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ABSTRACT 
 

This paper presents the inverse and forward pose kinematics 
solutions for a novel 6-dof platform manipulator, actuated by two 
base-mounted spherical actuators.  The moving platform is 
connected to the fixed base by two identical SPU (alternatively, 
SRU) serial chain legs.  The S-joint is active, and remaining two 
joints in each chain are passive.  The numerical Newton-Raphson 
technique is employed to solve the pose problems.  Unfortunately, 
the passive joint variables cannot be ignored in the pose kinematics 
solutions as they can for the Gough/Stewart platform.  Examples are 
presented and hardware has been built, using two Rosheim Omni-
Wrists on loan from NASA. 
 
1.  INTRODUCTION 
 
 Parallel robots have been proposed for some time now, due to 
their potential advantages over serial robots in high load bearing, 
acceleration, and stiffness, with lower moving mass.  A prime 
disadvantage is reduced workspace relative to serial robots.  Hunt 
(1983) did some of the pioneering work in this field.  Tsai (1999) has 
recently published a book giving a good overview of the mechanics of 
parallel robots. 
 A major type of parallel robot architecture is platform 
manipulators such as the well-known Gough/Stewart platform 
(Stewart, 1966).  This 6-degree-of-freedom (dof) platform is 
controlled by six prismatic legs, connecting the moving platform in 
parallel with the base.  Interestingly, this platform architecture that 
has become known as the Stewart platform never appears in Stewart 
(1966).  A related architecture is the variable-geometry truss (VGT), 
such as the double-octahedral design from NASA (Rhodes and 
Mikulas, 1985).  These two types of  parallel robot are designed to be 
loaded axially only; prismatic actuators are generally the control 
elements, and passive U and S joints are included to allow the proper 
freedoms.  These types of manipulators have been proposed and used 
in such applications as flight simulation, machining tools, assembly 
fixturing, entertainment, space structure modules, and robotic joints 
for long-reach manipulators. 
 Many spherical actuation devices have been built or proposed; 
most of these are developed for use as robotic wrist mechanisms (e.g. 

the offset "spherical" Omni-Wrist (Rosheim, 1987) and the truly 
spherical robot wrists of Roth and Lee (1995), and Stanisic and Duta 
(1990)).  More recently, various spherical motors have been 
developed (e.g. Wang et al., 1998, Lee et al., 1996). 
 The idea that led to the platform manipulator presented in this 
paper is that the (generally passive) spherical joints of a platform 
manipulator may be instead actively driven; then the remaining P, U, 
and other joints are passive.  Two active S joints are sufficient for a 
6-dof platform manipulator.  In this paper we introduce the 
SPherically-Actuated platform Manipulator, or SPAM for short.  
According to a search of the literature, this idea has not been 
presented before. 
 This paper focuses on the inverse and forward pose (position and 
orientation) kinematics solution for SPAM.  First, the new platform 
manipulator architecture is presented, followed by solution of the 
inverse and forward pose kinematics problems.  Trajectory examples 
are then presented to demonstrate these solutions. 
 
2.  PLATFORM MANIPULATOR DESCRIPTION 
 
 The parallel platform manipulator presented in this paper 
(SPherically-Actuated platform Manipulator, SPAM) consists of a 
fixed base and a moving platform connected by two serial chain legs.  
The platform is actuated by two spherical actuators mounted to the 
base.  Two variations are considered:  1) Two SPU (spherical-
prismatic-universal joint) serial chain legs, as shown in the CAD 
model of Fig. 1; and 2) Two SRU (spherical-revolute-universal joint) 
serial chain legs, as shown in the CAD model of Fig. 2.  In both 
cases, the S joints are actively actuated while the remaining leg joints 
are passive.  The U joints are fixed to the moving platform, while the 
P (or R) joints are between the S and U joints. 

The two manipulator versions are very similar; the only 
difference is in the kinematics of the passive R joint vs. the passive P 
joint.  For both versions, the mobility is calculated with the Kutzbach 
equation: 
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Figure 1.  Platform Manipulator, SPU Version 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.  Platform Manipulator, SRU Version 
 
 
Thus, this platform manipulator has 6 degrees-of-freedom (dof), 
actively provided by the two base-mounted 3-dof spherical actuators.  
By controlling the six spherical joint variables, general Cartesian 
poses (positions and orientations) may be reached within a limited 
workspace.  Additional constraining serial legs may be used, with all 
passive joints or another S actuator (redundant actuation). 

In our platform manipulator design, the two spherical actuators 
are two Rosheim Omni-Wrists (Rosheim, 1987), on loan from NASA 
Langley Research Center (see Fig. 3).  These robot wrists, originally 
developed for Space Station robots, are singularity-free, stiff, and 

capable of bearing high loads.  Each wrist provides �90�  in pitch 
and yaw motions, plus continuous, bi-directional roll  motion.  These 
wrists are not truly spherical since there is a wrist offset separating 

two sets of revolute axes; the kinematics of our platform manipulator 
are significantly simplified if truly spherical actuators are used (such 
as those presented by Stanisic and Duta, 1990; and Lee et al., 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  3-dof Omni Wrist 

 
 The forward and inverse pose and rate kinematics solutions with 
singularity analysis have been presented for the Omni-Wrist standing 
alone (Williams, 1990) and for the Omni-Wrist mounted as the wrist 
mechanism in a serial robot chain (Williams, 1999).  The idea that 
led to the project described in this paper is that the Omni-Wrist (or 
other spherical actuator) can be used as an active spherical joint in a 
parallel platform-type manipulator; S joints are traditionally passive, 
rather than active, in parallel robots. 

Just like the potted meat substitute, our SPAM robot may not be 
the most desirable platform robot architecture.  In more established 
platform manipulators such as the Gough/Stewart Platform (Stewart, 
1966) and variable geometry trusses (Rhodes and Mikulas, 1985), the 
robot is designed such that all loads are axial, avoiding by design the 
moment loading.  This is not the case with our active spherically-
driven platform; however, other platform manipulators from the 
literature with R-joint actuation suffer from this deficit as well.  Also, 
as stated previously, the Omni-Wrist is built to handle large moment 
loading.  Another SPAM shortcoming is that the inverse pose 
kinematics is not straight-forward as it is for the Gough/Stewart 
platform.  Despite these issues, we present the SPAM concept to 
explore spherical actuation of platform manipulators, due to the 
recent interest in development of spherical actuators.  The main focus 
of this paper is SPAM pose (position and orientation) kinematics, 
presented in the next section. 
 
3.  POSE KINEMATICS 

This section presents the inverse and forward pose (position and 
orientation) kinematics analysis for the SPAM robot.  Inverse pose 
kinematics is required for platform control, and forward pose 
kinematics is required for platform simulation and sensor-based 
control.  Pose kinematics is concerned with relating the active joint 
variables and the Cartesian pose variables for the platform.  
Unfortunately, there are also passive, intermediate joint variables 
which are unknowns in both forward and inverse pose, and which 
complicate these problems. 
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 In this section we focus on the SPU version of SPAM.  The SRU 
version is very similar; details for this are presented in the Appendix.  
The SPAM kinematic diagram, SPU version, is given in Fig. 4. 
 Figure 4 clearly shows the offset L2 in the “spherical” Omni-
Wrist actuators.  L1 is the distance from the base frame {B} origin to 
the fixed location of the left Omni-Wrist.  L3 is the total variable 
length between the S and U joints; this is the length variable of the 
passive P joint.  L5 is the fixed distance between the moving platform 
frame {P} origin and the U-joint location of the left SPU leg.  The 
platform manipulator is designed with symmetry for the left and right 
legs, so lengths L1, L2, and L5 also appear on the right SPU leg.  
However, the right SPU leg passive P joint length is in general 
different from L3, given the name L4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  SPAM Kinematic Diagram, SPU Version 
 
 The detailed kinematic diagram for the left SPU serial chain leg 
is shown in Fig. 5.  Figure 5 shows the X and Z axes for all 
intermediate coordinate frames, defined according to standard 
Denavit-Hartenberg parameters for serial robots (Craig, 1989).  The 
Omni-Wrist active joint variables are roll �1, yaw �2, and pitch �3.  
As shown, the Omni-Wrist transfers �2 and �3 to equal rotations 
about the upper gimbal, offset by fixed length L2; this is 
accomplished by gearing.  The passive joint variables are P-joint 
length L3 and U-joint angles �2 and �3.  Note the U-joint cannot be 
aligned so that one of its revolute joints is along L5, in the YP 
direction, or the platform would revolve uncontrollably about this 
axis (assuming the right SPU leg is identical).  The Denavit-
Hartenberg (DH) parameters (Craig, 1989) for the left SPU serial 
chain leg are given in Table I (angle units are deg). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Left SPU Leg Kinematic Diagram 

Table I. Left SPU Leg DH Parameters 
 

i 1�i�  1�ia  id  i�  

1 0 0 0 901 ��  

2 90 0 0 902 ��  

3 90 0 0 3�  

4 0 L2 0 3�  

5 -90 0 0 2�  

6 0 L3 0 0 
7 0 0 0 902 ��  

8 90 0 0 3�  

 
Due to the nature of the Omni-Wrist coupling between the two yaw 
and two pitch axes, �2 and �3 each appear twice in Table I, but are the 
same variable.  Thus, though there are 8 lines of DH parameters, the 
SPU leg as a serial chain has only 6-dof, as expected.  Fixed lengths 
L1 and L5 do not appear in Table I, which only relates the Omni-Wrist 
base to the U joint location; these two lengths are included via 
homogeneous transformation matrices later. 
 In our design the right SPU leg is identical to the left (note: not 
mirror image, but identical), using the following variable 
substitutions: 
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The table of DH parameters for the right SPU leg is thus identical to 
Table I, using the above substitutions. 
 In this section we use a combination of serial chain and parallel 
chain methods to formulate and solve the SPAM pose kinematics 
problems.  The six SPAM active joint variables are left and right 
Omni-Wrist variables � �321 ,, ���  and � �654 ,, ��� , respectively.  

The six Cartesian pose variables are � ���� ,,,,, zyx , related to the 

homogeneous transformation matrix of the moving platform frame 
{ P} with respect to the fixed base frame {B} as given in (2): 
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Where ��� ,,  are Z-Y-X Euler angles (Craig, 1989).  The six 

intermediate variables are left and right SPU leg passive variables 
� �3,23, ��L  and � �6,54 , ��L , respectively. 

 Now we formulate and solve the SPAM inverse and forward pose 
kinematics problems using the kinematic diagrams, Denavit-
Hartenberg parameters, and variables described. 
 
3.1  Inverse Pose Kinematics  
 
 The SPAM inverse pose kinematics problem is stated: Given the 
desired Cartesian platform pose � ���� ,,,,, zyx  (or, equivalently, 
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TB
P ), calculate the required Omni-Wrist actuator joint variables 

� �321 ,, ���  and � �654 ,, ��� .  The left- and right-leg passive joint 

variables � �3,23, ��L  and � �6,54 , ��L  are also unknowns.  The 

passive variables are not required for real-time control, but they may 
be used in on-line rate and dynamics equations, plus off-line for 
simulation. 
 This inverse pose problem is solved by considering the left and 

right SPU serial chain legs separately.  The given Cartesian pose TB
P  

must be reached by both legs independently, each with three active 
and three passive joints.  Thus, the problem decouples between the 
left and right legs. 

Inverse pose kinematics is a well-known problem in serial robotics, 
and analytical solutions are generally preferred where possible.  
However, for the SPU serial chain using the offset Omni-Wrist 
actuator, analytical solutions may not exist.  One could follow the 
combined analytical/iterative approach in Williams (1999) to solve 
the inverse pose kinematics of each SPU leg with offset Omni-Wrist.  
We choose instead to solve the inverse problems numerically using 
Newton-Raphson iteration.  Below we describe the procedure for the 
left SPU leg; the right is the same, with the above-noted variable 
substitutions. 
 To solve the left-leg active and passive joint variables given the 

Cartesian pose TB
P , we first equate the given numbers for TB

P  with 

the symbolic form of TB
P  as a function of all joint variables: 

 

� �3,23321 ,,,, ����� LTT B
PNUM

B
P �      (3) 

 
The right-hand-side of (3) is the symbolic forward kinematic 
expressions for the left SPU serial chain.  Following Craig’s (1989) 
procedure for forming these functions from the DH parameters of 

Table I will yield T0
8  only; therefore, we need the following 

equation: 
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where, from Fig. 5:  
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Equation (4) brings fixed parameters L1 and L5 into the process.  
Since there are six unknowns, the Newton-Raphson method requires 
six functions for solution.  These functions are coupled and non-linear 
(transcendental); three come from the translational part of (4), and 
three from the rotational part.  Since there are three independent 
translational terms, we use all three.  We define for convenience: 
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These symbolic formulas are in turn equated to known numbers 

� �Tzyx  in (4).  From the rotation matrix equation part of (4), 

there are nine possible equations, only three of which are 

independent due to the orthonormal constraints.  We choose the (1,2), 
(2,2), and (3,3) rotation terms.  This yields the following six 
functions to solve, written so as to equal zero: 
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The terms � �TZYX 111  and )1(
ijr  are complicated symbolic 

functions of the unknowns � �TL 323321 ������� ; we 

use a computer symbolic manipulation program to assist in their 

derivations.  The )1(
ijr  terms come from the appropriate elements of 

the symbolic expressions for � ��RB
P .  The Cartesian variables 

(known numbers in the inverse pose problem) all appear explicitly in 
(6).  The translational subscript 1 and rotational superscript (1) 
indicate left SPU leg in Eq. (6).  The Newton-Raphson iterative 
method for solving (6) for the unknowns is summarized now. 

Starting from an initial guess for the solution, 0� , the 

Newton-Raphson process for step k+1 is summarized below: 
 

� Solve  � �kkNR FJ ��	��  for k�� : � �kNRk FJ ����
�1�  

� Then   kkk ���	�
�

�1  

� Iterate until �� 
� k  

 
where � � � �� � 6,,2,1, �	�	� iFF i  is given in (6) and �  is a 

user-defined tolerance (�  can be different for translational 
and rotational terms), and the Newton-Raphson Jacobian 
matrix is: 
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Due to the specific SPU leg kinematics, this six-by-six Jacobian 
matrix has zero elements in the (3,1), (6,1), (4,4), (5,4), (6,4), and 
(6,6) terms.  Actually, Gaussian elimination is more robust and 
efficient than using the matrix inverse above. 

In this manner, the inverse pose kinematics problem for the left 
SPU portion of SPAM is solved.  The right-leg portion is solved 
following this, independently in exactly the same manner, using the 
above-mentioned variable substitutions, symbolic terms 

� �TZYX 222  and )2(
ijr , and unknowns 

� �TL 654654 ������� .  We also need to reverse the 

directions of L1 and L5 (see Fig. 4) in the previous transformations: 
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We define for the right leg coupled nonlinear functions F7 through F12 
exactly as in (6), but using the index 2 indicating right leg.  After the 
Newton-Raphson method converges for the left leg, we solve the right 
leg in the same manner, with the differences noted.  For real-time 

control, we are interested only in � �T
654321 ������ , 

three from the left leg solution and three from the right. 
 Considering the SPAM complexity we believe Newton-Raphson 
iteration is the logical choice for solution.  However, this method 
requires a good initial guess for each leg, and results in only one 
solution.  For the Gough/Stewart Platform, there is only one inverse 
pose solution; for the SPAM there are multiple inverse pose 
solutions.  In practice, these limitations will not be severe since a 
very good initial guess is available from the previous control cycle 
and we only want one solution for control of the platform. 
 This concludes the numerical solution for SPAM inverse pose 
kinematics, accomplished independently for each SPU leg.  The next 
subsection presents the SPAM forward pose kinematics solution. 
 
3.2  Forward Pose Kinematics  
 The SPAM forward pose kinematics problem is stated: Given the 

Omni-Wrist actuator joint variables � �T
654321 ������ , 

calculate the associated Cartesian platform pose � ���� ,,,,, zyx  (or, 

equivalently, TB
P  as in (2)).  The left- and right-leg passive joint 

variables � �3,23, ��L  and � �6,54 , ��L  are again unknowns. 

 This forward pose problem cannot be solved by considering the 
left and right SPU serial chain legs separately.  The problem is 
coupled because both SPU serial chain legs share the same Cartesian 
unknowns.  Standard serial robot kinematics techniques cannot be 
used in the SPAM forward pose solution since the intermediate 
passive joint variables are unknown.  We will solve this problem in 
one step via Newton-Raphson iteration. 

Since there are twelve unknowns, the Newton-Raphson method 
requires twelve functions for solution.  These functions are the same 
functions as those developed for inverse pose kinematics in the 
previous subsection: coupled nonlinear functions F1 through F6 for the 
left SPU leg from (6) and similar coupled nonlinear functions F7 
through F12 for the right SPU leg.  The major difference is that now 

actuator joint variables � �T
654321 ������  are known, 

and � �TLLzyx 654323 ,,,,,,,,,,, �������  is now the unknown 

vector. 
The Newton-Raphson method follows the one outlined in the 

previous subsection for inverse pose kinematics, but now there is a 
single stage of iterations for twelve transcendental equations coupled 
in twelve unknowns.  A good initial guess for the twelve unknowns is 
still required.  The twelve-by-twelve Newton-Raphson Jacobian 
matrix is not very difficult to form. Fully 94 of these 144 terms are 
zero, and six more are negative one (partial derivatives of functions 
1,2,3 and 7,8,9 with respect to x, y, z).  The partial derivatives of 
functions 4,5,6 with respect to �,�,� are the same as those for 
functions 10,11,12.  The remaining terms (partial derivatives of 
functions 1 through 6 with respect to passive variables � �3,23, ��L  

and partial derivatives of functions 7 through 12 with respect to 

passive variables � �6,54 , ��L ) were already derived for use in inverse 

pose kinematics. 
Again, the Newton-Raphson approach to solving forward pose 

kinematics suffers from the need of a good initial guess, and only one 
of the multiple solutions is found.  However, in practice these do not 
present problems since we know the value of all variables at the 
previous control cycle. 

 
4. EXAMPLES 
 This section presents a snapshot example, followed by trajectory 
examples to demonstrate results from the inverse and forward pose 
kinematics solutions presented in Section 3. 
 
4.1 A Nominal Configuration  
 A good nominal configuration for this platform manipulator is a 
pose like that shown in Fig. 4: the platform is level, {P} is translated 
relative to {B} only in the vertical Z direction, and the orientations 
of {P} and {B} are aligned (see also Fig. 5).  The SPAM design 
parameters are: L1 = 0.5334, offset L2 = 0.0413, and L5 = 0.3556 (m).  

Choosing a nominal Omni-Wrist angle of �102 ���  (the wrist 

doubles this through gear coupling to the upper gimbal shown in Fig. 

5, so that the passive length L3 is aligned �20�  from the vertical), 
the active joint parameters, Cartesian pose, and passive joint 
variables, respectively, for this configuration are calculated from 
simple geometry and trigonometry to be: 
 
� � � �

� � � �
� � � �020499.0020499.0

000509.000

01000100

654323

654321

��

�

��

����

���

������

LL

zyx  (8) 

 
Length units are m and angular units are deg.  We discovered that 
when the orientations of {P} and {B} are aligned, the Newton-
Raphson procedure experienced great difficulty in finding inverse or 
forward pose solutions.  Perhaps in this case multiple solutions 
branch together, or a singularity exists.  This will require future 
work to clear up.  For now, we simply define a new nominal pose 
close to the above, but not subject to the same difficulties.  This case 
serves as a snapshot example for both inverse and forward pose 
kinematics.  It was found using a combination of serial forward 
kinematics for the left leg only, and the numerical parallel inverse 
kinematics as presented in Section 3.  The numerical parallel 
forward kinematics checked this solution: 
 
� � � �

� � � �
� � � �89.8,1.20,4999.0,1,20,50.0

02.0,96.1,65.1,5104,.0005,.0045.

99.0,92.9,59.7,1,10,1

654323

654321

��

�

���

����

���

������

LL

zyx  (9) 

 
 This second nominal configuration is shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Nominal SPAM Configuration for Examples 
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4.2  Trajectories with Inverse and Forward Pose Solutions 
 

Starting from the second nominal pose given above, we now 
present examples for inverse and forward pose solutions that follow 
simple trajectories, solving the problem at each simulated time step.  
To demonstrate the inverse pose solutions, we start at the Cartesian 
pose from the middle line of (9).  We use the excellent initial 
guesses (the known solution for all �I, plus the known passive 
variables) for the first time step.  For ensuing time steps, the newly 
found solution is used as the next initial guess.  At each step, we add 

� ��5.0,0,0,005.0,005.0,005.0  to the specified Cartesian pose.  That is, 

we are translating by 5 mm in all X,Y,Z axes, and rotating �5.0��  

about the X axis at each of ten simulated time steps (starting at zero).  
The inverse pose solution will be calculated at each control step; 
since a typical control rate is 100 Hz, 5 mm is a very large step.  
Thus, this simulation is more challenging to our algorithm than 
reality.  Figures 7a and 7b present the left and right actuator inverse 
pose solution results, respectively, for this trajectory example.  In 
Fig. 7a, �1 is solid, �2 dashed, and �3 dotted; in Fig. 7b, �4 is solid, �5 
dashed, and �6 dotted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7a.  Inverse Pose Trajectory Results, Left Actuator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7b.  Inverse Pose Trajectory Results, Right Actuator 
 

 The Newton-Raphson tolerances used are �T = 0.0001 m and �R = 
0.000001 rad for the translational and rotational terms, respectively.  
Since the example trajectory starts near the (unstable) nominal 
configuration, the right SPU leg requires initially 62 iterations to 
converge!  It then settles on less than 20 iterations for the later time 
steps.  The left SPU leg requires around 15 iterations for 
convergence, despite the excellent initial guesses available.  For 
other examples (not shown) starting further away from this problem 
configuration, the number of iterations is much lower for 
convergence (2-5 typically). 

To demonstrate the forward pose solutions, we again start at the 
nominal pose of (9).  The first active joint input is line 1 of (9), 
rounded to the nearest whole number (deg):  � �1,10,8,1,10,1 �� .  Line 
2 of (9) is an excellent initial guess (along with the known passive 
variables from (9)) for the forward pose solution in the first time 
step.  For ensuing time steps, the newly found Cartesian pose 

solution is used as the next initial guess.  At each step, we add �2.0  
to each of the six active joint angle inputs.   Again, this is a large 
step assuming a typical control rate of 100 Hz, and is thus 
challenging to our algorithm.  Figures 8a and 8b present the 
Cartesian translations and Euler angle results, respectively, for this 
forward pose trajectory example.  In Fig. 8a, x is solid, y dashed, and 
z dotted (starting from z = 0.509 m, changing little); in Fig. 8b, � is 
solid, � dashed, and � dotted (near zero). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8a.  Forward Pose Trajectory Results, Translations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8b.  Forward Pose Trajectory Results, Rotations 
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The same Newton-Raphson tolerances from the inverse pose 

solution also used for the forward pose solution.  The number of 
iterations required for convergence is always under 12. 
 
 
5.  CONCLUSION 
 
 This paper presents the inverse and forward pose kinematics of a 
novel platform manipulator, the SPherically-Actuated platform 
Manipulator, or SPAM.  Like the infamous potted meat substitute 
product, this manipulator may be of lower quality compared with 
prismatically-actuated platforms, primarily due to moment loading at 
the actuators.  However, there has been significant interest in 
development of spherical actuators recently, and we wanted to put 
two Omni-Wrists on loan from NASA to novel use. 
 SPAM consists of two serial chain legs connecting the moving 
platform to the fixed base.  Two similar versions of SPAM are 
proposed, one version with SPU joints (S active, P-U passive) and the 
other version with SRU joints (S active, R-U passive).  The inverse 
and forward pose problems are solved for the SPU version in this 
paper, using numerical Newton-Raphson iteration to solve the 
coupled transcendental governing equations.  The solutions for the 
SRU version are very similar.  The inverse pose kinematics, not as 
straight-forward as the Gough/Stewart platform inverse kinematics, 
may be solved in two independent steps, one for each serial chain, 
where the Jacobian matrices order are both six-by-six.  The forward 
pose solutions involve one coupled twelve-by-twelve system.  The 
Newton-Raphson method is limiting since a good initial guess is 
required and only one of the multiple solutions (both inverse and 
forward problems have multiple solutions!) is determined.  However, 
as our focus is real-time control of SPAM, this will not present a 
problem since the previous solution is a good initial guess and only 
the current solution branch is required. 
 Examples were presented to demonstrate results from the pose 
kinematics solution algorithms.  It was discovered that at nominal 
platform orientations where the platform and base orientations align, 
the pose solution methods experienced great difficulty in converging.  
This problem must be overcome either by design or alternate solution 
techniques before SPAM will be a quality platform manipulator.  
Additional future work plans are in two thrusts.  On the theoretical 
side, the kinematic expressions will be much simplified if true 
spherical actuators are used, i.e. without the offset present in the 
Omni-Wrist.  It is possible that analytical solutions exist for this 
simplified case.  We are also working on a reduced-order 
approximate solution by ignoring some of the passive variables to 
reduce computation.  Inverse and forward rate kinematics is also 
under way.  On the practical side, the SRU SPAM has been built and 
we plan to control this hardware in real-time using the inverse pose 
and resolved-rate (inverse velocity) techniques. 
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APPENDIX.  SRU KINEMATICS PARAMETERS 
 
 The body of this paper focused on the SPAM platform 
manipulator with two SPU serial chain legs.  The inverse and forward 
pose kinematics solutions presented may be readily adapted for the 
SPAM with two SRU legs (modeled in Fig. 2).  This Appendix briefly 
presents the model and terms for the SRU version.  The SPAM 
kinematic diagram, SRU version, is given in Fig. A.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A.1.  SPAM Kinematic Diagram, SRU Version 
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 Again symmetry is used in design.  In Fig. A.1 all lengths 
5,,2,1, �	iLi  are rigid.  The passive P-joints of Fig. 4 are replaced 

by the passive R-joints.  The detailed kinematic diagram for the left 
SRU serial chain leg is shown in Fig. A.2.  The passive P-joint 
variable L3 from the SPU version is replaced by passive R-joint 
variable �1.  The Denavit-Hartenberg (DH) parameters (Craig, 1989) 
for the left SPU serial chain leg are given in Table A.I (angle units 
are deg).  These are identical to the left SPU DH parameters given in 
Table I, with the exception of rows i = 6,7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A.2.  Left SRU Leg Kinematic Diagram 

 
Table A.I. Left SRU Leg DH Parameters 

 
i 1�i�  1�ia  id  i�  

1 0 0 0 901 ��  

2 90 0 0 902 ��  

3 90 0 0 3�  

4 0 L2 0 3�  

5 -90 0 0 2�  

6 0 L3 0 1�  

7 0 L4 0 902 ��  

8 90 0 0 3�  

 
 
 In our design the right SRU leg is identical to the left, using the 
following variable substitutions: 
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Using the differences noted in this Appendix, the methods of Section 
3 may be directly applied to solve the inverse and forward pose 
kinematics of the SPAM, SRU version. 
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