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ABSTRACT planar parallel robot. Gosselin et.al. (1996) present the position,
workspace, and velocity kinematics of one planar paraltetr
This paper presents algebraic inverse position and velocity Recently, more general approaches have been presented.

kinematics solutions for a broad class of three degree-of-freedom Daniali et.al. (1995) present an in-depth study of actuation schemes,
planar in-parallel-actuated manipulators. Given an end-effector pose Velocity relationships, and singular conditions for general planar

and rate, all active and passive joint values and rates are calculated?@rallel robots. Gosselin (1996) presents general parallel computation
independently for each serial chaionaecting the ground link to the ~ &lgorithms for kinematics and dynamics of planar and spatial parallel
end-effector link. The solutions are independent of joint actuation. robots. Merlet (1996) solved the forward position kinematics problem

Seven serial chains consisting of revolute and prismatic joints are for a class of planar parallel robots (see Fig. 1).

identified and their inverse solutions presented. To reduce

computations, inverse Jacobian matrices for overall manipulators are ';@A

derived to give only actuated joint rates. This matrix yields conditions B . T =2
for invalid actuation schemes. Simulation examples are given. =250

Parallel manipulators are robots that consist of separate
serial chains that connect the fixed link to the end-effector link. The
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following are potential advantages over serial robots: better stiffness P A,
and accuracy, lighter weight, greater load bearing, higher velocities Ay -
and accelerations, and less powerful actuators. A major drawback of @/ﬁl

the parallel robot is reduced workse.

Parallel robotic devices were proposed over 17 years ago
(MacCallion and Pham, 1979). Some configurations have been built
and controlled (e.g. Sumpter and Soni, 1985). Numerous works
analyze kinematics, dynamics, workspace and control of parallel
manipulators (see Williams, 1988 and references therein). Hunt
(1983) conducted preliminary studies of various parallel robot
configurations. Cox and Tesar (1981) compared the relative merits of
serial and parallel robots.

These past works have focused on only a few different
architectures. For example, Aradyfio and Qiao (1985) examine the
inverse kinematics solutions for three different 3-dof planar parallel
robots. Williams and Reinholtz (1988a and 1988b) study dynamics
and workspace for a limited number of parallel manipulators.
Shirkhodaie and Soni (1987) , Gosselin and Angeles (1988), and
Pennock and Kassner (199€ach present a kinematic study of one

Figure 1. General Class of Manipulators

The current paper presents a purely algebraic approach to
solve inverse position and velocity kinematics for Merlet's class of 3-
dof planar parallel manipulators. Geometric approaches have been
applied with success in the past for specific architectures (e.g.
Williams and Reinholtz, 1988b and Gosselin and Angeles, 1988). The
algebraic methods in this paper are suitable when one desires
kinematic solutions for control of all members in a broad class of
planar parallel manipulators. For instance, the current paper would
enable implementation of modular reconfigurable 3-dof planar parallel
manipulators.

This paper is organized as follows. First, the class of
manipulators is discussed. Next the general inverse position
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kinematics solutions are presented, in terms of independent solutions
for all possible serial chains. The general inverse velocity solutions are

For an overall manipulator, there are three independent serial

presented, singularity conditions are presented for each chain, and thehains, each having seven possible configurations. TheBalaré?)
overall inverse Jacobian is derived. Determination of invalid actuation robots (the number is considerably lower if the ordering of distinct
schemes is presented. Simulation examples are given for position ancthains is not considered important). A general method is required to

velocity.

CLASS OF MANIPULATORS

Overall Manipulator

The class of manipulators in this paper are planar and
actuated in parallel. Three serial chains with 3-dof eacimect the
fixed link to the end-effector link. One joint per chain is actuated and

solve inverse kinematics for all.

INVERSE POSITION KINEMATICS SOLUTIONS

The inverse position kinematics problem is stated: Given

the end-effector poséx y (p}T, calculate the three actuated joint

the remaining two are passive. The active and/or passive joints may belR or P) values. The passive joint values may also be determined for

revolute R) and/or prismaticK) (see Fig. 1). If serial chainis RPR
there is a revolute joint &, one of the two binary links is variable,
the angle aB; is fixed, and there is a revolute jointGt

Serial Chains

When solving the forward position kinematics problem for
this robot class the actuated joint @ach serial chain must be
specified. Merlet, (1996) identifies eighteen possible serial chains,
given in Table 1. Underlining indicates actuation.
three joints in a chain may be actuated unless the remaining passive
joints arePP. Therefore, the combinatiol®PP, PRP, and PPR are

omitted from Table I.

Any one of the

RRR | RRR | RRR | RRP | RRP | RRP
RPR | RPR | RPR | RPP | RPP | PRR
PRR | PRR | PRP | PRP | PPR | PPR

Table 1. Actuated Serial Chain Combinations

The PPP chain is not used because only two plaPgmints
For the inverse position problem of the

in a chain are independent.

current paper, the actuation scheme does not affect the solutions. Table

1 reduces to seven chains, given in Table 2 and Fig. 2.

| RRR| RRP]

RPR RPP PRR PRP PPR

Table 2. Serial Chains for Inverse Kinematics

Figure 2. Seven Serial Chains

use in velocity, acceleration, dynamics. The inverse position problem
may be solved for each serial chain independently. The solution is not
dependent on joint actuation.

The kinematic diagram for th#" chain is Fig. 3, for all
seven chains in Fig. 2. Equation 1 is the position vector equation for
and Eq. 2 is the angle relationshig; (are defined in Fig. 4).

0y
Figure 3. Kinematic Diagram for all Seven Serial Chains
[xO - (0,46, (6,46, +6
E-Bha Lo elrnls ydoren)
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C1
Figure 4. End-Effector Triangle Geometry

The inverse kinematics problem requires three independent
inverse solutions, one for each serial chain. Thaupted
transcendental Egs. 1 and 2 must be solved three tinigg,3. If
joint k on chaini is revolute, §; is variable; if jointk on chaini is

prismatic, L; is variable. The remaining terms are fixed.

The given manipulator pose fixes the position and
orientation of the end-effector triangle in the plane. HEadh:

Cix = X+ Lg co{p+y;)

Cy = y+ Ly sin(p+y;) @
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Making use of Eq. 3 and expanding Eg. X Bndy components:

Ay L+ Ly cp= Gy

4
Ay +lys+ Ly 5o= G @

where ¢, = coff; +6,) and s, =sin(f5 +63). Equations 4 and

into they equation and greatly simplified to the Eq. 5 form, wHgre
F, andG are Eqg. 11. Twdg; are found from Eq. 6.L;; may now be

evaluated from Eg. 10, ané; from Eqg. 2. There are two solutions
but one has negativey; .

Cx — Ax ~ Li(ac- 59)

2 are three equations in three unknowns to solve for each of the three

serial chains in a given manipulator.
given below for the seven serial chains.

RRR_Chain Given {x y (p}T, determine 6;,65 ,6; .

Isolating 64 + 84 terms in Egs. 4, squaring and adding yields Eq. 5 in

6;,. Equation 6 is solved forB; using the tangent half-angle

Inverse position solutions are

Ly = 2 (10)
E=G - A
F=Ac— Gk (11)
G=-Li%

RPP Chain Given{x y (p}T, determinefy,L3,L; . A

substitution (Mabie and Reinholtz, 1987); the result is Eq. 6. There unique 85 is found from Eq. 2. Eqgs. 4 are then two linear equations

are two solutionselbowup andelbowdowr). For each;, a unique

6, is found by ay to x ratio of Eqgs. 4, given in Eq. 7. For each

(64,65 ), auniqueby is found from Eq. 2.
E=2(Gx~ Al
EC1+ FS_"' G=0 E :Z(Ciy _ Ay) Llj (5)
6=~ L%~ (G - A) (G - %)2

HFxVE2+ F2-G%H .
g = ] ©)

Oy, , = 2tan’t

6, =atan2(Cy ~ A - lis,, G~ A~ b g )0, O

RRP_Chain
Equation 2 is rewrittenfy =¢; —64
@+yY; —05 —m. Egs. 4 are simplified to eliminat@y; . Ly is

isolated in thex equation (Eq. 8) and substituted into yhequation to
give the Eq. 5 form, wherg, F, andG are Eq. 9. Two values fo;

Given {x y (p}T, determine 6,65 ,L, .

where ¢; is the constant

are obtained using Eq. @, and L, may now be evaluated from
05 ={; —01 and Eq. 8. The two solutions correspond &harter
andlonger L,; joint length.

Lo = Cx Al AC}_ liG (8)
E=Ly;s
F=-Lycq 9)

G=(Cy - Ay + A~ G

RPR Chain Given{x y (p}T, determine;, Ly ,0; . The
A terms of Egs. 4 are brought to tRelS sum of angles formulas are
used, andly; is isolated in the equation (Eq. 10)Ly; is substituted

in the unknownsly;, Ly with a unique solution.

(- A2 (G- A) e

Ly = (22)
S
L - (G - Ax)a;(cy— A)e 3

PRR Chain Given{x y (p}T, determinely;,6,,65 . The

solution starts with Eq. 11 (and Eq. 6) of tREPR In this case the
variable to be solved i8,; , not the constan@; . Two solutions exist,

anear (Eq. 21) andar (71— 65 ) solution. Ly and 85 are solved
using Egs. 10 and 2.

(Cx-A)srlae=(G - 4)e (14)

65 =sin (15)

HCy - Ay ) - (G- A 5]
H L H

PRP _Chain Given {x vy (p}T, determine Ly;,05,L3 . A
unique 6,; is found from Eq. 2. The remaining unknowhg and
L, are found from Egs. 12 and 13.

PPR Chain Given{x y (p}T, determinely, L4 ,0; . 6; and
6,; are constant so the unknowhg and L, are found from Egs.
12 and 13. A uniquéy; is solved with Eqg. 2.

Overall Manipulator
For the inverse position kinematics problem for all 343
robots, the three serial chains are solved independently. Given the

commanded poséx y (p}T, Eq. 3 is used. Then the unknown

joint parameters for each serial chain are solved Hyosing the
proper algorithm from above. The number of inverse position
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solutions is the product of the number of solutions (1 or Daich
serial chain.

INVERSE VELOCITY KINEMATICS SOLUTIONS

The inverse velocity kinematics problem is stated: Given the

end-effector rate commandX ={x wZ}T and all position

variables, calculate the three actuated joiR ¢r P) rates.
Additionally, the passive joint rates may be determined for use in
acceleration and dynamics. The inverse velocity problem may be
solved for each serial chain independently. The solution is not
dependent on actuation scheme.

Velocity relationships for each independent serial chaire
obtained from the first time derivatives of Eqs. 1 and 2 (where the
indexi is dropped for notational convenience):

DXO_ ity 4 [ el (e (o Lo )y i d(6:+2)
%’E_ L je'%0, + Lg% + L, j¢ (61+62)+ [ + (16)

L3je1(el+92+93) (é1+92+93)+ I-_Bej(e1+ez+ag

w,=0=0,+0,+06, (17

Separating Eq. 16 into real and imaginary parts yieldx the
andy velocities. Note thatl'_g =0 becausd.s is part of the rigid

triangle link. The general translational and rotational velocities for all
seven serial chains are:

x=-Lsf,+ Lo- I—2§2(9 +6 ;"' Ly L§1{§ 16 56 )3
y=Lco,+ L+ chlz(e *+0 ;"’ Los;s+ L§1{§ 16 £6 )3 (18)

w,=60,+6,+06,
The velocity relationship for each serial chain can be expressed:

X=3p 19)
where X :{>'< y wZ}T is the Cartesian end-effector velocidy,is
thei™ serial chain 83 Jacobian matrix, angh; is the vector of joint

rates for thé™ serial chain (one active and two passReand/orP).
Since Egs. 18 are written with respect @ {coordinates, that is the

frame of expression foiX andJ. Jacobian matrices for each of the

seven chains are determined from Eqgs. 18 by zeroing terms that do not
Jacobian matrices for each of the seven

apply to a specific chain.
serial chains are:

Ou Ji2 113 O 12 €0 Ou € Jid
RRR i | o i d oo
RRR Hxn 22 JoRRP o1 22 S1agRPRHx S1 o
91 1 1§ H1 1 o B1 o 1f

O € Cpp0 € jip 10

0 . -
ﬂ’%zl S slzgﬂ?% l2 Jaag

HL o 0 B 1 1f

© 2 Clz% [ Gy leB
ﬂ:% j22 SU.ZD ﬂ?\) % %2 j23[| (Eqs 20'26)
B 1 O0H B 0 1§
where: ji=—LS1— LSio— LS j12=~LS1— LSios
J13 = ~LS1oss Jaa= L1+ LLp+ LEaa Joo = LLpp+LE1ss

Jo3 = L&£12s Cipz= C05(91+ 0,+06 3) v S23 = Sir(el+ 0,+ 93) .
The inverse velocity solution for thiserial chain is:
P =X (27)

providing J; has full rank. These inverse Jacobians are presented
symbolically below for the seven serial chains.

g Lyg, L,S;, L,Ls;, E
RER LL,s, TLe - L, -LSi- LS, - L Ls# L9
? H Licy Ls '—1( Ls,+ LSSZQB
Gs, 6, -L-Lg O
RRP EDS& -c, Lo+ L+ Leg
B‘icl LS, L1( Los,+ Lg%}H
RPR
-1 E S| -Q L3Co3 S
L, + L.c D_ Lic_l__ LZClZ - Llsl_ LZS_LZ - I—g LlsZS-"- LZSED
1t g g N - Lo- Lod
1 go 0 S, 0
RPP g%ﬁz -C, Lo+ L+ LBC3E
Hs o -L-Lo- Lo
%2C12 LS, LoLss, B
PRR L,c ! G -G
*Hs -0 Lo+ Lo
1 O, -G, Litles O
PRP —H0 0 s U
s 6 -Lo- Lod
1 Eﬁz -G, LG B
PPR —o2 & - L3C23[| (Eqgs. 28-34)
Ho 0 s H

The singularity conditions (cases wherénas less than full
rank) for each chain are determined as follows. First it is assumed that
L, #0 and L, # 0; these correspond to degenerate robot chains. The

RRR RPP, PRP, andPPR serial chains are all singular whesp =0
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(654 =0,m). The RRP and PRR serial chains are singular when The overall inverse Jacobian matkikmay not be invertible
¢, =0 (85 = +7/2). Note that in some cases the relative arfie based on a manipulator’s actuation scheme. Certain manipulators
27" ! constructed of three identical chains will prodidematrices with

is fixed so it can be designed to avoid the singularity for all motion, qumns of zero. For example, for &BProbot (wherg,=j,= j5=1):

where in other case8,; is variable. Thé&kPRserial chain is singular
when L, + L,c, = 0.
(38)
Overall Manipulator

The preceding section is sufficient to solve the inverse
velocity problem. Three appropriate inverse mappings (Egs. 28-34)

must be chosen, one for each independent serial chain. The Cartesiafr!€arly,M has rank one and is singular. The physical interpretation of
this mathematical singularity is that when the three actuated joints are

locked, the overall manipulator has an additional uncontrollable
active and passive, are solved. freedom. Due to this problem, certain parallel robots have invalid
However, the above procedure yields six passive results actuation schemes. This singularity condition is not configuration
which are not required for resolved-rate control. Therefore, for more dependent; the BPP robot has an uncontrollable fourth degree-of-
efficient real-time computation, a method is developed in this section freedom for all motion. Table 3 shows the invalid actuation schemes.

to map X into active joint rates only. This mapping is called the The actuated jointin each chairisderlined.
overall manipulator inverse Jacobian matrix.

0
M =50
&)

o O O
moos

rates X = {x y wZ}T are commanded to each chain; all joint rates,

In this case, the actuated joints must be considered.j"The | RPP [ PRP | PPR |
row of the seven serial chain inverse Jacobian matrices (Egs. 28-34)
represents the mapping of the end-effector’s velocity toj'theint. Table 3. Invalid Serial-Chain Actuation Schemes
Therefore, for any robot configuration, its overall inverse Jacdidian
may be constructed from the rows corresponding to the actuated joints Merlet (1996) states thateach joint of a chain may be
in each independent chain. The&3natrix is built from actuated rojw actuated [provided] the chain obtained when locking the actuated
for each serial chain (j can be 1, 2, or 3 fdr1,2,3). Equation 35 joint is not of the PP typ& This rule, derived in the position domain,
gives the general overall inverse Jacolivan is verified in the velocity domain as shown in Table 3. Any parallel

manipulator constructed with permutations of the serial chains in Table
3 has an invalid actuation scheme (not just for identical chains).

Op,. O 0O i X ) ; ; Lo /
[(’111 0 DROV‘( ll)ls‘chain %X u If a manipulator is not always singular, it is still subject to

[P2j, 0= IROW b)yna gy O (P=MX) (35) the serial chain singularity conditions identified previously. For a
EPSBB H?ov( B)y g %gz more complete treatment of planar parallel manipulator singularities,
cnamn see Daniali et. al. (1995), Sefriou and Gosselin (1995), and Merlet

. - - ho . (1989).
where p;  is the actuated joint rate (joiji} for thei™ serial chain and

ROW |} i, S the i row of thei® serial chain inverse Jacobian ~ SIMULATION EXAMPLES

matrix Ji"l. (Note this method is equivalent to the rate kinematics in An RPRRRRPRRrobot is arbitrarily chosen to demonstrate
: : - . P the inverse position solutions. This robot has 4 solutioxax?}, as
Gosselin et.al. (1996) wherdP+ BX =0 the relationship is thus - . . ; '
4 ( ) P shown in Fig. 5. Th&PPchain has a unigue solution, tR&Rchain
M=-A"B.) . . haselbowup andelbowdown solutions, and th®RRchainnear and
For example, consider @&RRRPRP-RRR manipulator. In

this robot, the third, first, and third joints, respectively, are actuated for
serial chains 1, 2, and 3%£3, jo=1, j5=3). The manipulator overall St e St PR vt ot 9.,
inverse Jacobian matrix is given in Eq. 36: e /]

0,0 Jole  sio (Ls+lysy) ofxn SVANDE
040 -0 NS
A, 0=0s /s, —a/ s, (L+ we) s Dyd @6
Dol Bl s 8/ ks, (Lst s}/ L s

Invalid Actuation Schemes S e oo § PP REAPRR o

The matrix M maps Cartesian end-effector velocity into
actuated joint velocities. M is invertible, the forward velocity B
kinematics problem for the overall robot can be solved. NE

X=M7p (37)

Figure 5. Four Solutions for RPP-RRR-PRR Manipulator
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