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ABSTRACT

This article presents the inverse and forward pose and rate kinematics solutions for a novel 6-dof
platform manipulator, actuated by two base-mounted spherical actuators. The moving platform is
connected to the fixed base by two identi8&lU serial chain legs. Th&;joint is active, and the
remaining two joints in each chain are passive. An analytical solution is presented for the inverse pose
problems, a semi-analytical solution is presented for the rate problems, and the numerical Newton-
Raphson technique is employed to solve the forward pose problem. Unfortunately, the passive joint
variables cannot be ignored in the kinematics solutions as they can for the Gough/Stewart platform.
Examples are presented and hardware has been built, using two Rosheim Omni-Wrists on loan from

NASA as the spherical actuators.



1. INTRODUCTION

Parallel robots have been proposed for some time now, due to their potential advantages over
serial robots in high load bearing, acceleration, and stiffness, with lower moving mass. A prime
disadvantage is reduced workspace relative to serial robots." ddrgome of the pioneering work in
this field. Tsdihas recently published a book giving a good overview of the mechanics of parallel robots.
There is a rich literature in parallel robots, mostly focusing on forward pose solutions and singularity
analysis (e.g. Daniali et dl.Innocenti and Parenti-Casté&lliRaghavahy and Wang and Goss€lin
Parallel manipulators continue to interest researchers, as seen in the recent literature: work has beer
presented concerning parallel manipulator dynaimioedular platform manipulatdysand singularity
determination in spatial platform manipulafors

A major type of parallel robot architecture is the platform manipulator such as the well-known
Gough/Stewart platforfi This 6-degree-of-freedom (dof) platform is controlled by six prismatic legs,
connecting the moving platform in parallel with the base. Interestingly, this platform architecture that has
become known as the Stewart platform never appears in ref. [10]. A related architecture is the variable-
geometry truss (VGT), such as the double-octahedral design from NASA (Rhodes and"Mikutrse
pose solutions by Padmanabhan €f)al.These two types of parallel robot are designed to be loaded
axially only; prismatic P) actuators are generally the control elements, and passive unigrsahd
spherical § joints are included to allow the proper freedoms. These types of parallel manipulators have
been proposed and used in such applications as flight simulation, machining tools, assembly fixturing,
entertainment, space structure modules, and robotic joints for long-reach manipulators.

Many spherical actuation devices have been built or proposed; most of these are developed for
use as robotic wrist mechanisms (e.g. the offset "spherical" Omni¥\i=d the truly spherical robot
wrists of Roth and Le& and Stanisic and DUt More recently, various spherical motors have been

developed (e.g. Wang et'aland Lee et ).



The idea that led to the platform manipulator presented in this article is that the (generally
passive) spherical joints of a platform manipulator may be instead actively driven; then the relfaining
U, and other joints are passive. Two ac/mints are sufficient for a 6-dof platform manipulator. In
this article we introduce thep8erically-Actuated platform Mnipulator, or SAM. According to a search
of the literature, this idea has not been presented before. Potential benefits of this new topology include
ground-mounted actuators, new application of recently-available spherical actuators, and compact
actuation for 6-dof platforms. A drawback of this proposed manipulator is that not all loads are axial, but
the links connected to the acti8goints experience moment loading.

Pennock and Mattsdhstudy a class of parallel manipulators formed by multiple serial robots
grasping a common payload, a one-dof mechanism. In the current work, the inverse pose and rate
problems benefit from viewing the platform manipulator as a collection of serial robots with the same
control frame (on the moving platform); however it is different from the Pennock work since each serial
chain has both active and passive joints, and the platform is rigid.

This idea was first presented in a conference papévajor improvements were made to that
paper: we include analytical solutions for the inverse pose, add rate kinematics, and clear up the
singularity issue that was outstanding in the conference paper. The current article focuses on the inverse
and forward pose (position and orientation) and rate kinematics solutions for SAM. First, the new
platform manipulator architecture is presented, followed by solution of the inverse and forward pose
kinematics problems, and then the rate solutions. Trajectory examples are presented to demonstrate th

inverse solutions. Finally, a brief discussion covers our hardware design and experimental work.



2. PLATFORM MANIPULATOR DESCRIPTION

The parallel platform manipulator presented in this articlph¢8cally-Actuated platform
Manipulator, SAM) consists of a fixed base and a moving platform connected I§P\u¢spherical-
prismatic-universal joint) serial chain legs (see Figs. 1 and 2). The platform is actuated by two spherical
actuators mounted to the base. The paddiyeints are fixed to the moving platform; tRejoints are
also passive. The mobility is calculated with the Kutzbach equation:

M =6(N -1)-5J; —4J, -3,
M =6(6-1)-5(2)-4(2)-3(2)=6

1)

This platform manipulator has 6 degrees-of-freedom (dof), provided by the two base-mounted 3-dof
spherical actuators. By controlling the six spherical joint variables, general Cartesian poses (positions and
orientations) may be reached withitiraited worksmace. Additional constraining seraPUlegs may be

used, with all passive joints or anotlactuator (redundant actuation); the overall mobility will still be

SiX.

In more established platform manipulators such as the Gough/Stewart Platform and variable
geometry trusses, the robot is designed such that all loads are axial, avoiding by design the moment
loading. This is not the case with our active spherically-driven platform; the links connected to the active
Sjoints experience moment loading. However, other platform manipulators from the literatufe with
joint actuation suffer from this deficit as well (such as the original Stewart Pl&tforsnother SAM
shortcoming is that the inverse pose kinematics is not as straight-forward as it is for the Gough/Stewart
platform. Despite these issues, we present the SAM concept to explore spherical actuation of platform

manipulators, due to the recent interest in development of spherical actuators. The main focus of this

article is SAM kinematics, presented in the next section.



Figure 1. SAM Concept Figure 2. SAM Kinematic Diagram

3. SAM KINEMATICS

This section presents the inverse and forward pose (position and orientation), plus rate kinematics
analysis for the SAM robot. Inverse pose (or rate) kinematics is required for platform control; forward
pose kinematics is required for platform simulation and sensor-based control. Kinematics is concerned
with relating the active joint variables and the platform Cartesian pose variables. Unfortunately, there are
also passive, intermediate joint variables which are unknowns in both forward and inverse pose, which
complicate these problems. The SAM kinematic diagram is given in Fig. 2.

L, is the distance from the base frani origin to the fixed location of the lefs-actuator. L, is
the total variable passiv joint length between th8 andU joints. L, is the fixed distance between the
moving platform frame R} origin and theU-joint location of the lefSPUleg. The platform manipulator
is designed with symmetry for the left and right legs, so lerigtlndL, also appear on the rightPU
leg. However, the rigfbPUleg variable passiv joint length isLs.

The detailed kinematic diagram for the I8#U serial chain leg is shown in Fig. 3. Figure 3
shows theX andZ axes for all intermediate coordinate frames, defined according to standard Denavit-

Hartenberg parameters for serial robbtsThe S-actuator active joint variables are rél| yaw 6, and
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pitch 8;. The passive joint variables @goint lengthL, andU-joint anglesg@ and¢@. Note theU-joint
cannot be aligned so that one of its revolute joints is dlenm theYe direction, or the platform would
revolve uncontrollably about this axis (assuming the &P leg is identical). The Denavit-Hartenberg

(DH) parameters for the leBPUserial chain leg are given in Table | (angle unitsdag.

Figure 3. LeftSPULeg Kinematic Diagram

Table I. Left SPULeg DH Parameters

i ai-q -1 di 6;
1 0 0 0 | 6,+90
2 90 0 0 | 6,+90
3 90 0 0 0,
4 -90 L, 0 0
5 0 0 0 | @ +90
6 90 0 0 o

A word of explanation is in order for the DH parameters chosen for the S-joint in Fig. 3. The model may
seem complicated (angle offsets fef,2, and_, along theX instead o axis). This model was adapted

from earlier work with the Rosheim Omni-Wfist which is used in our hardware as the spherical
actuators. Fixed lengthhs andL, do not appear in Table I, which relates thgpint locationto theS

actuator base; these two lengths are included via homogeneous transformation matrices later. In our
7



design the righSPU leg is identical to the left. The riggPUleg DH parameters are thus identical to

Table 1, using the following variable substitutions:

05 - 6, s - @
05 — O3 O - @3

In this section we use a combination of serial chain and parallel chain methods to formulate and
solve the SAM pose and rate kinematics problems. The six SAddtuator joint variables are
{6,.6,,65} and{6,.65,65}, respectively. The six Cartesian pose variableang z,a, 8.y}, related
to the homogeneous transformation matrix of the moving platform fré&hevith respect to the fixed

base frameB}:

87 = 2R {BPP}E
m 0 0 1§

[cac -—sacy+casBsy sasy+casfcy x[O @)
Br - %acﬁ cacy +sasfsy  —casy +sasfcy yg
"o cBsy chey 20

30 0 0 10

Wherea, B,y areZ-Y-X Euler angle®. The six intermediate variables are left and rigfit)leg passive

variables{Lz,qozyqos} and {L3,¢)5,406}, respectively.
Now we formulate and solve the SAM inverse and forward pose kinematics problems using the
kinematic diagrams, Denavit-Hartenberg parameters, and variables described. This is followed by rate

kinematics.



3.1 Inverse Pose Kinematics

The SAM inverse pose kinematics problem is stated: Given the desired Cartesian platform pose
{x,y,za,B,y} (or, equivalently,5T), calculate the requireS-actuator joint variable§d;,8,,65} and
{94,95,96}. The left- and right-leg passive joint variablébz,qoz,(p?,} and {L3,¢)5,406} are also

unknowns. The passive variables are not required for real-time control, but they may be used in on-line
rate and dynamics equations, plus off-line for simulation.

This inverse pose problem is solved by considering the left and Sigbtserial chain legs
separately. The given Cartesian p(%§'e must be reached by both legs, each with three active and three

passive joints. Thus, the problem decouples between the left and right legs. Below we describe the

procedure for the leBPUleg; the right is the same, with the above-noted variable substitutions.

To solve the left-leg active and passive joint variables given the Cartesiaf'EFOswe first

extract numbers fofT from the givenBT :

eT=0T RTAT (3)
where, from Fig. 3:

@ 0 0 00O M -1 0 -L,0
O O
BT_%) 1 0 -L GT_% 0 0 0f

ol = pl =
0 01 00O 0 0 1 o U
D00 1f D 00 17

Equation (3) brings fixed parametdrsandL, into the process. Now, this inverse pose problem may be
solved more easily by inverting our view: consider $rectuator to be the wrist of a serial chain which is

translated by jointQLz,qoz,qas}. Since the “wrist” is spherical we may first solve thg,%,%} from the
translational terms of the (numerically) invert§B=3T 1. Extract the fourth column T and define

{GPO}:{X1 Y, Z;}" (known numbers from the given command). The equations to solve are:



Y, =-L,S¢,50; (4)

wherecg, =cod@, ),s@, =sin(g, ), and so on. The solutions are:

Ly =+ X{ +Y7 +2¢
@, = atanf-Yy, X,) (5)
@, =atanfX,/cg;,-Z;)

Only the positive square root is used fordue to physicaP-joint constraints. In the rare case that

@3 =90°, the solution for¢ suffers from an algorithmic singularity and the alternate solution

® = atan:{—Ylls%,—Zl) may be used instead. There are two solution sets, a Epngleh (¢, @) and

(@5 +70,- ).

Now that{Lz,qoz’qag} are known, we can solve f46;,8,,65}; we needn't use the inverted view
in this case. First, extract numbers ﬁR from the knowng R and the newly-calculateéR:

IR=ERZR" (6)
where:
[+ S@.CP;  Sp,S@3  C@, [
gR= B S8 cps 0 B
Fcocos coosps —sp [

Equate the numbers féer with the symbolic formulas:
M, np nsd OKy Ky —s60

_ _ 0O [J
§R= 521 2 TasrK2  Kaoo GG (7)
His1 a2 TrasH a3 —Cs3 s, H

where:
K1 = €183 +55,C3 K3 =¢1C3 — 55,83
Ko =583 —€1S,C3 K4 =51C3 + 15583

and ¢, =codp; )., =sin(6;), and so on. From (7), the solutions are:

10



91 = atani_ I‘13,r23)
6, = atanrgs, rp3/¢y) (8)

For completeness, tlsgnsof ¢, should be taken into account in the atan2 functions; however since both
6, and 6; have multiple solutions (the above, also the above ptusadians), this trigopnometric
uncertainty does not matter. There is éheolution for eacld;,. To avoid the algorithmic singularity
when6; =90°, use the alternate solutidh = atangrz;,—1;5/5;).

There are four solution sets to the overall 8#Jleg inverse pose problem (the first row below

comes from (8) and (5)):

Table 1. Multiple Inverse Pose Solutions, LeftSPU Leg

0, 0, 63 Lo » »
6,+m nm-0, O;+m L, ® [0
0, +m -6, - 63 Lo P g+

6, m+0, m—-6, L, - @+

Generally only the first row in Table Il applies to our SAM design.
In this manner, the inverse pose kinematics problem for th&Riftportion of SAM is solved.

The right-leg portion is solved following this, independently in exactly the same manner, using the above-
mentioned variable substitutions; the unknowns fe 65 6; L; ¢ @} . We also need to

reverse the signs &f andL, (see Figs. 2 and 3) in the fixed transformation matrices from (3).

3.2 Forward Pose Kinematics

The SAM forward pose kinematics problem is stated: GivenShetuator joint variables

{6, 6, 65 6, 65 6,}", calculate the associated Cartesian platform dasg, za,B,y} (or,

equivalently, ET as in (2)). The left- and right-leg passive joint variaﬂglezs 4021403} and {Lg,qai(pe} are

again unknowns as well.
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This forward pose problem cannot be solved by considering the left andcSRghserial chain
legs separately. The problem is coupled because $thserial chain legs share the same Cartesian
unknowns. Standard serial robot kinematics techniques cannot be used in the SAM forward pose
solution since the intermediate passive joint variables are unknown. We tried to develop an analytical
solution but found that the equations do not decouple like the analytical inverse pose solution of the
previous section. We will solve this problem numerically from the basic equations via Newton-Raphson
iteration. The details for this are presented in Williams and Pdkmgl will not be repeated here.

However, a simplified approach is described here. In that conference paper, we solved the
forward pose problem for the full twelve equations in the twelve unknowns. The approach we have now
implemented ignores unknomﬁs, y,z,d, [, y} at first; thus the system size is cut in half. Using the DH

parameters for the left and right legs, plus the fixed transformation matrices from (3) (again, reversing the

signs ofL; andL, for the right leg), the symbolic form f&T is derived twice (for the left and right legs,
ETLEFT and ETRlGHT, respectively) using standard serial chain robotics techﬁf’qu%TLEFT is a
function of knowns {91,92,93} and unknowns{Lz,qoZ,qas}; ETmGHT is a function of knowns

{6,.65.65} and unknowng{L3,¢5,¢6}.
To produce the functions for Newton-Raphson to solve, we simply equate the symbolic forms,
ETLEFT:ETRleHT. The three translational terms provide independent equations and three of the nine

rotational terms provide the remaining three required equations. All three rotational equations cannot
come from one row or column due to the fact that an orthonormal rotation matrix row or column is
constrained to be a unit vector. Algorithmic singularities were encountered in the nominal horizontal
SAM configuration when using certain rotational equations; we used the (2,1), (2,2), and (3,2) terms to
overcome this problem. An attempt was made to solve these equations analytically; this did not succeed

since the three translational equations are coupled in the six unknowns, while the three rotational
12



equations are coupled in four unknowns (all exdgpandLs). Using Newton-Raphson iteration (as in

Wiliams and Poling, but with this reduced set of equations) we solve for
L, » o Ly & @} dgven{e, 6, 6; 6, 65 65}". Folowing this, it is a simple

matter to calculate the Cartesian unknoms/, z,a, 8,y} from BT, ger evaluated witH6;,60,,65} and

Lz, 0}, or BTrigur evaluated witH8,,605,66} and{Ls, @ ¢s)-

The Newton-Raphson approach to solving forward pose kinematics suffers from the need of a
good initial guess, and only one of the multiple solutions is found. However, in practical real-time
control these do not present problems since we know the value of all variables at the previous control
cycle, including a starting configuration. Also, the single solution found will be the one closest to the

initial guess; assuming a fast control rate, the proper solution will generally be found.

3.3 Rate Kinematics
Rate kinematics is concerned with relating the active joint rates and the platform Cartesian rates;
again, intermediate joint rates are involved as well. All pose variables must be known first. The inverse

velocity solution, which is the basis of the resolved-rate control scheme, is stated: given the commanded

platform Cartesian rate ={>‘< Yy Z wy wy a)z}T, calculate the associated active joint rates

(9:{91 0, 6; 6, 6s 96}T. The Cartesian ratX gives the translational and rotational rates of

{ P} with respect to B}, expressed in a certain frameBf{in our work). As in the inverse pose solution,
the inverse rate solution decouples between the left and right legs. Using standard serial robotics

methods, two Jacobian matrices are used:

X=J0, X =JgOg 9)

where: o, :{91 0, 6; L, o %}T @R={94 6s O L3 @ ‘P6}T

13



X , defined above, is the common platform Cartesian velocity that must be achieved simultaneously by
both serialSPU chains. J, is the left-leg Jacobian matrix mapping the left leg joint rates (active and
passive) to the Cartesian rates dpds the right-leg Jacobian matrix mapping the right leg joint rates

(active and passive) to the same Cartesian rates. The decoupled inverse rate solutions are:
O, =J; X Og = Jg*X (10)

Equations (10) are sufficient for use in real-time resolved-rate control. This is a semi-analytical solution
since the Jacobian matrices are available symbolically, but we invert these numerically for (10).

Using a fully-symbolic approach, one could solve the inverse rate problem in one step, ignoring
the passive joint rates. This approach inverts the Jacobian matrices symbolically off-line. Equations
(10) map the common Cartesian velocity to joint rates; therefore we select just the first three rows of

each symbolic inverse Jacobian matrix, which maps the Cartesian velocity only to active joint rates.
Denote the top three rows of the symbolic inverse Jacobian matrichs aand Jz4, respectively &
indicates active joints only). The one-step inverse rate solution is then:

O = MX (11)
U
where:M:%JEfDand 6={6, 6, 65 6, 65 65} .
Ey\E

With this approach, the overall forward velocity solution is:

X=M71o (12)

Even though the symbolic Jacobian matrices for the left and right legs of SAM are relatively simple
(few terms), this approach yields very complex results when using a symbolic computer program.

Therefore, we use the partial-analytical method described above, with (10).

14



One benefit of rate analysis is that singularity analysis follows from setting the Jacobian matrix

determinants to zero:

13, |= 5,50, =0 | 3| =L3css@s =0 (13)

From these singularity equations, the SAM singular conditions are:

L2 =0 92 = i90° (02 = O,:I.SOo

(14)
L3 =0 O =90° @ =0180°

The left-most conditions in (14) can never occur. The middle conditions are on the extreme workspace
boundary for théS-actuators in our hardware design. The right-most singular conditions (D8@ox

are the only ones that exist for SAM. These correspond to when theJleft () or right (@5 = 0) SPU

leg is normal to the platform. In this case, the Jacobian row correspondiggstmot independent;

there is no way to rotate about tigaxis in this configuration. The Jacobian determinants should be
monitored on-line; when one approaches zero, the pseudoinverse of the offending Jacobian matrix

should be used in (10). The motion will not be exactly as commanded, but this will provide a

numerically-stable means to move the robot through the singular condition.
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4. EXAMPLES

This section presents a snapshot example, followed by trajectory examples to demonstrate results
from the inverse pose and rate kinematics solutions presented in Section 3.
4.1 A Nominal Configuration

A good nominal configuration for this platform manipulator is a pose like that shown in Fig. 1:
the platform is level, B} is translated relative to B} only in the vertical Z direction, and the

orientations of P} and {B} are aligned. The SAM design parameters ares 0.5334 and., = 0.3556
(m). Choosing a nominal angle 6% =-15", the active joint parameters, Cartesian pose, and passive
joint variables, respectively, for this configuration are given below and shown in Fig. 4. Length units

arem and angular units aaeg

{91 92 93 94 95 96}:{0 -15 0 0 15 0}
{x vy za B y}={o 0 0664 0 0 0} (15)
L, » o L3 o o¢}={0687 15 0 0687 -15 0O}

0.5

0.5 -0.5
X

Figure 4. Nominal SAM Configuration for Examples

Y

4.2 Trajectories with Inverse and Forward Pose Solutions
Starting from this nominal pose, we now present trajectory examples for the inverse pose and rate

solutions. To demonstrate theverse pose solutiong/e start at the Cartesian pose from the middle line

of (15). At each step, we a({d.OOS0.00S0.0050,0,0.5°} to the specified Cartesian pose. That is, we

16



are translating by Bhmin all X,Y,Z axes, and rotating = 0.5° about theX axis in each of ten simulated

time steps. Figures 5a and 5b present the left and right actuator inverse pose solution results. In Fig.

5a, g, is solid, 8, dashed, ané, dot-solid; in Fig. 5bf, is solid, 8, dashed, ané, dot-solid.

40
| 300 SR SR R %
~
S : 3 | | ‘
S ‘ S 20 ‘ ‘ ‘ ‘
ke I 8 I ‘ I ‘
£ 1 > [ T == 7
g | <0 o " T
£ ‘ = ‘ ‘ ‘
S ‘ S ‘ ‘ ‘
A5 == - R e ] A - -
o = ‘ LT T
-20 : . : : -10
0 2 4 6 8 0 2 4 6 8
Time Steps Time Steps

Figure 5a. Inverse Pose Results, L&#Actuator Figure 5b. Inverse Pose Results, RgAictuator

Figures 5 show the joint angles required to achieve the commanded Cartesian motion (equal

positive steps of Bnmin the X, Y, andZ directions, while simultaneously twisting the platfob’
about theZ axis in each simulated time step). The spherical actuator joint angles each start at the
nominal configuration given in the top line of (15) and change smoothly throughout the motion. The
largest angle changes are experienced by joints 1 and 4 (starting at 0 and moving in opposite directions),
which makes sense for the twisting of the platform. Joints 3 and 6 require the least motion (again
starting at 0 and moving in opposite directions). Joints 2 and 5, responsible for pitching the SPU legs,
start at their respective initial angles and move in the same direction.

Assuming a nominal control rate of 100 Hz (achievable in the laboratory hardware of Section 5),
the simulated Cartesian motions are very large. In practice, the Cartesian trajectory steps would be

smaller. This serves to challenge our numerical forward kinematics algorithms and the results are

smooth.

17



To demonstrate theverse rate solutionswe again start at the nominal pose of (15). The

commanded Cartesian rate % ={—0.],—0.],0.],0.],0.],0.1}T (m/s and rad/s). Figures 6a and 6b

present the left and right actuator inverse rate solution results, respectively. The joint rates reported in

Figs. 6 would be integrated to commanded angles to implement the resolved-rate control in practice. In

Fig. 6a,0, is solid, 8, dashed, an@, dot-solid; in Fig. 6bg, is solid, 8; dashed, anég dot-solid.

Joint Rates (rad/s)
Joint Rates (rad/s)

Time (sec) Time (sec)
Figure 6a. Inverse Rate Results, Left Actuator Figure 6b. Inverse Rate Results, Right Actuator
Figures 6 show the joint rates required to achieve the commanded Cartesian rates (equal rates in
the X, -Y, and & directions, while simultaneously rotating with equal angular velocity components
about the moving X%, +Y, and & axes). The initial spherical actuator joint rates are all non-zero since
the simulation turns on the Cartesian rate at the start. The joint rates all change smoothly throughout the
motion. The commanded trajectory is different from the inverse pose example above. Again, the
highest joint motions correspond to joints 1 and 4 (moving in opposite directions). The remaining joints

rates are smaller. Joints 2 and 3 each switch directions, while joints 5 and 6 remain positive for the

simulated resolved-rate motion.

18



5. HARDWARE

Figure 7 is a photograph of the spherically-actuated platform manipulator (SAM) hardware
designed and built at Ohio University, where the spherical actuators are two Omni*\digtsin from
NASA Langley Research Center. There are two major differences from the design presented thus far:
1) The spherical actuators are not truly spherical but have a complicating offset; and 2) The two serial
chain legs use passive revoluR joints in place of the passivejoints. Difference 1) complicates the
kinematics equations so that only numerical solutions areé’udeifference 2) was employed originally
to make the construction easier. However, we have since discovered that this design has an unwante
singularity for all horizontal orientationsr(= 3 = 0), in the vertical plane containing the two spherical
actuators: in these special configurations, f@UR closed chain acts as a four-bar linkage with an
additional, unwanted and uncontrollable degree of freedom. Therefore, we are currently modifying the
hardware to usé&SPU legs as in Fig. 1; no such singularity exists for this case. An additional
improvement would be to substitute zero-offset spherical actuators for the Omni-Wrists. A third
improvement we are considering is to make the moving platform an equilateral triangle and to add a
third constrainingSPU leg (whoseS joint is passive; alternatively we could add a third spherical
actuator which would result in overactutation, which may have stiffness benefits). This would reduce

the workspace but improve the force capabilities of the platform.

19



Figure 7. SAM Hardware with SRU Chains and Omni-Wrist Actuators
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6. CONCLUSION

This article presents the inverse and forward pose and rate kinematics of a novel platform
manipulator, the gherically-Actuated platform Mnipulator, or SAM. This manipulator has a drawback
compared with prismatically-actuated platforms: there is moment loading at the actuators (not all loads
are axial). Platform manipulators witR-joint actuation proposed in the literature also have this
disadvantage. However, there has been significant interest in development of spherical actuators
recently, which motivates this work. Also, potential benefits include compact, ground mounted actuation
for 6-dof platforms.

SAM consists of twoSPU serial chain legs§ active, P-U passive) connecting the moving
platform to the fixed base. The inverse pose problem is solved analytically, the forward pose problems
via the numerical Newton-Raphson method, and the inverse rate kinematics problem is solved semi-
analytically (symbolic serial-chain Jacobian matrices, numerical inversion). Examples were presented to
demonstrate results from the inverse pose and rate kinematics solution algorithms. SAM hardware has
been built SRUlegs instead oBPU legs); we are currently converting this hardware toSRe legs to
avoid the uncontrolled four-bar singularity that occurs in nominal orientations &Rblversion. The

SPUSAM singularities have been enumerated and do not pose a serious problem.
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