1

Ẽ2

Ẽ3

 = −KP2

eu
ev

er

 − KI2


∫

eu(t)dt∫
ev(t)dt∫
er (t)dt

 (14)

and define the augmented inner-loop tracking error vector by

η =
[
η1 η2 η3 η4 η5 η6

]T

=

[∫
eu(t)dt

∫
ev(t)dt

∫
er (t)dt eu ev er

]T

.

Then the closed-loop tracking error state equation can be
written as

η̇ = A2cη =

[
O3 I3

−B2 K I 2 A2 − B2 K P2

]
η.

Now select K I 2 and K P2 to achieve the desired closed-loop
tracking error dynamics

A2c

=

[
O3 I3

diag
[
−a211 −a221 −a231

]
diag

[
−a212 −a222 −a232

]]
where a2 j1 > 0, a2 j2 > 0, j = 1, 2, 3, are the coefficients
of the desired (time-invariant) closed-loop characteristic
polynomial of each channel given by λ2

+ a2 j2λ + a2 j1. It can
be verified that

KI2 = −B−1
2 diag‘

[
−a211 −a221 −a231

]
(15)

KP2 = B−1
2

(
A2 − diag

[
−a212 −a222 −a232

])
.

Finally, the applied voltage to the motors is given byE1
E2
E3

 =

E1

E2

E3

 +

Ẽ1

Ẽ2

Ẽ3

 . (16)
4. Position and orientation measurements using sensor
fusion

In this section, the sensor fusion method for our omni-
directional mobile robots is briefly described. Detailed design
and test results are published in [33]. The sensor fusion method
combines on-board encoder sensor and the global vision system
measurements, thereby providing reliable and accurate position
and orientation measurements. In [29], a similar sensor fusion
method is developed for mobile robot using encoder, GPS
and gyroscope. Different from [29], the sensor fusion method
developed in this section employs a nonlinear Kalman filter
technique which uses the nominal trajectory generated by
the robot outer-loop controller pseudo-inverse to linearize the
nonlinear robot kinematics. A gating technique is also used to
remove the corrupted vision measurements.

To facilitate applying the Kalman filter algorithm, first the
robot kinematics equation (5) is discretized using the forward
Euler method with time-interval T x [k]

y [k]
Ψ [k]

 =

 x [k − 1]
y [k − 1]
Ψ [k − 1]


+

cos Ψ [k − 1] · T − sin Ψ [k − 1] · T 0
sin Ψ [k − 1] · T cos Ψ [k − 1] · T 0

0 0 T


×

u [k − 1]
v [k − 1]
r [k − 1]

 . (17)

The Robocat body rate can be calculated from on-board
sensor (motor encoder). The robot position and orientation
can be determined from the vision system. The body
rate measurement

[
û [k] v̂ [k] r̂ [k]

]T and vision system

measurement
[
z1 [k] z2 [k] z3 [k]

]T at time-step k are
defined asû [k]

v̂ [k]
r̂ [k]

 =

u [k]
v [k]
r [k]

 +

w1 [k]
w2 [k]
w3 [k]

 ,

z1 [k]
z2 [k]
z3 [k]

 =

 x [k]
y [k]
Ψ [k]

 +

d1 [k]
d2 [k]
d3 [k]

 ,

(18)

where
[
w1 [k] w2 [k] w3 [k]

]T is the body rate measurement

noise, and
[
d1 [k] d2 [k] d3 [k]

]T is the vision system noise.

Both
[
w1 [k] w2 [k] w3 [k]

]T and
[
d1 [k] d2 [k] d3 [k]

]T

are assumed to be zero-mean white noise with normal
distribution, such that

p
([

w1 [k] w2 [k] w3 [k]
]T

)
∼ N (0, Q [k])

p
([

d1 [k] d2 [k] d3 [k]
]T

)
∼ N (0, R [k]) ,

where Q [k] ∈ R3×3 is the body rate measurement covariance,
and R [k] ∈ R3×3 is the vision system observation noise
covariance.
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Table 5.1
Controller parameters

Outer-loop

Pseudo-differentiator damping ratio and natural frequency (Maximum) ζ [0.7 0.7 0.7]
ωn,diff (rad/s) [8 8 8]

Closed-loop
[
a111 a121 a131

]
[16 16 16]

Characteristic polynomial
[
a112 a122 a132

]
[7.2 7.2 7.2]

Closed-loop damping ratio and natural frequency (Maximum) ζ [0.9 0.9 0.9]
ωn (rad/s) [4 4 4]

Inner-loop

Pseudo-differentiator damping ratio and natural frequency (Maximum) ζ [0.7 0.7 0.7]
ωn,diff (rad/s) [40 40 40]

Closed-loop
[
a211 a221 a231

]
[400 400 400]

Characteristic polynomial
[
a212 a222 a232

]
[36 36 36]

Closed-loop damping ratio and natural frequency (Maximum) ζ [0.9 0.9 0.9]
ωn (rad/s) [20 20 20]
In practice, the vision system may lose frames or misidentify
the robot on the field of play. Gating is a technique for
eliminating most unlikely outlier measurements [24]. There
are several commonly used gating algorithms. In this paper, a
simple rectangular gate is used. The nonlinear Kalman filter
algorithm for robot location and orientation estimates with
gating is summarized below.

Step 1: At time-step k, estimate robot position and
orientation from the on-board sensor body rate measurement x [k]−

y [k]−

Ψ [k]−

 =

 x̂ [k − 1]
ŷ [k − 1]
Ψ̂ [k − 1]


+

T cos Ψ̂ [k − 1] −T sin Ψ̂ [k − 1] 0
T sin Ψ̂ [k − 1] T cos Ψ̂ [k − 1] 0

0 0 T


×

û [k − 1]
v̂ [k − 1]
r̂ [k − 1]

 , (19)

where
[
x [k]− y [k]− Ψ [k]−

]T is a priori location estimation.
Then calculate the prediction covariance as

P [k]− = A [k] · P [k − 1] · A [k]T

+ W [k] · Q [k − 1] · W [k]T , (20)

where

A [k]

=

1 0 −T sin Ψ [k − 1] u [k − 1] − T cos Ψ [k − 1] v [k − 1]
0 1 T cos Ψ [k − 1] u [k − 1] − T sin Ψ [k − 1] v [k − 1]
0 0 1


W [k] =

T cos Ψ [k − 1] −T sin Ψ [k − 1] 0
T sin Ψ [k − 1] T cos Ψ [k − 1] 0

0 0 T

 .

Step 2: Read the vision system measurement [z1[k] z2[k] z3
[k]]

T. If the vision system data is not available, go to Step 4.
If the vision system data is available, calculate the innovation
residue using (21):ez1 [k]
ez2 [k]
ez3 [k]

 =

z1 [k]
z2 [k]
z3 [k]

 −

 x [k]−

y [k]−

Ψ [k]−

 . (21)

The rectangular Gating is defined as

|ezi [k] | ≤ 3
√

σ 2
Ri

+ σ 2
Pi

, i = 1, 2, 3, (22)

where σ 2
Ri

is the diagonal element of the vision system noise

covariance, and σ 2
Pi

is the i th diagonal element of the prediction
covariance P− [k]. If all innovation residues satisfy the above
gating condition, the vision system is considered valid, and
proceed to Step 3; otherwise, goto Step 4.

Step 3: Correction with valid vision data

K [k] = P [k]−
(
P [k]− + R [k]

)−1 (23)

P [k] = (I − K [k]) P [k]− .

The posterior estimation is x̂ [k]
ŷ [k]
Ψ̂ [k]

 =

 x [k]−

y [k]−

Ψ [k]−

 + K [k]

ez1 [k]
ez2 [k]
ez3 [k]

 . (24)

Goto Step 1.
Step 4: Calculate the prediction covariance without

correction. x̂ [k]
ŷ [k]
ˆPsi [k]

 =

 x [k]−

y [k]−

Ψ [k]−

 (25)

P [k] = P [k]− . (26)

Goto Step 1. �

The estimated measurement
[
x̂ [k] , ŷ [k] , ẑ [k]

]
is used for

outer-loop feedback at the time-step k. In (20), A [k] and
W [k] are generated by linearizing measurement error along
the nominal trajectory. The nonlinear Kalman filter employed
in this paper is motivated by the nonlinear observer design
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Fig. 4. Sensor fusion result. (a) Position and orientation estimation comparison. (b) Gating decision.
based on trajectory linearization [20]. It is similar to linearized
Kalman filter [21] in that both techniques use an open-loop
nominal trajectory for linearization. But they differ in that
the closed-loop TLC controller ensures that the actual robot
trajectory stays close to the nominal trajectory. It is different
from extended Kalman filter (EKF) algorithm [22,23], where
the estimation of the filter is used as the nominal trajectory to
linearize the error dynamics.

5. Controller parameter tuning and adaptive command
shaping

5.1. Parameter tuning

The unique structure of TLC provides robust stability and
performance along trajectory without interpolation of controller
gains. Thus the controller parameter tuning is relatively easier
than the linear controller tuning [14]. One set of fixed controller
parameters can be used for all command trajectories. The
controller parameters in the TLC controller are the pseudo-
differentiator bandwidths and the closed-loop feedback gains
of both inner-loop and outer-loop controllers. The pseudo-
differentiator bandwidths of both inner-loop and outer-loop for
a feasible command are set high to reduce the tracking error due
to phase delay. The closed-loop bandwidth tuning follows these
guidelines: (1) The outer-loop controller bandwidth should
satisfy the robot tracking requirement. (2) The inner-loop
controller bandwidth should be at least three times higher than
the outer-loop to satisfy the singular perturbation assumption.
(3) The inner-loop controller bandwidth should be at least three
times smaller than the motor and sensor bandwidths. (4) The
sampling rate must be at least twice the lowest bandwidth of
the components in the closed-loop system. (5) The closed-loop
bandwidth is kept as low as possible when satisfying other
requirements, in order to reduce the control power consumption
and noise.
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Fig. 5. Circle trajectory with orientation. (a) Tracking response. (b) Tracking errors. (c) Motor voltages. (d) Robot trajectory.
The Robocat requires that the tracking error for a fixed
position command is on the order of 10−3 m (1 mm), and
for dynamic trajectories is on the order of 10−2 m (1 cm).
The orientation angle tracking error should be less than 6
deg (0.1 rad). The motor mechanical time constant is 11
ms. Thus the motor bandwidth is about 90 rad/s without
considering mechanical latch. The motor speed is measured
by applying a pseudo-differentiator on the motor encoder
reading. The bandwidth of the pseudo-differentiator is initially
set to 40 rad/s, which is considered as the sensor bandwidth.
Thus the inner-loop bandwidth should be set to less than
13.3 rad/s.

In the parameter tuning, the damping ratios for both outer-
loop and inner-loop closed-loop dynamics are set as 0.9.
At this damping ratio, the bandwidth is approximately the
same as ωn . The ratio between inner-loop and outer-loop
closed-loop bandwidth is set as 5:1, in order to satisfy the
singular perturbation requirement. Thus the only parameters to
tune are the outer-loop closed-loop characteristic bandwidths.
The tuning process started with a small bandwidth that can
achieve controller stability. Then the bandwidth is gradually
increased to meet the tracking performance requirement.
It is observed that higher bandwidth can reduce tracking
error. However, a set of very high closed-loop bandwidths,
combined with the backlash and dead zones in the robot
mechanical components and limited measurement accuracy,
induced controller chattering. The tuned controller parameters
are listed in Table 5.1.
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Fig. 5. (continued)
5.2. Time-varying bandwidth command shaping filter

In the controller design, the command trajectory is assumed
to be a trackable trajectory within the robot physical limitations.
However, in a dynamic environment, such as in Robocup
competition, an infeasible trajectory command may be
generated, which usually causes motor control input saturation
and integral control windup. This problem is typically dealt by
an optimal path planning algorithm, which is usually difficult
to design and computation intensive in implementation. We
propose an ad hoc, yet effective method to deal with this
problem using the outer-loop pseudo-differentiator with a time-
varying bandwidth as a command shaping filter to render
the command into a feasible one. A time-varying bandwidth
pseudo-differentiator can be represented by the following
generic state space model for x command.

d
dt

[
x(t)
ẋ(t)

]
=

 0 1

−ω2
n,diff (t) −

(
2ζωn,diff (t) −

ω̇n,diff (t)

ωn,diff (t)

)
×

[
x(t)
ẋ(t)

]
+

[
0

ω2
n,diff (t)

]
xcom(t). (27)

Note that (27) differs from the familiar quadratic
synthesis formula (7) with constant bandwidth by a term
−ω̇n,diff (t) /ωn,diff (t). A simpler implementation is employed
in the robot controller whereby a constant rate is used. In
the discrete time implementation, ωdec denotes a constant
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Fig. 6. Square command tracking performance. (a) Tracking response. (b) Tracking errors. (c) Motor voltages. (d) Robot trajectory.
decrement of the bandwidth per control cycle, whereas ωinc
denotes a constant increment per control cycle. When applying
such a time-varying command shaping filter, the nominal motor
inputs

[
E1 E2 E3

]
are used to determine how to adjust the

bandwidth. If any one of the three nominal voltages exceeds
the maximum motor voltage value (12 V), the bandwidth is
decreased. If all nominal voltages are under 10 V, the bandwidth
is increased. Note that the filter bandwidth only changes
between ωn,diff(min) and ωn,diff(max) where the ωn,diff(max) is the
same as the nominal ωn,diff in Table 5.1. The initial bandwidths
of the pseudo-differentiators are set as ωn,diff(max). The time-
varying bandwidth pseudo-differentiator parameters are listed
in the Table 5.2.
The time-varying command shaping filter can also be used to
simplify the path planning. A dynamic path planning algorithm
for an omni-directional mobile robots needs to consider both
velocity and acceleration constrains that are mainly determined
by the maximum motor voltages. To generate an optimal 3DOF
dynamic path is very complex. In [17,14], only a point-to-point
optimal path is discussed without considering the rotation. The
command shaping filter is capable of rendering an infeasible
path into a desired feasible one in which motors work close to
their maximum voltages wherever possible. In Section 6, real-
time Test 3 illustrates the effectiveness of the proposed com-
mand shaping filter method, where a large 3DOF step command
is used as a worst case command without a path planning.
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Fig. 6. (continued)
Table 5.2
Outer-loop time-varying pseudo-differentiator parameters

ωn,diff(min) (rad/s) [0.8 0.8 0.8]
ωn,diff(max) (rad/s) [8 8 8]
ωdec (rad/s) 0.6
ωinc (rad/s) 0.2

6. Real-time test results

The omni-directional mobile robot TLC controller was first
verified in Simulink simulation, and then tested in a real-
time hardware-in-the-loop (HIL) simulation. In the HIL test,
Quanser’s Wincon, plus Mathworks’ Simulink and Real-time
Workshop are used to develop a prototype of the real-time TLC
controller for the robot of Fig. 1. A Cognachrome 2000 vision
system with a YC-100 CCD camera is used to sense the robot
position and orientation.

Based on HIL test results, the TLC controller has been
implemented on the Robocat robots and has been used in
Robocup 2003, Robocup 2004 and the first year American
Open. The TLC controller is programmed using C++ in Linux
on the on-board PC104 computer. The sampling rate of the
controller is set to 100 HZ. Similar to HIL simulation, the
body rate is measured using motor shaft encoders, while the
robot location is provided by a roof camera vision system. In
these real-time competitions, the TLC robot controller provides
accurate and robust trajectory following performance.

In this section, results of three real-time HIL tests are
presented.
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Fig. 7. Step response to [0.1 m 0.1 m 30 deg]. (a) Tracking response. (b) Motor voltage.
Test 1: In this test, the command is to accelerate from
the initial position and draw a circle of 0.25 m radius at
an angular rate of 2π rad/s. In the first 14 s, the robot
orientation angle is fixed. After 14 s, the robot orientation
command is a sinusoidal curve between −45 deg and 45 deg
with the frequency 4π rad/s. The overall command is a 3DOF
trajectory with varying velocity, acceleration, orientation angle
and varying load on each wheel. The sensor fusion performance
is illustrated in Fig. 4. In Fig. 4(a), the position and orientation
measurements by three different methods are compared. The
solid line is the sensor fusion estimation, the dotted line is
the vision system data, and the dashed line is the encoders
estimation. It can be seen that the encoder estimation diverged
slowly, while the vision measurement has many corrupted
data. The sensor fusion uses the vision system to continuously
calibrate the encoder estimation and discard the invalid vision
data. Fig. 4(b) shows the gating decision, where 1 means
acceptance of the vision data, 0 means rejection of the vision
data.

The tracking response, tracking error, motor voltages and
robot trajectory are illustrated in Fig. 5. Fig. 5(a) shows the
trajectory command, the filtered nominal command and the
robot response. In this figure, the robot position and orientation
are obtained from sensor fusion. It can be seen that the robot
can precisely follow the filtered command trajectory. Fig. 5(b)
shows that the peak tracking error (difference between the robot
response and the filtered command) is under 1 cm bound and
the orientation angle tracking error is less than 6 deg; both
satisfied the controller performance requirements. It should be
noted that the position tracking errors are achieved on the
same order with and without a robot rotation. This shows
that the controller has effectively decoupled the rotational
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Fig. 8. Step response to [0.3 m 0.3 m 60 deg] with fixed pseudo-differentiator bandwidth. (a) Tracking response. (b) Motor voltage.
motion from the translational motion. Fig. 5(c) shows the
nominal voltage and total voltage applied to each motor. The
difference between them is the feedback control input to
compensate for the disturbance and modeling error. In this
test, the nominal voltage does not exceed the predefined limit,
thus the time-varying command filter bandwidth remains at its
maximum value. Fig. 5(d) shows the robot response trajectory.
The difference between the robot actual trajectory and the
commanded trajectory is small.

Test 2: In this test, the robot is commanded to follow a square
trajectory. On two sides of the square, the robot orientation
is fixed. On the other two sides, the robot is commanded to
rotate 45 deg for each side. The commanded trajectory has
acceleration and deceleration of 2.5 m/s2. This value is close to
the largest possible acceleration based on the robot experiment.
The tracking response, tracking error, motor voltages and robot
trajectory are illustrated in Fig. 6. The peak tracking error in
this test is larger than the previous test since both encoder and
vision system have larger sensor noise at higher acceleration
and velocity, which reduces the measurement accuracy.

Test 3: This test is designed to illustrate the function
of time-varying bandwidth command shaping filter. A large
step command in x , y and Ψ is used to represent those
abrupt command trajectories that violate the robot dynamic
constraints. The motor voltages in the test saturate at ±12 V.
Three different test scenarios are presented. Without loss
of generality, the robot initial positions are all shifted to
[0 m 0 m 0 deg] in the plot. The first scenario is a relatively
small step command [0.1 m 0.1 m 30 deg]. From Fig. 7(a)
and (b), it can be seen that steady position tracking error is of
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Fig. 9. Step response to [0.3 m 0.3 m 60 deg] time-variant pseudo-differentiator bandwidth. (a) Tracking response. (b) Motor voltage. (c) Time-varying bandwidth.
the order of 10−3 m and the peak orientation tracking error
is less than 2 deg. Fig. 7(c) shows that both nominal motor
voltage and total voltage are under the motor voltage limit, thus
the command filter bandwidth is kept at its maximum value.
The second and third scenarios are a larger step command
[0.3 m 0.3 m 60 deg]. Fig. 8 shows the test results with
the command filter bandwidth fixed at its maximum value. In
Fig. 8(b), it can be seen that the voltages for motor 1 and
2 are saturated first, which causes the output to deviate from
the command trajectory significantly, as shown in Fig. 8(a).
Fig. 9 shows the test results with time-varying bandwidth.
With time-varying bandwidth command filter, the controller is
able to track the large step command, as shown in Fig. 9(a).
Fig. 9(b) and (c) shows that once the nominal voltage reached
the maximum value, the command filter bandwidth is reduced,
which prevents loss of stability. Fig. 9(b) shows that although
the motor voltage is saturated for a short time, the controller
maintains stability. At the steady state, the command filter
bandwidth is increased automatically, which guarantees the
steady tracking performance. It can be seen the steady state
tracking error in Fig. 9 is on same order as that of scenario
1 in Fig. 7. It is noted that in these tests, all position and
orientation measurement are estimated by the sensor fusion
method.

In these real-time tests, the controller parameters have
been kept the same as listed in Tables 5.1 and 5.2. It can
be concluded that the designed robot controller, with a set
of fixed parameters, is capable of following a large class
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Fig. 9. (continued)
of challenging 3DOF command trajectories with satisfactory
performance. Additional test results, which are omitted here
due to page limitation, have also demonstrated that the
controller performance is robust to modeling errors, such as
asymmetric robot mass distribution and different field of play
friction characteristics.

7. Conclusion

In this paper, nonlinear equations of motion for an omni-
directional mobile robot have been derived including rigid
body kinematics, dynamics and motor dynamics. Based on
this model, a novel nonlinear controller using Trajectory
Linearization Control (TLC) has been designed. The robot
controller employs a dual-loop structure. The outer-loop
kinematics controller adjusts the robot position and orientation
to follow commanded trajectory. The inner-loop dynamics
controller follows the body rate command from the outer-loop
controller. A sensor fusion scheme for position and orientation
measurements using both a global vision system and an on-
board odometry sensor has been presented which improve the
controller tracking performance. Furthermore, a time-varying
command shaping filter is used to improve the controller
robustness to an abrupt command trajectory and to simplify
path planning. The controller parameter tuning guideline has
been presented. Real-time test performances have shown that
with a set of fixed controller parameters, the robot TLC
controller can follow various 3DOF trajectories accurately.

It is noted that using the time-varying PD-eigenstructure
assignment, the closed-loop tracking error stabilizing controller
can be synthesized with time-varying gain (bandwidth),
which can be used for real-time trade off between tracking
performance and robustness, control energy consumption, and
to adapt to unknown environmental conditions, such as the
tractive friction characteristics of the field of play. In addition,
the time-varying bandwidth command shaping filter, albeit
effective, is somewhat ad hoc and empirical as a substitute for
optimal path planning. A rigorous optimal bandwidth varying
law is highly desired. A comparison between the trajectory
linearization control based Kalman filter design method and
other linearized and extended Kalman filter algorithms should
be performed to identify the advantages and weakness of the
proposed method. These are some directions for future studies.

It is remarked that the multi-loop TLC structure presented
herein is potent of solving multiple problems from an
implementation point of view, and has been successfully
applied to many challenging control applications, such as flight
control for reusable launch vehicles (RLV) [11,35,36], air-
breathing hypersonic vehicles [37], bank-to-turn and skid-to-
turn missiles [38,39] and vertical takeoff and landing (VTOL)
unmanned aerial vehicles [40], as well as closed-loop control
of air flow over a delta wing [41]. It is also remarked that,
although in general the Certainty Equivalence (CE) principle
does not hold for nonlinear systems, the effectiveness of the
TLC-Kalman-Filter based sensor fusion algorithm shown in
this paper serves as a successful demonstration of the fact
that even under inclement theoretical operating conditions
such as the coordinated 3DOF maneuvers of an omni-
directional robot, CE may still be applicable, which facilitates
separate design of the state feedback controller and state
estimation.
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