
1

A NUMERICAL ALGORITHM FOR SOLVING
MANIPULATOR FORWARD DYNAMICS

Hajrudin Pasic
Robert L. Williams II

Chunwu Hui
Department of Mechanical Engineering

Ohio University
Athens, OH 45701

Mechanism and Machine Theory
Vol. 34, pp. 843-855

1999

Contact author information:
Robert L. Williams II
Assistant Professor
Department of Mechanical Engineering
257 Stocker Center
Ohio University
Athens, OH 45701-2979
phone: (740) 593 - 1096
fax: (740) 593 - 0476
email: bobw@bobcat.ent.ohiou.edu
URL: http://www.ent.ohiou.edu/~bobw

2

A NUMERICAL ALGORITHM FOR SOLVING
MANIPULATOR FORWARD DYNAMICS

Hajrudin Pasic 1

Robert L. Williams II 2

Chunwu Hui 3

Department of Mechanical Engineering
Ohio University
Athens, Ohio

ABSTRACT

A new algorithm is presented for iterative solution of systems of nonlinear ordinary

differential equations (ODEs) with any order for multibody dynamics and control problems. The

collocation technique (based on the explicit fixed-point iteration scheme) may be used for solving

both initial value problems (IVPs) and boundary value problems (BVPs). The BVP is solved by first

transforming it into the IVP. If the Lipschitz constant is large and the algorithm diverges in a single

(‘long') domain, the domain is partitioned into a number of subdomains and the local solutions of the

corresponding BVPs are matched either locally (in parallel) or globally. The technique is general

and may be applied to general systems of ODEs in any field. As an illustration, the forward

dynamics problem of a manipulator is solved as an IVP and then as a BVP.

1 Professor.
2 Assistant Professor, Corresponding Author.
3 Graduate Research Assistant.

3

1. Introduction

When solving multibody dynamics and control problems one is to solve the nonlinear

second-order system of ODEs, either as IVPs or BVPs. Many past works have presented efficient

methods for solution of the computed torque (inverse dynamics) problem (e.g. [1]). Fewer methods

are available for solution of manipulator forward dynamics and most focus on the IVP problem

[2,3,4].

One of the most popular methods for solving the general BVP is the shooting method [5]. In

the so-called simple shooting, one turns the BVP into the first-order IVP and tries to get the solution

based on a set of unspecified initial conditions which are then corrected through an iterative

procedure which uses the Newton method, satisfying the boundary conditions. This procedure

requires the transformation into state-space form and also requires expensive evaluations of the

Jacobian. The success of the procedure depends on a good initial guess.

In problems with large Lipschitz constant, the single shooting fails and one has to use the

multiple shooting method [5]. It consists in partitioning the domain into a n small subdomains and

matching the local solutions found by the Runge-Kutta method. The matching procedure is based on

the Newton method and when applied to a system of m second-order equations results in matrices

whose dimension is 2m(n+1) and is therefore expensive.

In this paper, we present an alternative procedure for finding both local and global solutions

of the BVP recently developed by the first author [6,7], and show how it may be implemented in

second-order ODE systems. The approach has much in common with the shooting method. The

solutions of the local BVP is also found by transforming the BVP into the IVP. However, the

boundary conditions are kept satisfied at all times while the resulting nonlinear system is solved by

4

fixed-point iteration. In this way, even very complicated boundary conditions may be easily handled

and the expensive evaluation of the Jacobian is avoided. The procedure has a lower (linear)

convergence rate and somewhat shorter convergence interval. The first problem may be overcome

by using some of the well known acceleration techniques [5]. We have found the technique

presented in this article very simple, easy to program and very robust. Also, the solution outcome

does not depend on the initial guess.

If the system of ODEs to be solved has a large Lipschitz constant, i.e., when solutions in

‘long’ domains are sought, just as in multiple shooting, the domain is partitioned into a number of

shorter ones. Then one solves the BVPs, not IVPs as in the multiple shooting, and does the matching

only on the first derivatives. If n subdomains are used and a system of m second-order equations are

solved, the resulting Jacobian has dimension m(n+1), half that of multiple shooting.

In what follows we first discuss the forward dynamics problem of manipulators, then the new

algorithm for solving BVPs is explained. The forward dynamics of a planar RR manipulator is

solved first as an IVP and then as a BVP with this algorithm. Comparison is made with the shooting

methods.

5

2. Manipulator Forward Dynamics Problem

The equations of motion form for a serial manipulator is [8]:

)()(),()(tGVM τ=Θ+ΘΘ+ΘΘ ��� (1)

where τ(t) is the N × 1 vector of applied joint torques/forces, N is the number of joints, M(Θ) is the N

× N manipulator inertia matrix,),(ΘΘ �V is the N × 1 vector of centrifugal and Coriolis terms, and

G(Θ) is the N × 1 vector of gravity terms. ΘΘΘ ��� ,, are the N × 1 joint angle, rate, and acceleration

vectors. The independent variable is time t. For implementing numerical algorithms, equation (1) is

often written as:

),,()(ΘΘ=ΘΘ ��� tfM (2)

where)(),()(),,(Θ−ΘΘ−=ΘΘ GVttf �� τ . In many existing numerical algorithms for IVP and BVP

solutions [e.g. 9,10], equation (2) must be first rewritten as),,(1)(ΘΘ−Θ=Θ ��� tfM and further

expressed as a system of first order ODEs. Even though the inertia matrix is symmetric and positive-

definite (thus always guaranteeing the existence of the matrix inverse) the symbolic expression for

the inverse inertia matrix is quite complex for even the simplest manipulator. The new algorithm

presented can solve the forward dynamics problem in the form of equation (2), without the inverse

inertia matrix. Also, the new method can handle any order ODEs.

The forward dynamics problem (FDP) solves for the motion ΘΘΘ ��� ,, given the forcing

functions τ(t). Depending on the conditions given, the FDP may be solved as either initial value

problem (IVP) or the boundary value problem (BVP). The former solves forward dynamics for any

6

arbitrary time given initial conditions 00,ΘΘ � , and the latter solves forward dynamics for a specific

time interval given a mixture of boundary conditions involving initial and final positions and

velocities, i.e. ff ΘΘΘΘ �� ,,, 00 .

Equation (2) is difficult to solve because it is nonlinear, coupled, and multiple solutions may

exist to the BVP. Also it often exhibits stiff behavior. Previous work on the FDP of manipulators

has focused mostly on the algorithms for IVPs [2,3,4]. The Euler method and Runge-Kutta method

have been used to integrate equation (2). This paper studies the algorithms for BVPs of

manipulators. The BVP is of practical importance in pick and place tasks and other manipulator

applications.

7

3. New Algorithm for Solving BVPs as IVPs

Let the BVP be solving the system of m ODEs

()),,()(yyxfxyyA ′=′′ (3)

in the domain ex ≤≤0 , with 2m boundary conditions involving any linear combinations of the

values of y and y′ at x=[0, e]. If the boundary conditions are nonlinear, they may be linearized. In

equations (1) and (2), MAytx →Θ→→ ,, . The BVP algorithm presented here consists in

converting the BVP into a sequence of IVPs and solving them with the collocation technique [6]. If

the domain is long, this algorithm may fail. Similar to the case in which a single shooting must be

replaced by a multiple shooting [5], a technique similar to the multiple shooting method is used. The

domain is divided into n subdomains, and the BVP solution in each of them is found and then these

solutions are matched.

3.1 Transformation from BVP to IVP

Define a transformation

)()()(xxwxy ϕ+= (4)

where both w(x) and ϕ(x) are m ×1 vectors, such that

)()(

)()()(

xwxy

xxwxy

′′=′′
′+′=′ ϕ

(5)

8

i.e. 0)(=′′ xϕ and therefore, xaax
10

)(+=ϕ . The 2m unknown coefficients in the vectors a0 and a1

are to be found from the 2m boundary conditions. A similar transformation may be used in an ODE

of any order k [6], in which case 0)()(=xkϕ . If)(xw is chosen such that

0)0()0()0(=′′=′= www , then if the boundary conditions are satisfied, the required 2m coefficients

depend only on)(ew and)(ew′ . For example, for the system of the first boundary value problems

(FBVPs) with the boundary conditions y(0)=a and y(e)=b, where a and b are m ×1 vectors, we find:

a0=a a1=(b-a-w(e))/e (6)

Similar to equation (6) for the FBVPs, the transformation formulas for other types of BVPs may be

derived [6]. For general linear boundary conditions, the coefficients in)(xϕ may involve both

)(ew and)(ew′ . Thus, with the transformation defined by equations (4) and (5), the original

problem, equation (3), becomes:

()
0)0()0(

))(),(,,,()()(,

=′=
′′=′′

ww

ewewwwxfxwewwA
(7a)

where ())()(, yAewwA = and),,())(),(,,,(yyxfewewwwxf ′=′′ . This transformed problem is an

IVP if)(ew and)(ew′ are known. Many numerical techniques are available to solve equation (7a).

For instance, we may use a variation of the shooting method, in which Newton’s method is employed

to find)(ew and)(ew′ iteratively, and the Runge-Kutta algorithm is used to solve the resulting IVP

in each iteration. Additionally, the first author has recently introduced a new algorithm to solve

equation (7a), in which the fixed-point iteration is combined with the collocation technique to find

9

)(ew and)(ew′ and solve the resulting IVP [6]. With fixed-point iteration, equation (7a) is written

as:

()
0)0()0(

))(),(,,,()()(,

11

1

=′=
′′=′′

++

+

ii

iiiiiii

ww

ewewwwxfxwewwA
(7b)

Alternatively, equation (7b) may be rewritten into the following form which is more convenient for

practical implementation:

()
0)0()0(

),,()(

11

1

=′=
′=′′

++

+

ii

iiii

ww

yyxfxwyA
(7c)

When using the collocation technique to solve equation (7c), we have the freedom of choosing

proper collocation points to achieve higher accuracy. For example, if Gauss points are used, the

algorithm will have a global error of O(h2s) [10], where s is the number of collocation points and h is

the step size.

In [6] and many standard software algorithms for IVP and BVP, the matrix A(y) must be

symbolically inverted to the right-hand-side of equation (3). However, this restriction (which

generally results in complicated symbolic terms) is not necessary, Since ii yy ′, are known from the

previous iteration solution, both matrix A and the right-hand-side of equation (7c) are known.

)(1 xwi +′′ is then found from equation (7c) using Gaussian elimination.

An initial guess)(
0

xy is required which must satisfy all of the prescribed boundary

conditions. For example, it may be the solution to the equation ,0)(
0

=′′ xy i.e., xccxy
10

)(
1

+= .

Assume the boundary conditions are ay =)0(and bey =)(; then it can be easily found that c0 = a,

10

c1 = (b - a)/e. The iteration procedure is repeated until the following terminating criterion is

satisfied:

1
)()(

1
ε≤−+ j

x
i

y
j

x
i

y (8)

where i=1, 2, ..., is the iteration index, j =1, 2, ..., s is the collocation point index, and ε1 is the

prescribed tolerance.

3.2 Solving BVPs in Long Domains

If the Lipschitz constant is large, the convergence interval will be short [6]. In such cases, the

domain is partitioned into subdomains as shown in Fig. 1.

y(x)

ϕ 1
s1

s2 s3 sn-2

sn-1

x1 x2 x3 xn-2
xn-1 x

y(0)
y(e)

e

Figure 1. Domain Partitioning

We can try to solve BVP in each of these subdomains with any popular algorithm for BVPs

(including the new method presented above) and match the solutions so a smooth curve is obtained

11

in the whole domain. The matching may be done on either local level or global level. The former,

explained in detail in [7], is slower than the latter, but suitable for parallel processing, i.e., both local

(subdomain) solutions and their matching may be performed in parallel. The procedure with global

matching is explained below.

Assume that the interface values of the solution are s1, s2, ..., sn-1, where n is the number of

subdomains, then the following n BVPs are formed:

),,(yyxfy ′=′′
1−i

x ≤ x≤ i
x (9)

1
)

1
(−=− i

s
i

xy
i

s
i

xy =)(i = 1, 2, ... , n

where x0 =0, xn=e, s0=a, sn=b. If si, i= 1, 2, ..., n-1, happen to be the exact solutions at the interfaces,

then after solving the BVP in each subdomain, we would get the approximate solution in the whole

domain, the slope of which at each interface would be continuous. Otherwise, the curve is non-

smooth. In other words, the difference between the right and left derivatives at each interface is not

sufficiently small (as shown in Fig. 1). Define the error functions i
ϕ to be the difference in right and

left slopes:

)()(
i

x
l

y
i

x
r

y
i

′−′=ϕ i= 1, 2, ..., n-1, (10)

where)(
i

x
r

y′ and)(
i

x
l

y′ are the right and left derivatives of two neighboring domain solutions at

i
x . These errors are functions of the interface values s = { s1, s2, ..., sk-1}

T only, and they may be

written as vector ϕ :

12





















−

=





















−

==

)(
1

)(
2

)(
1

1

2

1

)(

s

s

s

s

nn
ϕ

ϕ
ϕ

ϕ

ϕ
ϕ

ϕϕ
��

(11)

Consequently, our problem becomes that of finding the solutions of the BVPs in n small subdomains

by using any appropriate techniques (including that described in Sec. 3.1) and enforcing the interface

values s such that ϕ = 0. This procedure yields a system of nonlinear equations that may be solved

iteratively using Newton’s method. The iteration formula is as follows:

iii

ii
J

sss

ss

∆+=+

−=∆

1

)(ϕ
(12)

where i is the current iteration number, J is the Jacobian, and i
s and 1+i

s are the interface values

vectors at the i-th and (i+ 1)-th iteration, respectively.

In the case of solving a single differential equation, s and ϕ are column vectors of length n-1,

where n is the number of subdomains. J is a (n-1) by (n-1) matrix, and its elements are defined as:

j
s
ijiJ

∂

∂ϕ)(
),(

s
= i, j =1, 2, ..., n-1 (13)

In general, J(i, j) is approximated by a finite difference quotient:

j
s
ijiJ

∆

∆
≅

)(
),(

sϕ
i, j =1, 2, ..., n-1 (14)

where:

13

)
1

,...,,...,
1

()
1

,...,,...,
1

()(−−−∆+=∆
n

s
j

ss
in

s
j

s
j

ss
ii

ϕϕϕ s (15)

j
s∆ is a small quantity, and its choice has significant effects on the accuracy, convergence rate and

stability of numerical methods. The reader is referred to [9,11] for detailed discussion on the rules

for choosing j
s∆ .

The calculation of)(s
i

ϕ∆ requires)
1

,...,,...,
1

(−n
s

j
ss

i
ϕ and)

1
,...,,...,

1
(−∆+

n
s

j
s

j
ss

i
ϕ

from solutions of the corresponding BVPs. When a specific component sj of the interface condition

is perturbed, only the solutions in the two neighboring subdomains are changed (see Fig. 1). The

three corresponding error functions, i.e., ,
1−j

ϕ j
ϕ and 1+j

ϕ will be perturbed. However, if j= 1

(or j=n-1), then only two error functions are perturbed, i.e., 1
ϕ and 2

ϕ (or 2−n
ϕ and 1−n

ϕ).

Therefore, the Jacobian is a tri-diagonal matrix. The computation of J may be simplified by means

of some techniques [5] to increase efficiency.

In the case of systems of BVPs, the interface value vector s and the error vector ϕ are formed

in the following way:

T
nm

s
n

s
n

s
m

sss
m

sss)
)1(

,...,
)1(2

,
)1(1

,...,
2

,...,
22

,
12

,
1

,...,
21

,
11

(−−−=s

T
nmnnmm

)
)1(

,...,
)1(2

,
)1(1

,...,
2

,...,
22

,
12

,
1

,...,
21

,
11

(−−−= ϕϕϕϕϕϕϕϕϕϕ (16)

where m is the number of equations. The first subscript denotes the number of the unknown

functions, and the second the number of the interface. For example, s23 is the interface condition of

14

the second unknown function at the third interface, and 23
ϕ represents the slope error of the second

unknown function at the third interface. The resulting Jacobian is a tri-diagonal matrix with block

elements:

































−−

−−

=

)1)(1(
000

)1)(2(000

0000

0
43

00

0
3332

0

0
232221

00
1211

nn
J

nn
J

J

JJ

JJJ

JJ

J

�

�

�

����

�

�

�

�

�

(17)

where:





















































=

mj
s

mj

j
s

mj

j
s

mj

mj
s

j

j
s

j

j
s

j

mj
s

j

j
s

j

j
s

j

ij
J

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

∂

∂ϕ

�

����

�

�

21

2

2

2

1

2

1

2

1

1

1

i, j = 1, 2, ... n-1 (18)

The size of the Jacobian is [m×(n-1)] × [m×(n-1)]. Since it has banded structure, the linear system

equation (12) may be efficiently solved by standard algorithms [9]. The matching procedure is

terminated when the norm of the error functions is less than a prescribed tolerance ε2:

2
εϕ ≤ (19)

15

4. Solution of Manipulator Forward Dynamics

To illustrate solutions with the proposed method, the two-dof RR planar manipulator of Fig.

2 is used. The forward dynamics problem (FDP) is solved as an IVP by the scheme of [6]. The same

problem is then solved as a BVP using the new algorithm and the shooting method.

Figure 2. Planar RR Manipulator

4.1 Dynamics Equations of RR Planar Manipulator

Denavit-Hartenberg convention [8] is used. Each of the two links in Fig. 2 has length l i, mass

mi, and mass moment of inertia about the center of mass Ii33, where i=1,2 is now the link index. The

vectors which locate the center of mass for each link are
i

c
l . The external end-effector

forces/moments are
T

3y
f

3x
ff





=

3 and z
nn
33

= . Using the Newton-Euler or Euler-Lagrange

methods the dynamics equations of motion equation (2) are derived, where { }T
21

θθ=Θ and:

()











=Θ

2212

1211
mm

mm
M ()













=ΘΘ
2

1,,
f

f
tf � (20)

Y 0

l 2

θ 1

θ 2

τ 1

τ 2

l 1

g

16

where:

2

2
223322

2
3

12
2

2
223312

2
2

12
22

2
2

2
12

2

1
123313311

c
lmIm

c
c

llm
c

lmIm

c
c

llm
c

lmlm
c

lmIIm

+=

++=

+++++=

y
fl

z
nc

c
glms

c
llmf

c
y

fls
x

fl
z

ncglm

c
c

glmc
c

glms
c

llms
c

llmf

32312
2

2
2

12
2

1222

2312313112

1
1

112
2

2
2

22
2

12212
2

12
2

11

−−−−=

−−−−

−−++=

θτ

θθθτ

�

���

The assumed parameters are: l1 = 0.40 m, lc1 = 0.20 m, l2 = 0.20 m, l c2
= 0.10 m, I133 = 0.2 kg-m2, I233

= 0.04 kg-m2; m1 =12 kg, m2 = 6 kg; f3 = [0 0]T, n3 = 0; and g = 9.81 m/s2. The prescribed joint

torques τ1 and τ2 are shown in Fig. 3.

0 1 2 3 4 t (s)

τ
1

τ2

τ (N-m)

0.4

0.1

Figure 3. Given Joint Torques

17

The FDP (for both IVP and BVP) in the current example is stated: Given the input joint

torques τ calculate the motion Θ.

4.2 Solving FDP as IVP

Taking the initial conditions to be { }T00)0(=Θ and { }T00)0(=Θ� , uniform subdomain

length 0.5, and the number of iterations iMAX=5, equation (2) is solved in the time domain [0, 4]. The

FDP solution is shown in Fig. 4. To avoid high acceleration which may result in a stiff problem and

great difficulty in numerical solution, the joint torques were chosen to be relatively small. Thus the

negative vertical gravity vector has a significant effect on the solution, and the motion of the links is

similar to that of a double pendulum. The same IVP was also solved with the Runge-Kutta method,

and the same solution of Fig. 4 was obtained.

18

Figure 4. Solution to Equation (2) as IVP

4.3 Solving FDP as BVP

Using the new algorithm, the FDP is solved in the time domain [0, 0.3] with the boundary

conditions { }T00)0(=Θ and { }T5915.01525.1)3.0(−=Θ (rad) where Θ(0.3) came from the

IVP solution. The result is the same as that of the IVP in the same domain (a small portion of Fig.

4). If we solve the BVP in the domain [0, 0.35], a solution different from the IVP result is obtained

as shown in Fig. 5. We can prove that this is also a solution to the BVP in the following way. After

solving the BVP, we know)0(Θ� . With this slope, we solve an IVP, and get the same solution in [0,

0.35] as that of the BVP. This example clearly illustrates the existence of multiple solutions, typical

0 0.5 1 1.5 2 2.5 3 3.5 4
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

t (s)

th
et

a1
,

th
et

a2
 (

ra
d)

theta1

theta2

19

of BVPs and nonlinear problems. For a longer domain, the solution diverges. This is because the

convergence is guaranteed only when the domain length is within a certain value as required by the

Lipschitz condition [6].

4.4 Solving FDP as BVP in Long Domains

Since the first approach did not converge in a longer domain, the domain partitioning and

solution matching scheme have to be implemented. The problem is now solved in the domain [0, 1]

with boundary conditions { }T00)0(=Θ , { }T8835.02332.2)1(−−=Θ . where Θ(1) came from

the IVP solution. The domain is divided into 20 subdomains of equal size and each of them has 3

Gauss collocation points. The solution of the BVP is the same as that of the IVP (the [0, 1] portion

of Fig. 4). The problem has also been solved in the domain [0, 1.5]. However, in this case, the

solution is different from that obtained from the IVP, as shown in Fig. 6. It is proved to be one of the

multiple solutions in the manner described above. The method fails to solve the BVP in a longer

domain. We notice that the derivatives of the solution of the IVP corresponds to very steep slope.

This may imply that we have a stiff system, which needs very small subdomain size if the solution is

possible with this method. Another reason is that Newton’s method is employed to solve systems of

nonlinear algebraic equations, which is convergent only if we have a good initial guess.

20

Figure 5. Multiple Solutions for BVP

The shooting method was used to solve the same BVP. The problem could be solved only in

the time domain [0, 1] and the results are identical to the IVP results in the [0, 1] portion of Fig. 6

(same as [0, 1] portion of Fig. 4). Beyond this domain the solution always diverged using shooting.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-2

-1.5

-1

-0.5

0

0.5

1

t (s)

th
et

a1
,

th
et

a2
 (

ra
d)

\

/

/

/theta1 (IVP)

theta2 (IVP)

theta1 (BVP)

theta2 (BVP)

21

Figure 6. Solution of BVP with Domain Partitioning

0 0.5 1 1.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

theta1 (BVP)
/

theta2 (BVP)
/

t (s)

th
et

a1
,

th
et

a2
 (

ra
d)

theta1 (IVP)
/

theta2 (IVP)
\

22

5. Comparison with the Shooting Method

It is difficult to make quantitative comparison between different numerical methods.

Therefore we discuss some aspects of these methods from the point of view of their practical

implementation.

As explained above, the algorithm presented here solves the BVP by transforming it into

IVPs. The number of function evaluations required for BVP is the same as that for IVP if the same

number of iterations and steps are used. In the simple shooting method, however, more function

evaluations are needed for calculating the Jacobian. Another good feature is that various boundary

conditions can be conveniently incorporated. For different boundary conditions, only the

corresponding transformations from BVP to IVP are different.

Some standard multiple shooting algorithms [e.g. 12] require that the analytical expression of

the Jacobian be provided by the user, which is very difficult if not impossible for a complicated BVP

involving the equations of motion of a manipulator. We use a multiple shooting program which

evaluates the Jacobian numerically.

In both the new BVP algorithm and the multiple shooting method, the domain has to be

partitioned into small subdomains, and the solution in each of them is found and matched. The

major difference between them is that the new algorithm solves the original systems as BVPs in

subdomains and matches these solutions according to the criterion of derivative continuity, while

multiple shooting solves IVPs and matches the solutions with the requirement of function continuity.

Consequently, for a system of second-order BVPs, the Jacobian for the multiple shooting has a

dimension twice that in our algorithm. Also, this new algorithm may implement the matching either

on the local or global level [7]. The former will be advantageous if parallel processing is used. Any

23

valid BVP algorithm (including the new algorithm presented) may be used to find the solution in

each of the subdomains.

6. Conclusion

A new algorithm has been introduced for solving forward dynamics problems of

manipulators. A planar RR manipulator is studied to validate the algorithm against the popular

shooting method.

When solving a BVP without partitioning the domain, we find the new algorithm more

efficient than the simple shooting because no Jacobian is required. This is especially true for systems

with a large number of equations. Also, the algorithm handles various boundary conditions with

ease. The weak point of this algorithm is its somewhat shorter domain of convergence.

When forward dynamics problems of manipulators are to be solved as BVPs over long

domains, the domain has to be partitioned into subdomains, and the problems are solved either as

multi-point IVPs (multiple shooting method) or as multi-point BVPs (the method presented). Both

schemes use Newton’s method to improve the solution iteratively and thus have to evaluate the

Jacobian. However, the size of the Jacobian in the former is twice as large as that in the latter.

As illustrated, multiple solutions may arise in non-linear ODE BVPs. Typically this occurs

when the BVP is solved in a domain whose length is close to certain critical value. Solution in a

longer domain will fail, no matter how small the step size is and how many subdomains are used.

This may be due to the stiff behavior of the manipulator system and/or divergence of Newton’s

method. These problems will be addressed in future development of this algorithm.

24

References

1. C.J. Li and T.S. Sankar, Mechanism and Machine Theory, 27 (6), 741 (1992).

2. B. Heimann and H. Loose, Mechanism and Machine Theory, 25 (6), 655 (1990).

3. K.W. Lilly, Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer Academic
Publishers (1993).

4. J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms,
Springer, (1997).

5. J. Stoer and R. Burlisch, Introduction to Numerical Analysis, Springer-Verlag, New York,
(1993).

6. H. Pasic, “Solving Boundary-Value Problems in ODEs by a Simple Transformation into the
Initial-Value Problems”, to appear in Mathematical Modeling and Scientific Computing, 8
(1997).

7. H. Pasic and Y. Zhang, “Parallel Solutions of BVPs in ODEs Based on Local Matching”, 8th

SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis (1997).

8. J.J. Craig, Introduction to Robotics: Mechanics and Control, Addison-Wesley Publishing
Company, Inc. (1989).

9. K.E. Brenan, S.L. Campbell and L.R. Petzold, “Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations”, SIAM (1996).

10. E. Hairer and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problem,
Springer, (1996).

11. J.E. Dennis Jr. and R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and
Nonlinear Equations”, SIAM (1996).

12. IMSL Inc., IMSL User’s Manual, (1992).

