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ABSTRACT

Emerging technologies in microsensing, microactuation, active airfoils, turbine blades, and larg
lightweight, flexible space structures can benefit from piezoelectric actuators for active shape contr
Piezoelectric materials develop strain under applied voltage which induces structural deflection. This artic
presents analytical models, FEM solution, and optimal shape control of composite thin plates wi
piezoelectric actuators surface embedded or bonded in a biomorph arrangement. A 2D FEM approacl
developed which is accurate, plus simpler and more efficient than existing 3D solutions. Three optim
shape problems are presented: applied voltage, actuator layout, and actuator number optimizations. Fol

latter two problems, a novel method is introduced using a vector of binary variables.
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INTRODUCTION

The integration of composite materials with piezoelectric actuators will significantly improve the
performance of aircraft and space structures. The feasibility of such integrated smart structures has &
demonstrated by various analyses and numerical models (e.g. Donthireddy and Chandrashekhara, 1
Ghosh and Batra, 1995; Crawley and Lazarus, 1991; Lee and Moon, 1990). An overview of smart structi
technology is presented by Gandhi and Thompson (1992); few problems have extended to practical desi
(Jia and Rogers, 1989; Sepulveda and Schmit, 1991).

Shape optimization for such structures is of great importance, especially in low-weight aerospa
applications. The effectiveness of the control system strongly depends on the active element locatic
(Fanson and Caughey, 1987). In those 3D models, the problems are large and complex. For exampl
plate with thin sensors and actuators is modeled with the isoparametric hexahedron solid elems
(Sepulveda and Schmit, 1991), requiring Guyan reduction to reduce the total degrees of freedom (d«
When the plate is very thin, there are problems of excessive shear strain energies and higher stiffr
coefficients in the thickness direction. Another example is applying an 8-node, 32-dof brick element to
thin plate example (Sepulveda and Schmidt, 1991); 3D incompatible modes were necessary for predict
the deflection.

Presented in a previous article (Agrawal, Tong, and Nagaraja, 1994) is a 1D model, finite differenc
solution, and optimal input voltage estimation for a cantilevered composite beam. The current artic
extends this work to formal optimization problems for a thin plate, while maintaining computationa
efficiency for practical application. This article is organized as follows. First, a simpler (relative to existing
3D models) 2D mathematical model for the deflection of a composite thin plate with piezoelectric actuato
surface embedded or bonded is presented. Then an efficient FEM solution is presented using a 4-node
dof thin plate discrete Kirchhoff quadrilateral (DKQ) bending element. Shape optimization is ther
developed, for the optimal input voltages, optimal actuators layout, and optimal number of actuatc
problems. These optimization problems may be used either off-line for optimal design or for real-tim

shape control. Last, two examples are given.



MATHEMATICAL MODELS OF COMPOSITE THIN PLATE
System Description and Assumptions

The actuator/plate system is a homogeneous, elastic, anisotropic (we also consider isotrop
laminated composite thin plate. Piezoelectric actuators are embedded or bonded on its top and bot
surfaces in a bimorph arrangement (for every actuator on the top, another exists in the same location on
bottom). The piezoelectric actuators are modeled as homogeneous, elastic, and transversely isotropi
mechanical and piezoelectric behavior. In Figure 1, afiglegnsx; parallel to the fibers whil&, is normal

to the fibers.
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Figure 1. Composite Thin Plate Geometry Figure 2. Cross-Section of Thin Plate

The substrate cross section is shown in Figure 2. The actuator and substrate plates are given
subscriptsa ands respectively. The actuator plate thicknedg &nd the total thickness of the platé.isThe
poling direction of all actuator plates is tkeaxis. The applied electric fields on the top and bottom
actuators of each bimorph have the same electric potential. One is in the poling direction and the secon
opposite, thus inducing extension in one actuator and contraction in the other. Such pairing is favorable
Kirchhoff's assumptions (Ugrual, 1981) which are used for model simplification. Perfect actuator bondir
is assumed (deformations in the actuators and substrates at a point on a bonding surface are equal).
interlaminar bonding layer between the actuators and substrates is sufficiently thin that neglecting the sh

layer will not introduce any significant errors into the model (Crawley and Lazarus, 1991).



U-V-W Model

This section summarizes theV-W composite thin plate modal{V-W are theX,Y,Z, displacements
of a point on the thin plate mid-plane). Equations (1-3) present the mathematical model; for detaile
derivation see Tong (1997). It was derived as follows. For a differential plate element of dindendipn
dz located at pointq y, 2), the kinematic strain-displacement relationships, stress-strain relationship, stres
resultant, stress couples, and shear resultants were written. The general anisotropic case was consid
both for locations with and without actuators surface embedded or surface bonded. Performing a force :
moment balance for the differential element (neglecting the body force term for simplicity), integrating terr
by term across each ply, and summing across plies of the plate yielded five equilibrium equations whi
were combined into three independent equilibrium conditions. The relationships discussed above we

substituted into the three equilibrium equations to yield:
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where:
EX = Tlx - T2x Ey = le - T2y Zx = Tlx + T2X Zy = le + T2y (4)
andT; are the surface tractions.

The voltage applied on the actuators does not appear in the governing equations explicitly becau
the piezoelectric actuation strain is not a functior, fbut only the input voltages.

Matrix elementsA;, B; and D; are given as follows for various conditions (locations with and
without actuators surface embedded or bonded, plus anisotropic or isotropic substrate). For an anisotrc

laminated substrate of composite material, at a location with no actuwatBrandD are:

A=[Quz=3 Qu(h-h.)  B=[Qedz= 3 Q¥ ~1)

D= [Q7dz= ; Zésk(hs K. (5)

The matrix 63 is from the stress-strain relationship= 658 (see Tong, 1997 for details). Al refer to

heights in the laminated substrate (see Figure 2). At a location with actuators surface embeidadd

D' are:
n—j_ - _
A= S Q. (h ~h.)+Q, (h +h)+Q, .(h ~h_)+2Q,
k=)+1
B=1 S0, (-, +Q, (P -r)+Q, (- )
_2k:1+1 sk \"k k-1 sj\j a sn—j+1\'a -
1 nlo— 1— 1— 2
D=2 Qu — ) +=Q, (0 + ) + Q. ~h ) +=Q, [ - ) ©)
314 3 3 3
with
h=h -t =t-t @)
a n a 2 a

where matrixQ, is the inverse of the piezoelectric actuator stiffness m&frix
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E 01 v, 0 O

_ . O

Qa = Sal = 1- Vz Blla 1 0 U] (8)
“HO O (1-v,)/2H

E and v are Young's modulus and Poisson’s ratio of the actuator material. The subscript 1 indicate
behavior in thex-y plane,a indicates actuator, arglindicates substrate. In Equations (6)s the layer
number of the beginning substrate ply which contains no actuators (see Figure 2),’andrthés used to

distinguishA, B, andD from those of no actuators. For locations where there are surface bonded actuators

A=3 Q0 ~n) + 20, 5232,0% 1)
1l E= 3 3 2 3 3
D=5 Qu i =1L+ Q.1(h, +£)° =1 (©)

For isotropic substrate material, the above matrices are simpler. Since the substrate is mid-ple

symmetric,B = 0, and:

t3
A=Qt D=Q.— 10
Qs 12 (10)
for a location with no actuators, and:
, (t-2t)° t*-(t-2t)°
A=Q.(t-2t.)+2Q.t D=0 ——2 +Q —~ @&/ 11
Q,( 2) T2Q,t, Q 2 Q. 2 (11)

for a location with actuators surface embedded. For the surface bonded case, sub&tiuter(t to
computeA andD, while A" andD' remain the same as Equation (11). If the substrate material is isotropic,

the following definitions apply:

E 1 v, 0 [
Q=Q=r—3% 1 0 ¢ (12)
"H0 0 (1-v,)/28



@®-W Model
The U-V-W variables may be further reduced to two variables as follows. The in-plane
displacement&) andV are uncoupled from the normal displacemétand the in-plane shear straigy is
related to the normal straisg, andeo, via U andV. The in-plane displacemeritsandV can be combined
into the dependent variabé (Airy stress function, Calcote, 1969):
I*® I’® I*®

-1, N,, =—0X§y (13)

where:

:I(Tlx —T,,)dX ny :I(le ~ Ty, )dy (14)

andN; represent the stress resultants. The anisotd®¢émodel is given in Tong (1997). For orthotropic

substrate plies with mid-plane symmet®js uncoupled fronW, and the two equations are:

AP I (2, +5) do oo 3
a22 (9)(4 a23 @(36)/ a12 a33 @(26)/2 alS ‘%(dyg ail d)/4
’n, o 0, OF %, %,
_ _ x Y 4 I 15
Ay O A EY: aiz( o"y) a23 + a3 Y (15)
o'W o'W o'W W oW h ol 9,
D11—4 + ( Z ) =0 (16)

+ 4D16(9X—3(9y + 2(D12 + 2D66)0.X2—&y2 + 4D26W D22 0.y4 2 0X dy

wherea=A™".



Boundary Conditions

To complete the mathematical description of the plate governed by fourth-order partial differenti

equations, four boundary conditions are required, corresponding to constraints on each edge of the plate.

a clamped edge, pinned edge, edge on rollers, and a free edge, the boundary conditions are give

Equations (17-20), respectively.
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where M; represent the stress couples andare the Kirchhoff effective transverse shear forces. When

shape control of the plate or the response of the flexural vibration is considered, usually only norm

displacemenW s of interest. If in-plane displacemehisV can be ignored, only two boundary conditions

are required on each edge of a plate. They can be transverse deflection and slope, or force and momel

some combination. In the boundary conditions (Equations 17-20), if the in-plane defléetmaty/ and the

in-plane normal forcesdl, andN, are dropped, the remaining expressions are the boundary conditions fo

solving normal deflectioV only.



FEM SOLUTION

The governing partial differential equations-Y-W model, Equations (1-3), o®-W model,
Equations (15-16)), subject to specified boundary conditions, are solved in this section using the fin
element method (FEM) based on the Theorem of Minimum Potential Energy. In addition to assumptio
stated earlier, it is further assumed that the in-plane displaceemdV are negligible. The governing
equation to solve is then Equation (16). A simple 2D FEM model for solving the normal defi&aiging
the Discrete Kirchoff Quadrilateral (DKQ) thin plate bending element is employed. This section presen
the highlights of this FEM approach; for details see Tong (1997). In previous work (Agrawal, Tong, an
Nagaraja, 1994) a 1D finite difference method was employed.
Element Equations

The four-node, 12-dof DKQ element is shown in Figure 3. It relates the rotations of the normal t
that of the undeformed midplangg= —dWox and 3= —0W/dy, such that: (a) the nodal variables are the
transverse displacemeW and its derivatives at the four corner nodgs\W,, and &= -W,x (where §)x

represent®(«)/0x); and (b) the Kirchoff assumptions are satisfied along the boundary of the element. Th

twelve DKQ nodal variables ag® :{ W 6, 6, }T ,1=1,2,3,4. The rotations a@ =H*(&,n)q°

and B, =H’(&,n)q° where H*(&,n ) and H”(&,n ) are interpolation functions fg& and, , respectively,

with 12 elements each (given in Tong, 1997).
Following standard finite element procedures (e.g. Hughes, 1987), the equilibrium equatior

(minimizing the potential energy of each element) are expressed in terms of the nodal displacements:

Keq® =F*® (21)
where K*® = IBTDBdF is the element stiffness matrix amef = F;, + F° + K/ is the force vector, where

Fe

-, F° and R/ are the element surface traction force, thermal force, and piezoelectric actuatiorforce.
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is zero for elements with no actuators. The element stiffness matrix and force vectors are calculated

using Z2 Gauss numerical integration:

+1+41 +1+1 _
Ke= ”BTDB|J|d§dn Fr = ”BTt|J|d§dn

-1-1 -1-1

+1+1 +1+1
FTe:_Il:[BTMT|J|dEdI] Fve:Il:[BTMA|J|dEd’7 (22)

whereJ is the Jacobian matrix of the transformation between the parent and actual elBreetite, matrix

mapping nodal variables into the mid-plane curvature vebtes,from the modeling sectioM is the stress

couple, M, is the bending moment from piezoelectric actuation, anis the given surface traction
coefficient (all of these details are given in Tong, 1997). Since mtisx 3x12, the element stiffness

matrix K® is 12x12; it is also symmetric.

da :<W4 044 94y>T

V,ornone
for substrate
only

Figure 3. 12-dof DKQ Plate Bending Element
System Equations
The global system equation is expressed as
Kg=F (23)
where K and F are the global stiffness matrix and force vector, determined through standard FENM
procedures. A mapping matriR® is formed for each element, relating the contribution of each element

stiffness matrix to the global stiffness matrix. The global stiffness matrix and global force vector ar

assembled as:
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K = Z(F)ie)T KieF)ie F — i(Pie)T Fie - Zel(Pie)T(FTe” + FTeJ- + F\/ei) (24_25)
1= 1= 1=

Comparison of 2D and 3D Solutions

To test the validity of the proposed 2D DKQ FEM solution, two actuator/plate systems were
simulated. These were cantilevered laminated composite thin plates with 15 piezoelectric actuators bon:
to each surface in a bimorph arrangement. The two substrates (whose stacking sequened8s]asn{D/
[+30,/0]y) were constructed from Hercules AS4/3501 Graphite/Epoxy and were designed for the lamina
composite substrates to increase transverse bending and to produce twist through bending/twist coupl
The dimensions and structure of the system are from Crawley and Lazarus (1991): the ler2fR msm
along they axis, widthC=152mmalong thex axis, and the plate thickness is Or881 10 of the biomorph
actuator pairs are 51xstimwhile the other 5 pairs are 25xB1m all with thickness 0.25nhm The plate is
cantilevered along theaxis (boundary conditiop=0).

Three characteristic magnitudes are studied: 1) nondimensional longitudinal béhadMg/C; 2)
twist in radians\,=(Ms—M,)/C; and 3) fractional transverse chamié=[M—(Ms—M,)/2])/C. M; andM3
are the deflection measurements at the outer transverse Bigeshe plate centerline deflectio€ is the
width of the plate. The validity of the 2D solution can be seen from Figures 4, where the current 2
solution is compared to experimental data (from Crawley and Lazarus, 1991) and to a 3D solution (F
Keilers, and Chang, 1992). The48b]; substrate case is shown with applied voltage field\384m the
[+30./0]s substrate case is similar. Figure 5 shows the deflection for t#5]0thin plate, with the vertical
scale enlarged. The maximum deflection is G1#@ The results calculated from the 2D simplified thin
plate model show good agreement with the experimental data and the 3D model. The predifias for
very close to the data, like the 3D model predictidhalso agrees closely with the data, better than the 3D
case.W; agrees well initially with the experimental data but both 2D and 3D models diverge from the dat

far from the clamped edge.
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Figure 5. Plate Deflection for Figure 4 Example

Computational efficiency is greatly increased via the 2D model. Such efficiency will be a key factor fo

real-time vibration control and optimal design of large piezoelectric sensor/actuator structures. Table
compares the element size (and overall problem size in parentheses) in terms of number of nodes, numb

mechanical and electrical degrees-of-freeddmadf and Edof respectively), and the size of the stiffness

matrix K.

Table 1. 2D and 3D Model Comparison for Element Size (and for Problem Size)

Model Nodes Mdof Edof K Order
2D DKQ 4(187) | 12(561) 1(15) 12(561
3D (Ha, 1992) 8(374) 24(1122 4(374 32(1496)
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OPTIMAL SHAPE CONTROL

The deflection of a composite plate is a function of the geometry and material properties of tr
piezoelectric actuators, the applied voltage, and the layout and number of the piezoelectric actuators on
plate. This section presents three different optimal shape control solutions: determination of optimal ing
actuator voltages, determination of the optimal layout of actuators on the plate, and determination of optir
number of actuators, all to obtain a prescribed deflection shape. These optimization procedures employ
model and FEM solution developed previously.
Applied Voltage Optimization

Let the number of actuatopsbe less than the number of noaesvhere deflection$V are to be
controlled. In the general case the desired deflectignsannot be satisfied exactly and the error vector is
e=W-Wy. The map between the vecdrof input voltages and the vectdr of output deflections is linear
given the actuator layout:

W =W, +W. +CV (26)
whereWr, is the deflection due to the surface tractMh,is the thermal deflection, and column vectoyof
matrix C are the output nodal deflections when a unit voltage is applied 3" thetuator with all other
voltages zero. The nodal deflectidiWsare expressed by defining a selecting m&ifiar the nodal variables
g (using Equation (23)):

W = Sq=SK™'F,, + SK™'F, + SK™'L°P, .V (27)
and so the terms for Equation (26) are:

W, = SK™F,, W, = SK™'F, C=SK'L°P, (28)
whereK is the global FEM stiffness matrik;, andFr are the surface traction and thermal forégsjs the

matrix which maps the voltages of elements to the voltages of actvéicrs .V , and:

Le

(GRS GY A W (29)
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where P are the columns of the matriR® which relates the contribution of the element stiffness matrices
to the global stiffness matrixLs is given in Tong (1997).

For applied voltage shape optimization, a quadratic cost funiéidiv))=e'Qe must be minimized,
wheree is the deflection errdV-Wy andQ is a positive-definite diagonal weighting matrix. The constraints
are the governing equations and boundary conditions (Equation (16) and one set from Equations (17-z
simplified as discussed earlier). Since nodal deflectivrisave been solved in terms of input voltayes
the equality constraints are merged into the expression of the cost fuif¢i(d)). The upper and lower
bounds of thep actuator voltages\7 andV, can be expressed ap Bnear inequality constraints owi.
These constraints can be written in matrix formrk®sR<0 wherek is a 2xp matrix andR is a vector of
actuator voltage bounds. The applied voltage shape optimization problem is stated as:

Minimize: f(v)=MW-w,) Qw-w,)

Subject to: kV-R<0
For V" to be a local optimum for this problem, Kuhn-Tucker multipliers (Minoux, 1886)exist such that:

OfF (VO +A'0(kV°-R) =0 A(kV-R), =0 i=12:--2p (30)
whereA is a x1 vector and] is the gradient. We must solve:

2C"QCV +Kk'A =2C"QW, -W, —W,) (31)
for V, subject to constrain®e0 andA;(kV'=R);=0, wherei indicates thé™ element of\ and kKV'~R), not a
Kronecker summation.
SinceQ is a positive-definite diagonal matrix, the cost functiQf is strictly convex. The search

space of the input voltag&sis a strictly convex set. Hence, the solution of this optimization problem is a

global minimum and it must be unique.
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Actuator Location Optimization

More generally, the location of the actuators on the plate may also be determined to control sha,
The actuators are best placed in the regions of high average strain and away from strain nodes (areas of
strain, Crawley and de Luis, 1987). Finding an optimal layout of the actuators using continuous coordina
is very complicated. Therefore, possible actuator locations will be preassigned through a eédiimary
variables whose elements are 1 to indicate the presence and 0 the absence of an actuator. In this cas

deflectionW is a function ofo through the matrix:

C(a) = SK (a)L(a) (32)
K(a)=K, +[KiPa K:Pa - KuP.al (33)
K, = nZQ(F?E)T KsP® L(a) = L°Diag(P,.a) P, (34)

where the subscrigindicates the plate global stiffness maKixomposed of substrate material orIK/., IS

a matrix formed byi (from 1 to ng columns of the transformed element stiffness matrices,
(P*)T (K5 — KS)P®. Pyeis a matrix likePae, mapping the possible locations to the eleméhtis given in
Equation (29), an®iag(Ppea) is a diagonal matrix whose elements are the intermediate layout variables.

The actuator location shape optimization problem is written as a quadratic, nonlinear, integer mixe

mathematical programming problem:

Minimize: f(v,a)=W(a)-w,) eWw(a)-w,)

Subject to: kV -R<O0 a=0orl Zai =p

wheren, is the number of possible preassigned locations.
The existence of the solution of this optimization problem under a given laye\it, is also given

by the Kuhn-Tucker necessary condition and again Equation (31) must be solvea.sdlbh#on searching
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is an outer loop optimization problem. When the/ solution is obtained both the layout of actuators and
the voltages applied on the actuators are optimal.

This optimization problem is highly nonlinear. The solution methods depend on the number c
actuator pairs, their possible locations, and the constraints. Certain integer mixed optimizatic
programming (such as the Branch-and-Bound technique) may be used to reduce the feasible solution spa
Number of Actuators Optimization

Mp

By changing the constrainz a,=p in the actuator location shape optimization problem to

Np

ps< Zai SE where E and p are the upper and lower bounds fgrthe number of actuators shape

optimization problem results. The problem of the optimal number of actuators becomes a new outer |0
and thea~V" solution searching will be more complicated.
Optimization Results

A Matlab computer code OPSC (optimal shape control) has been developed to implement the th
types of shape optimization discussed above. For solution algorithm details and a flow chart see Tc
(1997). Two numerical examples are presented in this section, one for the applied voltage she
optimization problem and the other for the actuator location shape optimization problem.
Applied Voltage Shape Optimization Example

The actuator/plate system for this example was presented by Ha, Keilers, and Chang (1992). T
substrate material is T300/976 composite with a stacking sequencet4$’]@/ The fifteen biomorph
piezoelectric actuators are PZT G1195N, surface bonded. Two edges of the plate are simply supported \
y=0 pinned and/=372 on rollers while the remaining edges are free. The length3i82 mmalong they
axis, widthC=228 mmalong thex axis, and the plate thickness is OrBy all biomorph actuator pairs are

60x60mmwith thickness 0.181m The plate was exposed to a temperature increase€of{felative to the

17



zero strain temperature) on the top and a drop U 50 the bottom. Only the steady-state case of thermal
equilibrium is considered. The maximum transverse displacement is 1.70 mm which occurs at the pl;
center under the given conditions. The desired deflection is zero at all nodes.

The optimal input voltages and resulting deformation of the plate were determined by the OPS(
The characteristic nondimensional deflectidds W,, andW; are shown in Figure 6. For comparison, the

results of applying uniform input voltage to all actuators are also shown in this figure.

-4
x 10

wi, wz, w3

-12

Figure 6. W, W5, and W for Optimal 6olid) and Uniform ashedl Voltages

In Figure 6 Wy represents the uniform voltage results, wkjeare the optimal voltage results. The
uniform input voltage case sacrifices the fractional transverse chafbeand controls the longitudinal
bendingWyy. But with applied voltage optimization the controlWf has to be tightened instead \&f
sinceWs is more significant tha;. Also, the maximum nondimensional deflectidihof the optimal case
is roughly 50% of\sy in the uniform voltage case. The uniform voltage case causes large deflections alor
the two free edges of the platés, andW, are small and close to each other.

Figure 7a (left) shows the deflection condition for the thin plate under thermal loading with nc
actuation. Figure 7b (right) shows the same thin plate under optimal voltage shape control. The vertis

scales are enlarged.
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Figure 7. Optimal Voltage Example Deflections

More actuator pairs are desirable to achieve the target shape. But a large number of actuator
neither practical nor economical. Therefore, the second example presents actuator location optimization.
Actuator Location Shape Optimization Example

This example solves for the optimal layout of the specified total nine actupt®)st¢ minimize
thermal deformation of a laminated composite thin plate. The system has the same dimensions, matel
and thermal environment as the previous example, but with two differences: 1) the actuators are surf
embedded instead of surface bonded; and 2) the four corners are simply supported (one pinned at the o
and the other three on rollers). The fifteen possible preassigned actuator locations are from the previ
examplen,=15. Again, the desired deflection is zero at all nodes.

Voltage constraints (ignored in the first example) are important. Before solving this nine-actuatc
layout problem, the fifteen optimal input voltages from the first example are checked for infeasible voltage

The results are given in Table 2, whose entries are arranged in the same manner as the actuators on the

Table 2. Optimal Input Voltages (Electric Fields) for 15 Actuators without Voltage Constraints V (V/mm

85.0 -36.2 29.7 5.2 50.7
(656.9) (-278.5) (228.5) (-40.0) (390.0)
140.0 59.3 113.7 59.3 140.0
(1076.9) (456.2) (874.6) (456.2) (1076.9)
50.7 5.2 29.7 -36.2 85.0
(390.0) (-40.0) (228.5) (-278.5) (656.9)
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The maximum fields (1076.9 V/mm) reach 90% of the 1200 V/mm coercive field at which the
G1195 piezoelectric will depolarize. The actuator location optimization solution with no voltage constraint

for the nine actuator problem are given in Table 3. Three out of nine exceed the coercive limit.

Table 3. Optimal Layout and Input Voltages (and Electric Fields) for 9 Actuators

without Voltage Constraints V(V/mm)

534 | @ - 551 | - 56.5
(411.8) (-423.8) (434.6)
223.2 | - 243.2 | - 232.3
(1716.9) (1870.8) (1786.9)
539 | - | e -73.9 75.0
(414.6) (-568.5) (576.9)

Therefore, the optimal layout and input voltages solution is repeated with voltage coigatdR0t
(V) which is 76.9% of the coercive field for each piezoelectric actuator. The results are given in Table

Only one actuator location has changed but the voltages are different (six inputs reach the maxijum 120

Table 4. Optimal Layout and Input Voltages (and Electric Fields) for 9 Actuators

with Voltage Constraints V(V/mm)

1200 | - -14.7 | - 104.5
(924.0) (-113.2) (804.6)
1200 | - 120.0 120.0 120.0
(924.0) (924.0) (924.0) (924.0)
120.0 | - | e | - 91.8
(924.0) (706.9)

Like Table 2, the entries of Tables 3 and 4 are arranged in the same manner as the actuator pair
the plate. Figure 8a (left) shows the deflection condition for the thin plate under thermal loading with n
actuation. Figure 8b (right) shows the same thin plate with optimal actuator layout and optimal voltag
shape control. Again, The vertical scales are enlarged.

Now the actuator layout design and the determination of optimal input voltages are both improve

when compared to the first example above because the quadratic cost function value is lower. Tabl
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shows the maximum positive and negative transverse displaceM&pntsandWyn) and the cost function

e'Qevalue for each case in the two examples.

Figure 8. Optimal Actuator Layout Example Deflections

Table 5. Applied Voltage (V) and Cost Functid®e Values (mf) for the Optimization Examples

Optimization Example Wa(mm) | Wun (mm) | éQe (mm)
Example 1 No actuatio 1.70 0 162.20
Table 2 0.07 -0.13 0.46
Example 2 No actuatio 6.25 0 3100.00
Table 4 0.65 -0.73 18.10

For both optimization examples presented (optimal input voltages of Table 2 and optimal layout ar
input voltages of Table 4), the maximum transverse displacements and the cost function values

dramatically improved compared to the non-actuated cases. The Table 3 results are not given in Tab

since that case (unconstrained input voltages) was infeasible. Again, the desired d&flestaamo at all

nodes. For all examples in this article (including Figures 4 and 5) the thin plates are discretized into 1

DKQ FEM elements (10 alongand 16 along); this corresponds to 187 nodes (17 times 11) where the

deflectionW s controlled.

The number of actuators optimization can also be performed by OPSC, taking the inactivate

actuators as extra layers of laminae of different material.
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CONCLUSION

Analytical models, FEM solution, and shape optimization was presented for a thin composite pla
with piezoelectric actuators surface embedded or bonded in a bimorph arrangement. The 2D DKQ FE
formulation is accurate in predicting deformation and more efficient and simpler than existing 3D model
Three optimal shape control problems have been formulated and solved, the applied voltage, actuator lay
and actuator number shape optimizations. The applied voltage problem requires linear mathemati
programming but the actuator layout and number problems require integer-mixed highly non-line:
mathematical programming. Two numerical examples were presented, for the first two optimizatio
problems. A novel method using a vector of binary variables is introduced for the second two problern
These optimization techniques may be used for both optimal design (actuator layout and actuator num
optimization) and for on-line optimal shape control (applied voltage). A Matlab computer code OPSC h:
been developed for designing large-scale laminated structures containing distributed piezoelectric actuz:
biomorph units. Compared to previous research work with 3D models, it was found that the efficiency at
the simplicity of the 2D DKQ FEM model was critical for solving large-scale shape design and optimizatiol
problems. The present methods may readily be extended to dynamics and vibration analyses for

actuator/plate system.
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