
1

ME 601

Advanced System Analysis & Control

Class Notes

Dr. Bob

Mechanical Engineering

Ohio University

© Dr. Bob Productions

williar4@ohio.edu

oak.cats.ohiou.edu/~williar4

Textbook:
 R.L. Williams II and D.A. Lawrence, 2007, Linear State-Space Control Systems, John Wiley &
Sons, ISBN 978-0-471-73555-7.

mailto:williar4@ohio.edu�
http://www.ent.ohiou.edu/~bobw/�

2

Table of Contents

1. PRELIMINARIES ...3

1.1 INTRODUCTION ..3
1.2 CLASSICAL CONTROL OVERVIEW ...7
1.3 REVIEW OF MATRICES AND LINEAR ALGEBRA ..7
1.4 MATLAB INTRODUCTION ...7

2. STATE-SPACE FUNDAMENTALS ..8

2.1 STATE-SPACE DESCRIPTION OF DYNAMICAL SYSTEMS ...8
2.2 SOLUTION OF STATE-SPACE EQUATIONS ... 19
2.3 SIMULATION OF STATE-SPACE SYSTEMS .. 30
2.4 CONTROLLABILITY AND OBSERVABILITY ... 37

2.4.1 Controllability .. 37
2.4.2 Observability ... 39
2.4.3 MATLAB for Controllability and Observability .. 41

2.5 SIMILARITY TRANSFORMATIONS AND CANONICAL REALIZATIONS ... 42
2.5.1 Similarity Transformations .. 42
2.5.2 Controllable Canonical Form (CCF) ... 43
2.5.3 Observable Canonical Form (OCF) .. 44
2.5.4 Diagonal Canonical Form (DCF) .. 46
2.5.5 MATLAB for Canonical Realizations .. 47

2.6 STABILITY ... 51
2.6.1 Eigenvalue Test for System Stability ... 51
2.6.2 Stability Analysis Based on Energy and Phase Plots ... 52
2.6.3 Lyapunov Stability Analysis ... 56

3. FULL-STATE FEEDBACK CONTROLLER AND OBSERVER DESIGN ... 61

3.1 SHAPING DYNAMIC RESPONSE .. 61
3.2 LINEAR FULL STATE-FEEDBACK CONTROLLER DESIGN .. 70

3.2.1 Background ... 70
3.2.2 Decoupled CCF Solution ... 71
3.2.3 Ackerman’s Formula ... 75
3.2.4 Input Correction .. 76

3.3 LINEAR FULL STATE-FEEDBACK OBSERVER DESIGN .. 79
3.3.1 Background ... 79
3.3.2 Observer Design .. 80
3.3.3 Ackerman’s Formula ... 82

3.4 COMBINED CLOSED-LOOP CONTROLLER AND OBSERVER .. 85
3.5 CLOSED-LOOP SYSTEM INPUT EFFORT .. 87
3.6 DISTURBANCES EVALUATION AFTER CONTROLLER/OBSERVER DESIGN .. 88

4. OPTIMAL CONTROL ... 89

4.1 XTX OPTIMAL CONTROLLER .. 89
4.2 LINEAR QUADRATIC REGULATOR (LQR) OPTIMAL CONTROLLER .. 92

3

ME 601 Advanced System Analysis & Control

1. Preliminaries

1.1 Introduction

Linear System

• Modeling
• Simulation (Analysis)
• Control

Systems:
 Mechanical, electrical, electromechanical, fluid, thermal, etc. Lumped parameter systems to
approximate real systems. Results only as good as your model.

State-space (modern, advanced) vs. Classical
 System analysis and control

Classical Modern
Linear
Continuous-time
Analog
SISO
Constant coefficients
Transfer function
Time or frequency domain
Stability

Non-linear
Discrete
Digital
MIMO
Time-varying coefficients
State space matrices
Time domain
Stability, robustness

 We will focus on state-space, linear, continuous, SISO and MIMO, constant coefficients, time
domain systems in ME 601.

Review

• Classical controls
• Solution to initial-value ODEs
• Linear algebra
• Modeling
• MATLAB, Simulink

Applications
 Feedback control systems are hugely widespread: robot systems, vehicles, human body,
manufacturing automation, economic systems, predator-prey, etc. Engineering systems: mechanical,
electrical, electromechanical, fluid, thermal, etc. Non-engineering systems – same theory applies if
linear system.

4

History
 Mechanical engineers originated the field – show Watt and water level examples. But electrical
engineers took over with advent of digital computers. Aerospace applications drove need for more
capable controllers.

• Watt flyball governor
• Water-level float regulator
• Telephone system, electronic feedback amplifiers
• WWII autopilots, gunning, radar
• Digital computer
• Space age – missiles, spacecraft, robotics: robust, optimal, MIMO, state-space, non-linear

Watt Flyball Governor

Water-level Float Regulator

5

Sensor-based Control of Multiple Manipulator Systems

Sensor-based Telerobotic Control Architecture

 Single Manipulator Cooperating Manipulators

K F

K P

X P
X F X V

X HC X MRF X B Θ C

+

-

Commanded
Pose

+

-

Commanded
Vision Pose

+

-+

Commanded
Force

Force Reflection

Velocity, coordinate
 transformations

Linear independent
PID Joint Control

Joint
Sensors

F/T
Sensor

Vision
Sensor

Manipulator Plant

Force, coordinate
 transformations

Forward
Kinematics

Position
Controller

Vision
Controller

Force
Controller

Machine
Vision

τ

∫

F S

F MRF

Θ A

Θ C

J HC
T

B J − 1

K FR
K V

World

Base

Wrist

MRF

CRF

S

L

Base 2

Wrist 2
MRF

CRF

World
Base 1

Wrist 1

6

Classical controller block diagram

Why feedback? (it’s not free - sensor, complexity, reliability, etc.)

• reduce steady-state error
• robustness for disturbances, unmodeled dynamics, noise, system changes
• decrease sensitivity of output to system changes, uncertainty
• modify transient response of the system

Linear System Definition
 All governing equations (differential, algebraic) are linear. Linear systems satisfy the principles
of linear superposition and homogeneity. Let u(t) be the input and y(t) be the output. Further,

() ()u t y t→ indicates a system yielding output y(t) given input u(t).

1) linear superposition
 if 1 1() ()u t y t→ and 2 2() ()u t y t→ then 1 2 1 2() () () ()u t u t y t y t+ → +

 2) homogeneity
 if () ()u t y t→ then () ()u t y tβ β→

where β is any constant.

Examples
 linear ODEs:

() () ()ay t by t u t+ = 2() 2 () () ()n ny t y t y t u tξω ω+ + = 

 non-linear ODEs:

2 () sin () ()ay t b y t u t+ = 3 2() 2 () cos () ln ()n ny t y t y t u tξω ω+ + = 

Almost all real-world systems are non-linear: Coulomb friction, hysteresis, unmodeled dynamics, non-
linear stiffness, large-angle dynamics, etc.

However, many engineering systems have

• linear operating ranges, or
• equations may be piecewise linearized in various operating regions

Model vs. actual system – a mathematical model is used to to design controller, which is then run on the
actual system, with real-world dynamics, not a math model.

7

1.2 Classical Control Overview

ME 601 does not require classical control as a prerequisite. However some concepts and terms
may enter into ME 601 from classical control so the student is urged to review from undergraduate
controls textbooks such as Dorf and Bishop.

Here are some of the important topics for review:

• Modeling of mechanical, electrical, and other engineering systems to yield linear, constant-

coefficient, ODEs and integro-differential equations, Force-current analogy
• Simulation: solution of linear ODEs subject to the initial value problem
• Laplace Transforms including table and differential and integral operators, Initial- and Final-

Value Theorems
• Zero, impulse (Dirac Delta), unit step, unit ramp, sinusoidal, and other input signals
• First-order ODEs with time constant
• Second-order ODEs with natural frequency and dimensionless damping ratio
• Characteristic polynomials, Stability.
• Transfer Functions, Poles and Zeros, Block Diagrams
• Open- and Closed-loop Systems, Sensor Feedback
• Controller Design, Root-Locus Method
• Frequency Response, Bode Plots, and Nyquist Plots
• Digital Control Systems

1.3 Review of Matrices and Linear Algebra
 Matrices are the mathematical vehicle of modern state-space control, in place of transfer
functions for classical control. For a review of matrices including basics, arithmetic, determinants, and
inversion, please see the Williams and Lawrence textbook, Appendix A.

 Linear algebra is the mathematical language of matrices. For a review of linear algebra
including vector spaces, subspaces, basis, change of basis, orthogonality, linear transformations, range,
null space, eigenvalues, eigenvectors, and norms, please see the Williams and Lawrence textbook,
Appendix B.

1.4 MATLAB Introduction
 MATLAB is a general engineering analysis and simulation software. MATLAB stands for
MATrix LABoratory. It was originally developed specifically for control systems simulation and
design engineering, but it has grown over the years to cover many engineering and scientific fields.
MATLAB is based on the C language, and its programming is vaguely C-like, but simpler. MATLAB is
sold by Mathworks Inc. (www.mathworks.com) and Ohio University has a site license. For an extensive
introduction to the MATLAB software, please see Dr. Bob’s MATLAB Primer:

oak.cats.ohiou.edu/~williar4/PDF/MATLABPrimer.pdf

http://www.mathworks.com/�
http://www.ent.ohiou.edu/~bobw/PDF/MATLABPrimer.pdf�

8

2. State-Space Fundamentals

2.1 State-Space Description of Dynamical Systems
 Transfer functions are classically limited to linear SISO systems. A matrix of transfer
functions can be used for extending classical control to MIMO. We will follow a different path, state-
space matrices.

 In ME 601 we assume the student already has modeling experience. For an overview of many
useful models see oak.cats.ohiou.edu/~williar4/PDF/ModelTFAtlas.pdf.

State-space formulation

• linear or non-linear
• SISO or MIMO
• time-invariant or time-varying

Basic open-loop system diagram: m inputs, p outputs

State vector X(t)
 A state vector X(t) is composed of state variables xi(t), i = 1,2, . . ., n: a minimum set of
parameters which uniquely describe the future response of a system given the current state, input, and
dynamics equations.

 There are infinite choices for state variables and hence infinite state-space representations for the
same system.

 The state vector X(t) is not the same as the output vector Y(t). Outputs are physical quantities,
usually measurable by sensors. State variables can be anything, not always recognizable quantities.

Basic motivation
 Convert all dynamics and control system models to first-order ODEs.

 State-space representation converts a single nth-order ODE into a system of n coupled first-order
ODEs, resulting in a coupled matrix of differential equations. In principle, this is easier to solve (via
standardized methods which we shall present later). One can also convert a system of k nth-order ODEs
into a matrix system of kn coupled first-order ODEs.

State-space description

• State differential equations
• Output algebraic equations

http://oak.cats.ohiou.edu/~williar4/PDF/ModelTFAtlas.pdf�

9

Example
 Linear 1-dof m-c-k mechanical translational system:

Where displacement y(t) is the output and force u(t) is the input.

The model is a single second-order ODE – we need to select a 2x1 state vector:

Define: so

Substitute into the original equation:

Original single second-order ODE can be written as a system of two first-order ODEs:

And the output is:

Write these equations in matrix-vector form to get:

State-space description

• State differential equations

• Output algebraic equations

10

 In this example, the state vector is composed of the position and velocity of the output y(t) (the
output and its time derivative – not including the acceleration). There are two state components required
since we started with one second-order ODE.

 The state variables are not always physically identifiable. For instance we could transform the
above state differential equations into another basis (there are infinite choices for basis) so that the state
variables are each some strange combination of the more-logical () (),y t y t .

General Form of State-Space Description DAEs
 m number of inputs
 p number of outputs
 n number of state variables (order of ODE for SISO)

• State differential equations: Matrix of first-order ODEs which represents the system dynamics.
The solution of this set of equations yields the state vector X(t).

• Output algebraic equations – calculates the output vector given the state vector and possibly the
input vector.

A System dynamics matrix dimension:
B Input matrix dimension:
C Output matrix dimension:
D Direct transmission matrix dimension:

[D] = [0], a zero matrix of appropriate size, for most physical systems because dynamics must appear in
all paths from input to output.

The dimensions for the state differential equations and output algebraic equation for the second-order
SISO system presented above are (m=1, p=1, n=2):

11

State-Space Description of a General SISO nth order ODE

Define n state variables:

Substitute into the original ODE:

Derive the state and output equations:

 This form for the state-space description (with 0s and 1s in the first n–1 rows of A, the interesting
coefficients only in the nth row of A) is called the Controller Canonical Form. We will consider several
other canonical forms when we present similarity transformations later.

Block Diagram for Open-Loop MIMO State-Space Description

12

Another SISO Example
 Parallel RLC circuit with current i(t) input and voltage v(t) output.

Integro-differential equation with single integral and time derivative – we need to select a 2x1 state
vector:

Substitute these state definitions into the original equation:

Output:

Write these equations in matrix-vector form to get:

State-space description

• State differential equations

• Output algebraic equations

Recall the Force-Current Analogy:

Variable Type Translational R-L-C Circuit Rotational
input (through) f(t) i(t) t(t)
output (across) v(t) (velocity) v(t) (voltage) w(t)
inertia m C J
damping c 1/R cR
stiffness k 1/L kR

13

MIMO Example: 3-dof linear translational mechanical system

m = 2 inputs u1, u2 p = 3 outputs y1, y2, y3

Free-body diagrams:

Write 3 equations of motion:

Define state variables:

Write these equations in matrix-vector form to get:

State-space description

• State differential equations

• Output algebraic equation

m=2; p=3; n=6 (three second-order ODEs converted to six first-order ODEs)

u (t)2

y (t)

m2

2

u (t)1

c1

y (t)

m1

k 1

1 y (t)

m3

3

c2

k 2

14

MIMO Example Results

Let:

m1 = m2 = m3 = m
c1 = c2 = c
k1 = k2 = k

State differential equations { } []{ } []{ }() () ()X t A X t B U t= + :

1 1

2 2

3 3 1

4 4

5 5

6 6

0 1 0 0 0 0 0 0
10 0 0

0 0 0 1 0 0 0 0
2 2 10

0 0 0 0 0 1 0 0
0 00 0

k c k cx x
m m m mx x m

x x u
k c k c k cx x
m m m m m m mx x

x xk c k c
m m m m

          − −                       = +    − −                             − −    













1u
 
 
 

{ } []{ } []{ }6x1 6x6 6x1 6x2 2x1= +

Output algebraic equation { } []{ } []{ }() () ()Y t C X t D U t= + :

1

2
1

3 1
2

4 1
3

5

6

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

x
x

y
x u

y
x u

y
x
x

 
 
      
         = +                      
 
  

{ } []{ } []{ }3x1 3x6 6x1 3x2 2x1= +

15

State-Space Description for a System with Zeros

(Zeros: roots of TF numerator)
Example () () () () ()2 10 3y t y t y t u t u t+ + = +  

Transfer function:
()
() 2

3
2 10

Y s s
U s s s

+
=

+ +

Separate the transfer function with intermediate variable g(s):

Now, write two differential equations:

() () () ()
() () ()

2 10

3

g t g t g t u t

y t g t g t

+ + =

= +

 



This is still a second-order system – need to select a 2x1 state vector: () ()
()

1

2

x t
X t

x t
  =  
  

Define:
() ()
() () ()

1

2 1

x t g t

x t g t x t

=

= = 

() () () ()2 10g t g t g t u t= − − +  , which leads to the state equations:

() ()
() () () ()

1 2

2 2 12 10

x t x t

x t x t x t u t

=

= − − +





Output equation: () () ()2 13y t x t x t= +

{ } []{ } []{ }() () ()X t A X t B U t= + :

()
()

()
() ()1 1

2 2

0 1 0
10 2 1

x t x t
u t

x t x t
         = +      − −         





{ } []{ } []{ }() () ()Y t C X t D U t= + :

() [] ()
() [] ()1

2

3 1 0
x t

y t u t
x t

  = + 
  

If the order of the highest derivatives are the same on both sides (i.e. the order of the numerator equals
the order of the denominator), see Ogata pp. 78-80 for a state-space representation.

16

State-Space and Transfer Function Relationships

State-Space Equations:

Given state-space matrices A, B, C, D, find the transfer function description:

Laplace Transforms of State-Space Equations

For transfer functions we have zero initial conditions so the vector x(0) = x0 = {0}:

Substitute this X(s) into the output equation to eliminate the explicit state dependence:

Then:

 In the general MIMO case, this is a matrix of transfer functions where Gij(s) is the scalar transfer
function giving the contribution of input j to output i.

17

Example – linear 1-dof m=1 c=0.1 k=10 mechanical system.

[]
0 1

A k c
m m

 
 = =
 − −
 

 []
0
1B
m

 
 = =
 
 

 [] []1 0C = D = 0

() () 1G s C sI A B D−= − +

0 0 1 1
0 10 0.1 10 0.1
s s

sI A
s s

−     
− = − =     − − +     

[] ()
1 0.1 11

100.1 10
s

sI A
ss s

− + 
− =  −+ +  

() [] []2

2

0.1 1 01 1 0 0
10 10.1 10

1
0.1 10

s
G s

ss s

s s

+   
= +   −+ +    

=
+ +

Check:
() () () ()

() () () ()2

my t cy t ky t u t

ms Y s csY s kY s U s

+ + =

+ + =

 

() ()
() 2 2

1 1
0.1 10

Y s
G s

U s ms cs k s s
= = =

+ + + +

18

Related MATLAB Functions

[num,den] = ss2tf(a,b,c,d)
[a,b,c,d] = tf2ss(num,den)
SysName1 = tf(num,den) % define system with transfer function
SysName2 = ss(a,b,c,d) % define system with state-space

%---
% State-space and transfer function transformations
%---
clc; clear;

num = [1]; % Transfer function definition,
den = [1 0.1 10]; % second-order m-c-k system

[a,b,c,d] = tf2ss(num,den); % State-space from TF
printsys(a,b,c,d)

[num1,den1] = ss2tf(a,b,c,d); % TF from State-space
printsys(num1,den1,'s')

% MATLAB tf2ss result is different; try a,b,c,d my way
% TF result should be the same.

a1 = [0 1;-10 -0.1]; b1 = [0;1]; c1 = [1 0]; d1 = [0];

[num2,den2] = ss2tf(a1,b1,c1,d1); % TF from State-space
printsys(num2,den2,'s')

MATLAB Chooses:

2

1 2

x y
x y x

=
= = 

Also, MATLAB reverses order of equations (swaps rows compared to mine). For multiple inputs m > 1,
use:

[numi,deni] = ss2tf(a,b,c,d,iu); % TF from State-space

where iu is the input index and [numi,deni] correspond to the transfer function for the ith input
only. deni is the characteristic polynomial and numi has one row for each output p.

19

2.2 Solution of State-Space Equations

State-Space Dynamics Differential Equations

Solve this coupled system of first-order ODEs for state vector X(t), given input U(t) and initial
conditions x0. Then the output is found from the linear combination output equation:

First, review scalar first-order ODEs

Physical systems with scalar first-order ODEs

• Translational mechanical w/o mass () () ()cx t kx t f t+ =

• Rotational w/o torsional spring () () ()RJ t c t tω ω τ+ =

• Series R-L circuit w/o capacitance () () ()di t
L Ri t v t

dt
+ =

See oak.cats.ohiou.edu/~williar4/PDF/ModelTFAtlas.pdf for info on first-order and other models.

Solution methods

• Slow ME way (homogeneous and particular)
• Laplace Transform
• MATLAB lsim

Example
 solve () () () () ()50cx t kx t x t x t u t+ = + = 

subject to: u(t) (step input of magnitude 5) and x(0) = 0

use Laplace transform method:

()

()

()
()

()
1 21 2

5() (0) 50 ()

550 ()

505()
50 50 50

sX s x X s
s

s X s
s

C s C sC CX s
s s s s s s

− + =

+ =

+ +
= = + =

+ + +

()1 25 50C s C s= + +
1

1 2
0

1

: 0

: 5 50

s C C
s C

= +

=
 so 1

2

0.1
0.1

C
C

=
= −

 and thus

() (){ }1 1 0.1 0.1
50

x t L X s L
s s

− −  = = − + 
 () ()50 500.1 0.1 0.1 1t tx t e e− −= − = −

http://oak.cats.ohiou.edu/~williar4/PDF/ModelTFAtlas.pdf�

20

The x(t) plot for this example is given below.

First-order System Example 1: ck system

Model: () () ()cx t kx t u t+ = () () ()50x t x t u t+ =

x(0) = 0 and u(t) = step input of magnitude 5

Solution: () ()500.1 1 tx t e−= −

 The displacement x(t) starts at zero, as specified by the initial condition. The solution transient
approaches zero by t = 0.15 sec. The steady-state displacement is xSS = 0.10 m (a constant since the
input force is constant); this result agrees with Hooke’s Law: u = kxSS; xSS = 5/50 = 0.10.

Verify initial and steady-state values using the Initial- and Final-Value theorems:

Initial Value Theorem

 () () ()0

5lim lim lim 0
50t s s

x t sX s s
s s→ →∞ →∞

 
= = =  + 

Final Value Theorem

 () () ()0 0

5lim lim lim 0.1
50t s s

x t sX s s
s s→∞ → →

 
= = =  + 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t (sec)

x(
t)

21

Time constant

τ: /tAe τ−

 So in this example τ=1/50 sec. A system with a smaller time constant rises faster than one with a
larger time constant. After a time equal to three time constants has elapsed, the step response of a first-
order system is within 5% of its final steady-state value. In this example, three time constants is 3/50 or
0.06 sec. At t=0.06 sec, the x(t) value is 0.095 m, 95% of the final value xSS = 0.100.
 Three common first-order system time constants for the massless spring/damper, springless
rotational, and series voltage-driven RL circuit systems, respectively, are:

c
k

τ =
R

J
c

τ = L
R

τ =

τ units for this example? Nsm s
mN

= . This is general, i.e. all system time constants have sec units.

General Solution Form to Scalar first-order ODEs

(in the form of the matrix differential equations)

The first part is the homogeneous solution: the transient response to the initial condition x(0).

The second part is the particular solution: the steady-state response to the forcing function u(t).

Recall exponential function can be represented by an infinite series:

22

Generalize Scalar Solution Form to Matrix of first-order ODEs

 The first part is the homogeneous solution: the transient response to the initial conditions X(0).

 The second part is the particular solution: the steady-state response to the forcing functions U(t).

 More properly, the first part is known as the zero-input response and the second part is known as
the zero-state response (meaning zero initial state). That is, it doesn’t split so neatly as stated above, but
there is a transient component due to the forcing function also.

23

Φ(t) State Transition Matrix

• Solution to homogeneous case, transient response to initial conditions with zero forcing

• That is, for the homogeneous case, given any initial conditions, the future state vector at any

time t is:

• φij(t) is the response of the ith state variable due to a unit initial condition on the jth state

variable with zero initial conditions on all other state variables and zero input (think linear
superposition and matrix multiplication).

• () (){ }11t L sI A −−Φ = − (see general solution form above)

• Also, () 2 2 3 3

0

1 1 1
2 6 !

At k k

k
t e I At A t A t A t

k

∞

=

Φ = = + + + + = ∑ , where A is the System

Dynamics Matrix, and t is the scalar time.

Properties of the State Transition Matrix Φ(t)

 1) ()0 IΦ =

 2) () ()1 t t−Φ = Φ −

 3) () () ()2 1 1 0 2 0t t t t t tΦ − Φ − = Φ −

 4) () ()k
t kt Φ = Φ  For positive integers k

24

Characteristic Polynomial and System Poles

Classical Control

 Transfer function:

 Characteristic polynomial:

 System poles (assuming a fully-reduced G(s)):

Modern Control

 State-space description:

 Characteristic polynomial:

 System poles (assuming a minimal state-space realization):

What are these? Eigenvalues of A! B, C, and D do not affect the system poles.

 CharPoly = poly(A);
 poles = eig(A);

25

Poles and Transient Response

 The system poles determine the nature of the transient response. For example, solve:

() () ()
() () ()
() () ()

() ()

6 4 1

4 4 1

2 4 1

4 1

y t y t y t

y t y t y t

y t y t y t

y t y t

+ + =

+ + =

+ + =

+ =

 

 

 



 for y(t)

All subject to initial conditions
()
()
0 0

0 0

y

y

=

=

 and a unit step input.

MATLAB program:

%--
% Over-, Critical, Under-, and Undamped cases using step function
% Dr. Bob, ME 601
%--

clear; clc;

num = [1];
denOVER = [1 6 4]; % overdamped
denCRIT = [1 4 4]; % critically-damped
denUNDR = [1 2 4]; % underdamped
denUN = [1 0 4]; % undamped

polesOVER = roots(denOVER); % poles for each case
polesCRIT = roots(denCRIT);
polesUNDR = roots(denUNDR);
polesUN = roots(denUN);

t = [0:0.01:8];
[yOVER,xOVER] = step(num,denOVER,t); % unit step responses
[yCRIT,xCRIT] = step(num,denCRIT,t);
[yUNDR,xUNDR] = step(num,denUNDR,t);
[yUN,xUN] = step(num,denUN,t);

figure;
plot(t,yOVER,'r',t,yCRIT,'g',t,yUNDR,'b',t,yUN,'m'); % plot responses
set(gca,'FontSize',18);
grid; ylabel('\ity(t)'); xlabel('\itt (\itsec)');

26

Results plot:

Key: Poles:

overdamped s1 = –0.764, s2 = –5.236
critically-damped s1 = s2 = –2
underdamped 1,2 1 3is = − ±
undamped 1,2 2is = ±

The final value is ¼ (0.25).

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y(
t)

t (sec)

27

State-Space Simulation Example
 Solve the given linear SISO second-order system for y(t) subject to u(t) (step input of magnitude
3), and initial conditions () ()0 , 0y y :

() () () ()7 12y t y t y t u t+ + = 
()
()
0 0.10

0 0.05

y

y

=

=

Characteristic polynomial and poles:

()()2 7 12 3 4 0s s s s+ + = + + = 1,2 3, 4s = − −

There are distinct, negative real roots so this is an overdamped system. By either the slow ME way,
using Laplace transforms, or MATLAB dsolve, we can find the solution to be:

() 3 40.25 0.55 0.40t ty t e e− −= − +

Let us derive this same solution from the state-space description. Define state vector:

() ()
()

()
()

1

2

x t y t
X t

x t y t
      = =   
      

Then the system dynamics differential equations and initial state vector are (the input u(t) is a scalar step
input of magnitude 3):

()
()

()
() (){ }1 1

2 2

0 1 0
12 7 1

x t x t
u t

x t x t
         = +      − −         





 ()
0.10

0
0.05

X  
=  

 

Solve in the Laplace frequency domain:

() () () () ()1 10X s sI A X sI A BU s− −= − + −

then (){ } (){ }1X t L X s−=

()
1

12 7
s

sI A
s
− 

− =  + 
 () 1 7 11

12
s

sI A
s

− + 
− =  −∆  

()()2 7 12 3 4s s s s∆ = + + = + + is sI A− , the characteristic polynomial.

()
7 1 0.10 7 1 01 1 3

12 0.05 12 1
s s

X s
s s s

+ +         = +        − −∆ ∆         

where the Laplace transform of the unit step function is 1
s

. Simplifying:

() ()
()

1

2

30.10 0.751

0.05 1.80

x ss
X s s

x ss

   + +   = =   ∆    + 

28

() ()()

()() () ()

1

2
31 2

30.10 0.75

3 4

0.10 0.75 3
3 4 3 4

s
sx s

s s

CC Cs s
s s s s s s

+ +
=

+ +

+ +
= = + +

+ + + +

 (partial fraction expansion)

()() () ()2
1 2 30.10 0.75 3 3 4 4 3s s C s s C s s C s s+ + = + + + + + +

Match like powers of s, then solve for the residues Ci; the result is:

1

2

3

0.25
0.55

0.40

C
C
C

=
= −
=

Substitute the residues into the partial fraction expansion and take inverse Laplace transform to find y(t):

() () (){ }

() ()

1
1 1

1

3 4

0.25 0.55 0.40
3 4

0.25 0.55 0.40t t

y t x t L x s

L
s s s

e e

−

−

− −

= =

  = − + + +  
= − +

Agrees with the stated solution! Now find the solution for the second state variable x2(t):

() ()()

() ()

2

1 2

0.05 1.8
3 4

3 4

sx s
s s
C C

s s

+
=

+ +

= +
+ +

 (partial fraction expansion)

() ()1 20.05 3 4 3s C s C s+ = + + +

 Match like powers of s, then solve:

1

2

1.65
1.60

C
C

=
= −

() (){ }

() ()

1
2 2

1 3 41.65 1.60 1.65 1.60
3 4

t t

x t L x s

L e e
s s

−

− − −

=

  = − = − + +  

Check: () ()2 1x t x t=  ? () () ()3 4 3 4

1 3 0.55 4 0.40 1.65 1.60t t t tx t e e e e− − − −= − − + − = − Yes, it agrees!

29

 The plot below gives the graphical results for this state-space simulation example, plotting the
state components vs. time. The output y(t), not shown, is identical to the first state x1(t).

 Note that both x1(t) and its derivative x2(t) both start from their required initial conditions, 0.1
and 0.05, respectively. The slope of x1(t) at t = 0 is 0.05.

 Though the problem did not specify, let us assume x1(t) is a displacement with m units and x2(t)
is its velocity with m/sec units.

 The displacement x1(t) plot is overdamped since the poles are negative, real, and distinct (

1,2 3, 4s = − −). The final value is 0.25, that is the force 3 N divided by the spring 12 N/m. Later in the
course we will review rise time and settling time to quantify the time-rise nature of second-order
systems such as this one (here tR = 0.99 sec and tS = 1.72 sec).

 The velocity x2(t) plot is also overdamped. The final value is 0, since the velocity eventually
goes to zero.

30

2.3 Simulation of State-Space Systems

 By simulation we mean solving and then plotting () () ()X t AX t BU t= + for the states X(t), given
matrices A and B, input vector U(t), and initial states X0. In general this is a coupled set of n first-order
linear ODEs. Once X(t) is known, we can easily find the output with () () ()Y t CX t DU t= + . The
previous section discussed the analytical solution; this section presents MATLAB numerical solution for
this problem, with examples.

MATLAB Function lsim: linear simulation
 SysName = ss(a,b,c,d);
 [y,t,x] = lsim(SysName,u,t,x0);

where:

• function ss creates a MATLAB system SysName from state-space matrices a,b,c,d.

• a,b,c,d are the numerical state-space matrices for your system.

• t is the evenly spaced time vector: t = [t0:dt:tf]; As shown in the MATLAB syntax
above, t is both input and output (I didn’t write it).

• u is the matrix of inputs; u must have as many columns as inputs (m). Each row of u
corresponds to a new time point, so u must have length(t) rows.

• y is the matrix of outputs; y has as many columns as there are outputs (p) and length(t)

rows.

• x is the matrix of states; x has as many columns as there are states (n) and length(t) rows.

• x0 is the n x 1 vector of initial states (x0 is assumed by MATLAB to be zero if it is omitted).

 Note: the above lsim code will not plot anything – the user must then plot the desired variables
vs. time to see the responses:

figure; % plot outputs
plot(t,y(:,1),’r’,t,y(:,2),’g’,t,y(:,3),’b’, . . .);
figure; % plot states
plot(t,x(:,1),’r’,t,x(:,2),’g’,t,x(:,3),’b’, . . .);

 MATLAB lsim is general – any imaginable inputs u can be specified. There are two useful
MATLAB functions to determine system response for two specific inputs (unit impulse and unit step):

[y,t,x] = impulse(SysName,t); % unit impulse response

[y,t,x] = step(SysName,t); % unit step response

31

Example 1: Solve second-order ODE
Solve () () ()0.2 10 5y t y t y t+ + =  for y(t) given u (step of 5) and subject to initial conditions:

()
()
0 0

0 0

y

y

=

=

For the following state definitions, The state-space matrices are:
1

2 1

() ()
() () ()

x t y t
x t y t x t

=
= = 

0 1
10 0.2

A  
=  − − 

0
1

B  
=  

 
 []1 0C = D = [0]

 The state responses are plotted vs. time on the next page. This is a stable, underdamped system
(the poles are 1,2 0.10 3.16s i= − ±). We see it is still vibrating after 30 sec. The steady-state ‘position’
state x1 is 5/10 = 0.5 and the steady-state ‘velocity’ state x2 is zero. For these definitions, the output y(t)
(not shown) is identical to the plot of x1(t).

Example 1 Simulink Diagram

 MATLAB’s GUI Simulink is very powerful to
simulate state-space systems. The Simulink diagram for
solving this example is also shown on the next page. In
this case, double-click on the input step to assign a step
of 5 (the default is 1) and double-click on the State-Space
block to enter specific arrays for the state-space matrices
A, B, C, D. The result for y(t) is identical to x1(t) above.

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

Example 1 States

t (sec)

x(
t)

x
1

x
2

32

Example 2: Three mass, two input, ungrounded system

Given zero initial conditions and u1 = step of magnitude 2, u2=0, calculate the response y1, y2, y3.. Given
m1 = m2 = m3 = 1 kg, c1 = c2 = 0.1 Ns/m, and k1 = k2 = 10 N/m. Can we predict what will happen? The
state-space matrices are below and the system poles are 1,2 0.15 5.48s i= − ± , 3,4 0.05 3.16s i= − ± ,

5 6 0s s= = :

0 1 0 0 0 0
10 0.1 10 0.1 0 0
0 0 0 1 0 0

10 0.1 20 0.2 10 0.1
0 0 0 0 0 1
0 0 10 0.1 10 0.1

A

 
 − − 
 

=  − − 
 
 

− − 

0 0
1 0
0 0
0 1
0 0
0 0

B

 
 
 
 

=  
 
 
 
 

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

C
 
 =  
  

0 0
0 0
0 0

D
 
 =  
  

 With no spring tying the system to ground, with no friction to slow it down, and with a constant
force u1, the three-mass system will accelerate forever to the right! The zero eigenvalues (system poles,
characteristic equation roots) tell us that there is a rigid body mode, where all three masses move as one
to the right. (Note: mass 1 leads 2, which leads 3.)

u (t)2

y (t)

m2

2

u (t)1

c1

y (t)

m1

k 1

1 y (t)

m3

3

c2

k 2

0 50 100 150 200
0

1

2 x 104 Example 2 Ungrounded

y 1

0 50 100 150 200
0

1

2 x 104

y 2

0 50 100 150 200
0

1

2 x 104

t (sec)

y 3

33

Example 3: Three mass, two input, grounded system

 This is the same as Example 2, except we will now tie the first mass m1 to the ground with
another c, k:

We use three identical mass, spring, damper coefficients (from Example 2). Given zero initial
conditions and u1 = step of magnitude 2, u2 = 0, calculate the response y1, y2, y3. Only the A matrix has
changed (only two elements, 21 and 22 were doubled) and thus the poles have changed:

0 1 0 0 0 0
20 0.2 10 0.1 0 0
0 0 0 1 0 0

10 0.1 20 0.2 10 0.1
0 0 0 0 0 1
0 0 10 0.1 10 0.1

A

 
 − − 
 

=  − − 
 
 

− − 

1,2 0.16 5.70s i= − ± 3,4 0.08 3.94s i= − ± 5,6 0.01 1.41s i= − ±

 The output plots for this case are given below, for two different time scales. These are bounded,
cyclical, vibrating outputs. (Note: mass 1 still leads 2, which leads 3.)

u (t)2

y (t)

m2

2

u (t)1

c2

y (t)

m1

k 2

1

1c
1k

y (t)

m3

3

c3

k 3

0 50 100 150 200
0

0.2

0.4

y1

Example 2 Grounded

0 50 100 150 200
0

0.2

0.4

y2

0 50 100 150 200
0

0.2

0.4

t (sec)

y3

0 5 10 15 20
0

0.2

0.4

y1

Example 2 Grounded, Detail

0 5 10 15 20
0

0.2

0.4

y2

0 5 10 15 20
0

0.2

0.4

t (sec)

y3

34

Example 4: Transient response to initial conditions
 Given the following system, determine the response to initial conditions (the homogeneous
solution, also called the zero input solution). The poles are 1,2 0.20 0.72s i= − ± and s3 = –3.60.

[]
0 1 0
0 0 1
2 2 4

A
 
 =  
 − − − 

 []
0
0
1

B
 
 =  
  

 [] []1 0 0C = [D] = [0] ()
0

0 0
1

X
 
 =  
 
 

 U(t) = 0

At t = 10 sec, the final state values are (from looking at the MATLAB lsim data):

()
0.034

10 0.023
0.028

X
 
 =  
 − 

 Compare this to calculating final state using the state transition matrix Φ(t) in MATLAB:

 t = 10;
 Phi = expm(A*t);
 x0 = [0;0;1];
 x10 = Phi * x0;

()
0.132 0.160 0.034

10 0.069 0.064 0.023
0.046 0.115 0.028

 
 Φ = − 
 − − − 

The last column of Φ(10) is the response of x1, x2, x3 to an initial condition of 1 on the third state x3,
which agrees with the above result X(10).

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

Example 4 States

t (sec)

x(
t)

x
1

x
2

x
3

35

Example 5: Impulse response of open- and closed-loop systems
 Block diagrams of open- (left) and closed-loop (right) systems in transfer function form:

 1,2 1 1.73s i= − ± 1,2,3 0.88 1.80 , 2.22s i= − ± −

Open-loop system:

[] 0 1
4 2oA  

=  − − 
 [] 0

1oB  
=  

 
 [] []1 0oC = [Do] = [0]

Closed-loop system:

[]
0 1 0
0 0 1
9 8 4

cA
 
 =  
 − − − 

 []
0
0
1

cB
 
 =  
  

 [] []1 0 0cC = [Dc] = [0]

MATLAB code:
t = [0:0.1:7];
[yo,t,xo] = impulse(ao,bo,co,do,t);
[yc,t,xc] = impulse(ac,bc,cc,dc,t);
figure; plot(t,yo,’r’,t,yc,’g’);

 The closed-loop response yC is preferable to the open-loop response yO in terms of lower
amplitude; it is similar to the open-loop in terms of time response (the closed-loop response lags).

0 1 2 3 4 5 6 7
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Example 5 Outputs

t (sec)

y(
t)

y
O

y
C

36

Example 6: State-Space representation is not unique

 Given two third-order SISO systems:

1

0 1 0
0 0 1
4 5 8

A
 
 =  
 − − − 

 1

0
0
4

B
 
 =  
  

[]1 1 0 0C = D1 = [0]

2

0.5 0.5 0.707
0.5 0.5 0.707

6.364 0.707 8.0
A

 
 = − − 
 − − − 

 2

0
0
4

B
 
 =  
  

[]2 0.707 0.707 0C = D2 = [0]

Determine the transfer function representations (using MATLAB function ss2tf):

()1 3 2

4
8 5 4

G s
s s s

=
+ + +

 ()2 3 2

4
8 5 4

G s
s s s

=
+ + +

These transfer functions are identical, so both state-space realizations are valid (this example

demonstrates that state-space representation is not unique).

 The poles are identical (roots(den)): 7.397, 0.301 0.671i− − ±

The poles could also be found from the eigenvalues of either A matrix – eigenvalues are invariant
and equal to poles of the system (for minimal realizations). They are the roots of the characteristic
equation.

 However, the eigenvectors of A1 and A2 are different.

37

2.4 Controllability and Observability

 Conditions of controllability and observability govern the existence of a complete solution to the
control system design problem in state space. Introduced by Kalman (of the Kalman filter) – he is the
father of modern linear state-space methods. He developed these concepts as the first step in complete
control system design. Kalman flunked his prelims at MIT; apparently his ideas were too modern at the
time (early 1960’s). He then developed his famous work at some small college.

• Controllable if all states xi can be affected by at least one control uj (actuators)
• Observable if all initial states xi can be determined from at least one output yj (sensors)

 Although most physical systems are controllable and observable, we must ensure that the
corresponding mathematical models are also controllable and observable.

2.4.1 Controllability
 The continuous-time linear system:

is said to be completely state controllable at t = t0 if there exists an unconstrained control input U(t) that
will change an initial state X(t0) to any final state X(t1) in a finite time interval 0 1t t t≤ ≤ (for all states).
For example, we can force () { }1 0X t → if desired, if the system is completely state controllable.

• Controllability is a property of coupling between input and state, so it involves A and B.
• If the input vector has a connection to each state, system is completely controllable.
• If a system is completely controllable, we can design a linear state-feedback control law to

arbitrarily place the closed-loop eigenvalues (poles) so that an unstable system is stabilized
and the transient response can be controlled.

Controllability Criterion

Controllability Matrix P:

If rank(P) = n, the system is completely state controllable.

 recall: m number of inputs
 p number of outputs
 n number of states

2, , ,B AB A B  each have dimension:

so the dimension of P is:

38

SISO Case: b is a column matrix

P is an (n x n) square matrix.

If 0P ≠ , the system is completely state controllable.

Controllability Examples

1) () 3 2
2 1 0

1G s
s a s a s a

=
+ + +

2) 1 1

2 2

2 0 1
1 1 1

x x
u

x x
      

= +      − −      





Clearly, 0P = so the system is NOT completely state controllable. Why?

1 2 1 1 2 1 22x x x u x x u x x+ = + − + − = + 

The states do not depend on u, so the system is uncontrollable.

39

2.4.2 Observability
 The continuous-time linear system:

is said to be completely observable if the all initial states X(t0) can be determined from the observation
of output Y(t) over a finite time interval 0 1t t t≤ ≤ given U(t).

• Observability is a property of coupling between state and output, so it involves A and C.
• An observable system has an output that possesses a component due to each state variable.
• An observable system can estimate all state variables. A connection exists between each

state variable and the output. If a system is completely observable, we can design an
observer to support the state-space controller.

Observability Criterion

Observability Matrix Q:

If rank(Q) = n, the system is completely observable.

 recall: m number of inputs
 p number of outputs
 n number of states

2, , ,C CA CA  each have dimension:

so the dimension of Q is:

SISO Case: c is a row matrix

If 0Q ≠ , the system is completely observable.

40

Observability Examples

1) () 3 2
2 1 0

1G s
s a s a s a

=
+ + +

2) 1 1

2 2

2 0 1
1 1 1

x x
u

x x
      

= +      − −      





 [] []1

2

1 1 0
x

y u
x

 
= + 

 

Clearly, 0Q = so the system is NOT completely observable. Why?

1 2y x x= +

which depends on x1(0) and x2(0) so this does not allow us to determine x1(0) and x2(0) independently.

Examples summary:

1) Completely state controllable and observable so we can design a linear state-feedback controller and
observer with closed-loop poles as we specify.

2) Not state controllable or observable so we cannot design a linear state-feedback controller nor
observer with closed-loop poles as we specify.

41

2.4.3 MATLAB for Controllability and Observability

1)
0 1 0
0 0 1
8 7 2

A
 
 =  
 − − − 

0
0
1

b
 
 =  
  

 []1 0 0c =

 ctrb(A,b) calculates: 2

0 0 1
0 1 2
1 2 3

P b Ab A b
 
  = = −   
 − − 

 rank(ctrb(A,b)) = 3 or det(ctrb(A,b)) = –1

The rank of P is full, or 0P ≠ , so this system is completely state controllable.

 obsv(A,c) calculates:
2

1 0 0
0 1 0
0 0 1

c
Q cA

cA

   
   = =   
     

 rank(obsv(A,c)) = 3 or det(obsv(A,c)) = 1

The rank of Q is full, or 0Q ≠ , so this system is completely observable.

2)
2 0
1 1

A  
=  − 

1
1

b  
=  − 

 []1 1c =

 ctrb(A,b) calculates: [] 1 2
1 2

P b Ab  
= =  − − 

 rank(ctrb(A,b)) = 1 or det(ctrb(A,b)) = 0

The rank of P is not full, that is 0P = , so this system is not completely state controllable.

 obsv(A,c) calculates:
1 1
1 1

c
Q

cA
   

= =   
   

 rank(obsv(A,c)) = 1 or det(obsv(A,c)) = 0

The rank of Q is not full, that is 0Q = , so this system is not completely observable.

42

2.5 Similarity Transformations and Canonical Realizations

Realization: one possible state-space description for a given system, out of infinite valid possibilities.
Canonical Realization: various simple, structured, standard forms for state-space description.

Textbook locations for Similarity Transformations and Canonical Realizations
 Our coverage of Similarity Transformations and Canonical Forms (Controller Canonical Form,
Observer Canonical Form, Diagonal Canonical Form) is contiguous in the notes, but is all over the place
(text, examples, MATLAB, and homework problems, 3 chapters) in the textbook:
 Topic Textbook Section
 Similarity Transformations 2.5

 Diagonal Canonical Form (DCF) 2.5
 MATLAB for DCF 2.6
 Continuing Examples (DCF) 2.7

 Controller Canonical Form (CCF) 3.3
 MATLAB for CCF 3.5
 Continuing Examples (CCF) 3.6

 Observer Canonical Form (OCF) 4.4
 MATLAB for OCF 4.6
 Continuing Examples (OCF) 4.7

2.5.1 Similarity Transformations
 Linear state vector coordinate transformation:

 Where X original state vector nx1
 Z new state vector nx1
 T non-singular transformation matrix nxn

State-space description in terms of the new state vector Z:

This set of linear transformations is called a similarity transformation because new system has the same:

• characteristic equation
• eigenvalues
• transfer function
• but eigenvectors are different!

Proof:

Same characteristic polynomial and eigenvalues.

43

2.5.2 Controllable Canonical Form (CCF)

 CCF is our familiar form so far. Let:

1 2
1 2 1 0() n n

ns s a s a s a s a−
−∆ = + + + + +

represent the characteristic polynomial. an must be 1, i.e. the polynomial must be normalized. Any
state-space realization A, B, C, D can be transformed to CCF by:

2 1nP B AB A B A B− =   is the controllability matrix (n x nm)

M =

So this only works for single input m=1; then T is (n x n)

CCF:

C CT= and D D= have no particular form.

44

CCF Example

Given the following system, calculate the Controllable Canonical Form (CCF).

[]
1 2 / 3 3

0 1 3
1 5 / 3 3

A
− − − 

 =  
 − − − 

 []
1
0
1

B
 
 =  
  

 [] []1 1 1C = [D] = [0]

CCF transformation matrix T:

Result:

1

0 1 0
0 0 1
3 1 3

A T AT−

 
   = =   
 − − − 

1

0
0
1

B T B−

 
   = =   
  

 []3 1 2C CT  = =  [] []0D D  = = 

() () []()1 3 1 3 3,eig A eig A roots i= = = − ±

If you start with CCF, T=PM=I.

2.5.3 Observable Canonical Form (OCF)
OCF is the companion form to CCF. Let 1 2

1 2 1 0() n n
ns s a s a s a s a−

−∆ = + + + + + again represent the
characteristic polynomial. Any state-space realization A, B, C, D can be transformed to OCF by:

2

1n

C
CA

Q CA

CA −

 
 
 
 =
 
 
  



 is the observability matrix (np x n)

1 2 1

2 3

1

1
1 0

1 0 0
1 0 0 0

n

n

a a a
a a

M
a

−

−

 
 
 
 =
 
 
  





    





 Same as in CCF case (n x n)

So this only works for single output p=1; then T is (n x n)

45

OCF:

1B T B−= and D D= have no particular form.

CCF and OCF are companions, or duals:

OCF Example

Given the CCF example, calculate the Observable Canonical Form (OCF).

[]
1 2 / 3 3

0 1 3
1 5 / 3 3

A
− − − 

 =  
 − − − 

 []
1
0
1

B
 
 =  
  

 [] []1 1 1C = [D] = [0]

3 23 3 0sI A s s s− = + + + = a0=3 a1=1 a2=3

[]
1 3 1
3 1 0
1 0 0

M
 
 =  
  

 [Q] = [] 1T MQ −= =

Result (check duality with CCF):

1

0 0 3
1 0 1
0 1 3

A T AT−

− 
   = = −   
 − 

 1

3
1
2

B T B−

 
   = =   
  

 []0 0 1C CT  = =  [] []0D D  = = 

() () []()1 3 1 3 3,eig A eig A roots i= = = − ±

If you start with OCF, [] 1T MQ I−= = .

46

2.5.4 Diagonal Canonical Form (DCF)
DCF provides decoupled ODEs. Any state-space realization A, B, C, D can be transformed to DCF by:

where vi is the eigenvector of A associated with eigenvalue λi.
DCF:

1B T B−= , C CT= , and D D= have no particular form.

• solve n first-order ODEs independently
• In DCF, if all B elements are non-zero, the system is completely controllable
• In DCF, if all C elements are non-zero, the system is completely observable

DCF Example

Given the same CCF and OCF examples, calculate Diagonal Canonical Form (DCF).

[]
1 2 / 3 3

0 1 3
1 5 / 3 3

A
− − − 

 =  
 − − − 

 []
1
0
1

B
 
 =  
  

 [] []1 1 1C = [D] = [0]

[]1 2 3

0.707 0.21 0.52 0.21 0.52
0.424 0.50 0.56 0.50 0.56

0.566 0.35 0.02 0.35 0.02

i i
T v v v i i

i i

− + − − 
 = = − − − − + 
 + − 

1

3 0 0
0 0
0 0

A T AT i
i

−

− 
   = =   
 − 

 1

2.12
0.24 0.58
0.24 0.58

B T B i
i

−

 
   = = − +   
 − − 

[]0.85 0.35 0.02 0.35 0.02C CT i i  = = − − − +  [] []0D D  = = 

B and C are fully populated (not 0). Therefore, this system is completely controllable and observable.

() () []()1 3 1 3 3,eig A eig A roots i= = = − ±

If you start with DCF, T = I.

47

If A is CCF and A has distinct eigenvalues λi then T for DCF is the Vandermonde matrix:

Same example, start with CCF:

0 1 0
0 0 1
3 1 3

CCFA
 
 =  
 − − − 

0
0
1

CCFB
 
 =  
  

 []3 1 2CCFC = DCCF = [0]

1 2 3
2 2 2

1 2 3

1 1 1 1 1 1
3

1 1 9
T i iλ λ λ

λ λ λ

   
   = = − −   
   − −   

1

0 0
0 0
0 0 3

i
A T AT i−

 
   = = −   
 − 

 1

0.05 0.15
0.05 0.15

0.1

i
B T B i−

− − 
   = = − +   
  

[]1 1 18C CT i i  = = + −  [] []0D D  = = 

Imaginary terms in results! MATLAB follows another algorithm for canonical diagonalization (DCF),
allowing only real numbers.

2.5.5 MATLAB for Canonical Realizations

1. Observer Canonical Form (OCF)
 [ao,bo,co,do,to] = canon(a,b,c,d,‘companion’);

• ao,bo,co,do are the resulting state-space matrices in OCF corresponding to the original
a,b,c,d system given in any form.

• ‘companion’ is the text switch for OCF.
• to is the OCF transformation matrix.

2. Diagonal Canonical Form (DCF)
 [ad,bd,cd,dd,td] = canon(a,b,c,d,‘modal’);

• ad,bd,cd,dd are the resulting state-space matrices in DCF corresponding to the original
a,b,c,d system given in any form.

• ‘modal’ is the text switch for DCF.
• td is the DCF transformation matrix.

3. Controller Canonical Form (CCF)
 There is no CCF text switch for the canon function. Instead, one can use ‘companion’ to
find OCF and then apply the duality rules to determine CCF.

48

MATLAB canon Examples

DCF
Previous example, using canon with ‘modal’:

[]
1 2 / 3 3

0 1 3
1 5 / 3 3

A
− − − 

 =  
 − − − 

 []
1
0
1

B
 
 =  
  

 [] []1 1 1C = [D] = [0]

[ad,bd,cd,dd,td] = canon(a,b,c,d,‘modal’);

The ‘modal’ option calculates the DCF canonical realization where the first-order differential
equations are decoupled.

3 0 0
ad 0 0 1

0 1 0

− 
 =  
 − 

2.12

bd 0.49
1.16

 
 = − 
 − 

 []cd 0.85 0.35 0.02= − − dd = 0

OCF
Previous example, using canon with ‘companion’:

[]
1 2 / 3 3

0 1 3
1 5 / 3 3

A
− − − 

 =  
 − − − 

 []
1
0
1

B
 
 =  
  

 [] []1 1 1C = [D] = [0]

[ao,bo,co,do,to] = canon(a,b,c,d,‘companion’);

The ‘companion’ option calculates the OCF realization, which is the dual realization for CCF.

0 0 3
ao 1 0 1

0 1 3

− 
 = − 
 − 

1

bo 0
0

 
 =  
  

 []co 2 5 16= − do = 0

1/ 3 4 / 3 2 / 3

1 1/ 3 1
1/ 3 0 1/ 3

T
 
 = − 
 − 

This OCF violates the duality rule state earlier since COCF should equal T

CCFB ; however, both are correct
realizations since they both yield the same transfer function.

Also see the MATLAB ss2ss function.

49

canon function: return to controllability & observability examples

1)
0 1 0
0 0 1
8 4 2

a
 
 =  
 − − − 

0
0
1

b
 
 =  
  

 []1 0 0c = d = [0]

[ad,bd,cd,dd,td] = canon(a,b,c,d,‘modal’);

The ‘modal’ option calculates the DCF canonical realization where the first-order differential
equations are decoupled.

2 0 0
ad 0 0 2

0 2 0

− 
 =  
 − 

0.57

bd 0.25
0.77

− 
 = − 
 − 

 []cd 0.22 0.10 0.19= − − dd = 0

There are no zeros in bd, so this system is completely state controllable.
There are no zeros in cd, so this system is completely observable.

eig(a) are distinct so ad is fully decoupled (note MATLAB disallows imaginary terms on the
diagonal and in the transformation matrix):

2.29 0 0.57

td 3.08 2.04 0.25
1 1.04 0.77

− − 
 = − − − 
 − − 

transformation matrix, for the state transformation {Z} = [td]{X}.

2)
2 0
1 1

a  
=  − 

1
1

b  
=  − 

 []1 1c = d = [0]

[ad,bd,cd,dd,td] = canon(a,b,c,d,‘modal’);

The ‘modal’ option calculates the DCF canonical realization where the first-order differential
equations are decoupled.

1 0

ad
0 2

 
=  

 

0
bd

1.414
 

=  
 

 []cd 1 0= dd = 0

There is a zero in bd, so this system is not completely state controllable.
There is a zero in cd, so this system is not completely observable.

50

1)
0 1 0
0 0 1
8 4 2

a
 
 =  
 − − − 

0
0
1

b
 
 =  
  

 []1 0 0c = d = [0]

[ao,bo,co,do,to] = canon(a,b,c,d,‘companion’);

The ‘companion’ option calculates the OCF realization, which is the dual realization for CCF.

0 0 8

ao 1 0 4
0 1 2

− 
 = − 
 − 

1

bo 0
0

 
 =  
  

 []co 0 0 1= do = 0

4 2 1

to 2 1 0
1 0 0

 
 =  
  

2)
2 0
1 1

a  
=  − 

1
1

b  
=  − 

 []1 1c = d = [0]

[ao,bo,co,do,to] = canon(a,b,c,d,‘companion’);

Error: system must be controllable from first input.

The OCF transformation fails since the system is not fully controllable (the transformation matrix to is
singular).

51

2.6 Stability

A system is stable if the output is bounded for all bounded inputs. Stability is property of a
system, independent of input signal. Equilibrium states can be 1. unstable equilibrium, 2. neutral
equilibrium, or 3. stable equilibrium:

2.6.1 Eigenvalue Test for System Stability
 For a strictly stable system, the real part of all poles must be negative. This is because the eat
component of the solution will blow up for positive a (the real part of the poles). Recall that poles are
the eigenvalues of the system dynamics matrix A.

The characteristic equation and poles (eigenvalues of A) are given below (this assumes a SISO
second-order system – the\is stability test also applies to higher order systems):

0sI A− = 1,2s a ib= ±

The form of the transient solution is:

() ()cosaty t Ce bt φ= +

 If all a < 0 stable

 If any a = 0 marginally stable (assuming all other 0a ≤)

 If any a > 0 unstable (regardless of other a)

Re-Im pole map:

Classical controls:

• Routh-Hurwitz criterion - determine stability based on transfer function coefficients
without actually calculating poles.

• Root-locus method - graphical method to vary feedback gain k to determine ranges for
stability and control transient response.

1 2 3

52

2.6.2 Stability Analysis Based on Energy and Phase Plots

Stability analysis based on system energy applies to linear/non-linear and constant/time varying
systems. We can determine stability without solving X AX BU= + (or non-linear system equations). E
is the total system energy and an equilibrium point is X={0}:

 If then { }0X → and the system is stable.

 If then the system is marginally stable.

If then the system is unstable because something is continuously
adding energy.

Example 1-dof m-c-k linear translational mechanical system.

If the system is stable.

This is always true for positive damping.

Stability analysis via phase plots

 Plot velocity x2 vs. displacement x1:

• Increasing, unchanging, or decreasing energy

• Stable if orbit converges to a point (constant x1, x2=0)

• Show examples: +, 0, – damping

• Initial conditions

53

1. Positive damping system 1,2 1 9.95s i= − ± () 2
1

2 100
G s

s s
=

+ +

[] 0 1
100 2

A  
=  − − 

 [] 0
1

B  
=  

 
 [] []1 0C = [D] = [0]

Zero input response with initial conditions { } { }0 1 0 TX =

Phase Plot, + damping 3D Phase Plot, + damping

Zero Input State Responses System Energy and Derivative

54

2. Zero damping system 1,2 0 10s i= ± () 2
1
100

G s
s

=
+

[] 0 1
100 0

A  
=  − 

 [] 0
1

B  
=  

 
 [] []1 0C = [D] = [0]

Zero input response with initial conditions { } { }0 1 0 TX =

Phase Plot, 0 damping 3D Phase Plot, 0 damping

Zero Input State Responses System Energy and Derivative

Note: 210 2n f
T
πω π= = =

or 0.63
5

T π
= = ; this time period agrees with the plotted responses.

55

3. Negative damping system 1,2 1 9.95s i= + ± () 2
1

2 100
G s

s s
=

− +

[] 0 1
100 2

A  
=  − 

 [] 0
1

B  
=  

 
 [] []1 0C = [D] = [0]

Zero input response with initial conditions { } { }0 1 0 TX =

Phase Plot, – damping 3D Phase Plot, – damping

Zero Input State Responses System Energy and Derivative

56

2.6.3 Lyapunov Stability Analysis

Definitions:

• Any time varying nonlinear system can be represented as:
(),X f X t=

• A state is an equilibrium state Xe if (), 0ef X t = for all t.

• For linear time invariant systems, (),X f X t AX= = and there is one unique equilibrium state

Xe if A is nonsingular; infinitely many equilibrium states Xe if A is singular.

• We can always shift an equilibrium state Xe to zero by coordinate shifts: ()0, 0f t = for all t.

• Hyperspherical region of radius k about an equilibrium state Xe: eX X k− ≤
using the Euclidean norm:

() () ()2 2 2
1 1 2 2e e e n neX X x x x x x x− = − + − + + −

• Define two such spherical regions: eX X δ− ≤ and eX X ε− ≤ , with δ < ε.

 Graphical representation for Lyapunov regions:

1. An equilibrium state Xe is said to be stable in the sense of Lyapunov (stability I.S.L.) if trajectories
starting within δ do not leave the ε region as t increases indefinitely.

2. An equilibrium state Xe is said to be asymptotically stable if trajectories starting within δ converge to
Xe without leaving the ε region as t increases indefinitely. This case is preferable to stability I.S.L.

3. An equilibrium state Xe is said to be asymptotically stable in the large if asymptotic stability holds for
all possible initial states X0. There must be only one equilibrium state in the whole state space.

4. An equilibrium state Xe is said to be unstable if trajectories starting within δ leaves the ε region as t
increases.

Stability types:

• Stability in the sense of Lyapunov (stability I.S.L.)

• Asymptotic stability

• Bounded input, Bounded state Stability (BIBS)

• Bounded input, Bounded output Stability (BIBO)

57

Lyapunov Stability Method
 Given the homogeneous LTI system X AX= , assume the state vector origin is the equilibrium
state Xe:

0eX = or 0eAX =

Second Method of Lyapunov (1892, Russian):
 If a positive-definite function V(X) can be found such that ()V X is negative-definite, this
equilibrium state is asymptotically stable.

V(X) Lyapunov function: generalized energy function, not unique

V(X) is positive-definite if V(X) > 0 for all X
 positive-semi-definite if () 0V X ≥ for all X
 negative-definite if V(X) < 0 for all X

Quadratic form TX PX scalar function, P is real and symmetric. This form is positive-definite if P is
positive-definite. Note: P is NOT the controllability matrix. Quadratic form for n = 2:

{ } { }11 12 1 11 1 12 2 2 2
1 2 1 2 11 1 12 1 2 22 2

12 22 2 12 1 22 2
2T p p x p x p x

X PX x x x x p x p x x p x
p p x p x p x

+     
= = = + +     +     

Positive-definite matrix: Sylvester’s criterion:
 P is positive-definite if all principal minors are positive. Principal minors are submatrix
determinants starting with scalar p11 and proceeding (with p11 included as the first term in each) until the
determinant of the entire P.
 P is positive-semi-definite if all principal minors are non-negative.

Lyapunov’s Direct Method
 For linear time-invariant systems, we must find a positive-definite quadratic scalar Lyapunov
function () TV X X PX= . With P real, symmetric, and positive-definite, the function V(X) is positive-
definite.
 If () 0V X < for all t (negative-definite), then the system is asymptotically stable. Choose:

() TV X X PX=

 If A is constant, P is constant:

0P = and using X AX= :

58

Lyapunov Equation

For asymptotic stability, ()V X must be negative-definite, so the matrix in the quadratic form:

must be negative-definite. That is:

for some positive-definite Q. Note: Q is NOT the observability matrix. Starting with an arbitrary
positive-definite Q yields a unique P. However, starting with an arbitrary positive-definite P may not
yield a unique Q. This is unfortunate since it is easy to find Q given P, but it may not work this way.
Therefore we must solve:

Necessary and sufficient condition:
 System represented by dynamics matrix A is asymptotically stable if and only if the solution P is
positive-definite when Q is positive-definite. For non-singular constant A, equilibrium state 0eX = is
asymptotically stable in the large.

Lyapunov Stability Analysis Example

Determine the stability condition for:
0 1
2 3

A  
=  − − 

Solve the following equation for symmetric P and determine its definiteness. Let Q = I (a simple
positive-definite matrix).

TA P PA Q+ = −

Since P is symmetric, we don’t have n2 equations, we have
2()
2

n n+ equations:

due to symmetry, use either 2,1 or 1,2 (they are the same equation).

59

Actually, these linear equations are decoupled:

Check Sylvester’s criterion for positive definiteness:

Both principal minors are positive so P is positive-definite. Therefore, the linear system A is
asymptotically stable in the large.

Note:

eig(A) = [–1, –2]. All real parts of the poles are strictly negative so this simple pole analysis agrees
with the above Lyapunov result (the system is strictly stable).

MATLAB Solution of Lyapunov Equation

X = lyap(A,C) solves TAX XA C+ = − .

Then check resulting matrix X for positive definiteness. Note the MATLAB convention is different:

 TA P PA Q+ = − standard convention
 TAX XA C+ = − MATLAB convention

• X is not the state vector, it’s the Lyapunov P matrix!!
• C is not the output matrix, it’s the Lyapunov positive definite matrix Q!!
• Note we have to put in AT (A’ in MATLAB parlance).

60

Example 1

0 1
2 3

A  
=  − − 

1 0
0 1

Q  
=  

 
 P = lyap(A’,Q)

1.25 0.25
0.25 0.25

P  
=  

 

P is positive definite (both principal minors are positive), so the system is asymptotically stable in the
large, which agrees with our earlier results for this example.

There is no MATLAB function for Sylvester’s criterion so we must test it ourselves using MATLAB.

Example 2

0 1
75 0.3

A  
=  − − 

1 0
0 1

Q  
=  

 
 P = lyap(A’,Q)

126.7 0.007
0.007 1.69

P  
=  

 

P is positive definite (both principal minors are positive), so the system is Asymptotically Stable.

Example 3

0 1
75 0

A  
=  − 

1 0
0 1

Q  
=  

 
 P = lyap(A’,Q)

Error: Solution is not unique – MATLAB cannot solve for P. This case is marginally stable
according to simple eigenvalue analysis.

Example 4

0 1
75 0.3

A  
=  − 

1 0
0 1

Q  
=  

 
 P = lyap(A’,Q)

126.7 0.007

0.007 1.69
P

− 
=  − 

P is not positive definite (obviously the first principal minor is negative), therefore the system is
unstable.

61

3. Full-State Feedback Controller and Observer Design
3.1 Shaping Dynamic Response
 Force system output to perform as desired using feedback control. Design of controller: place
poles of closed-loop system in order to:

• ensure stability
• achieve desired transient behavior (shaping dynamic response)

Generic Second-Order System Details Why?

• many real systems modeled with second-order ODEs
• design controller so higher-order system mimics desired second-order system

Linear 1-dof m-c-k mechanical translational system with y(t) output (displacement) and f(t) input (force)

where: (rad/s) is the natural frequency

 is the dimensionless damping ratio

Generic second-order system transfer function:

Characteristic polynomial:

Roots of the denominator (poles):

Five damping cases based on ξ (the first four cases we studied earlier: see the poles and transient
response example under the Solution of State-Space Equations section):

Damping Unit step response

1ξ > overdamped: real distinct negative roots 1 2,s s , sluggish response
1ξ = critically damped: real repeated negative roots 1 1,s s , fastest response without overshoot

0 1ξ< < underdamped: complex conjugate roots with negative real part 1,2s a ib= ± , overshoot
and oscillation, damps out

0ξ = undamped: complex conjugate roots with zero real part 1,2s ib= ± , simple harmonic
motion oscillation, theoretically never damps out

0ξ < unstable: positive real part, exponential blows up

62

Second-Order System Performance Specifications

underdamped case:

where (rad/s) is the damped natural frequency

To obtain a steady-state response of 1, u(t) must be a unit step function when using the generic second-
order transfer function – final value theorem to calculate ySS:

Unit step response solution for the generic second-order system:

() ()
2

1 sin
1

nt

d
ey t t

ξω

ω α
ξ

−

= − +
−

 1 2sin 1α ξ−= −

Steady-state error:

100%SSactual SSdesired
SS

SSdesired

y ye
y

−
= ×

So, theoretically, there is 0% steady-state error in this case (see plot later). Plot of response with rise
time, peak time, % overshoot, and settling time:

Without derivation (see Dorf and Bishop):

1) Rise Time (10-90%) 2.16 0.60
R

n

t ξ
ω

+
≅ (0.3 0.8ξ≤ ≤) 2) Peak Time

21
P

n

t π
ω ξ

=
−

3) Percent Overshoot
21100PO e

ξπ

ξ

 − 
 − = 4) Settling Time (2%±) 4

S
n

t
ξω

≅

63

Control swiftness of response: change rise and peak time
Control error of response: change % overshoot, settling time
These are competing requirements; see examples below.

Second-Order System Performance Specifications Example 1

Standard translational mechanical system (m = 1 kg, c = 0.5 Ns/m, k = 10 N/m).

natural frequency 10 3.16nω = =
damping ratio 0.08ξ =

Generic second-order system transfer function: () 2

10
0.5 10

G s
s s

=
+ +

Characteristic equation: 2 0.5 10 0s s+ + =
Roots (poles): 1,2 0.25 3.15s i= − ±

Unit step response solution: 0.25() 1 1.003 sin(3.15 85.5)ty t e t−= − + 

Example 1 Performance Specifications
tR = 0.25 s (bad approximation 0.3ξ < – from data tR = 0.34 s)
tP = 1.00 s
PO = 77.90%
tS = 16.00 s

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (sec)

y(
t)

Second-Order Step Response, Example 1

64

Second-Order System Performance Specifications Example 2
 The second-order system in Example 1 is highly underdamped; ξ is close to 0, the percent
overshoot is large, and the settling time is relatively high. This is typical of real-world systems such as
flexible space robots (both joint motion and Cartesian motion, on all degrees-of-freedom). Now let us
create another example, to specify more desirable behavior for such a system. Let us specify tS = 1.5 sec
and PO = 5%; the result will still be underdamped but not severely so.

From
215 100PO e

ξπ

ξ

 − 
 − = = , calculate ξ:

2
ln

100 1
PO

POL ξπ
ξ

− = = 
  −

2

2 2 0.69PO

PO

L
L

ξ
π

= =
+

Then from 41.5S
n

t
ξω

= ≅ , calculate the approximate ωn: 4 3.86n
St

ω
ξ

≅ =

Second-Order System Example 2

()
2

2 2 2

14.93
2 5.33 14.93

n

n n

G s
s s s s

ω
ξω ω

= =
+ + + +

 3.86nω = 0.69ξ = 1,2 2.67 2.80s i= − ±

 Example 2 Example 1
 tR = 0.54 s tR = 0.34 s
 tP = 1.12 s tP = 1.00 s
 PO = 5.00% PO = 77.90%
 tS = 1.50 s tS = 16.00 s

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (sec)

y(
t)

Second-Order Step Response, Example 2

65

Second-Order System Performance Specifications: MATLAB

A = [0 1;-10 -0.5]; B = [0; 1]; C = [1 0]; D = 0;
t = [0:0.01:20];
BobSys = ss(A,B,C,D)
step(BobSys,t); set(gca,'FontSize',18); grid;

Try this m-code (for Example 1); then right-click in figure window to add the performance
specifications (Characteristics) automatically; then compare with the computed results:

 Characteristics  Peak Response
 Settling Time
 Rise Time
 Steady State

Computed Performance Specifications from before:
tR = 0.25 s (bad approximation 0.3ξ < – from data tR = 0.34 s)
tP = 1.00 s
PO = 77.90%
tS = 16.00 s

Step Response

Time (sec)

A
m

pl
itu

de

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
 System: sys
 Peak amplitude: 1.78
 Overshoot (%): 77.9
 At time: 1

 System: sys
 Settling Time: 15.1

 System: sys
 Rise Time: 0.343

 System: sys
 DC gain: 1

66

First-, Second-, Third-, and Fourth-Order Systems: Step Responses

Poles:

first 1 0.3s = −

second 1,2 0.2 4s i= − ±

third 1

2,3

1
0.2 4

s
s i

= −
= − ±

fourth 1,2

3,4

0.2 4
0.22 4

s i
s i

= − ±

= − ±

 Now, we have focused on looking at the generic second-order system unit step response, plus
performance specifications, in order to specify good behavior for our controller to mimic. This good
behavior is expressed in terms of some new desired system poles (different than the original open-loop
poles). So we have two dominant poles from 2 22 0n ns sξω ω+ + = , for the underdamped case,

1,2 n ds iξω ω= − ± .
What if your original open-loop system is nth-order, and not second-order? Then you need to

include n–2 additional poles, in addition to the original, dominant second-order poles, according to the
following rule of thumb.

Additional poles: choose about 10x higher than the real part of the dominant second-order poles,
keep them negative for stability and real-only. The 10x higher poles will cause these modes to occur
much faster than the dominant poles, so their effect is hardly noticed in the overall responses, so the
dominant second-order poles still dominate.

67

Example: from Example 2 earlier, 1,2 2.67 2.80s i= − ± . If your system is sixth-order, include 6–2=4
additional, non-dominant poles:

3,4,5,6 27, 28, 29, 30s = − − − −

These are the six poles to specify to the controller design process, to basically achieve the desired
dominant second-order behavior. When you need the new, desired sixth-order polynomial, you must
multiply all the poles out (see MATLAB function conv):

() ()()()()()2 2
6 3 4 5 62 n ns s s s s s s s s s sξω ω∆ = + + + + + +

Mimic First-Order System with Higher Order Systems: Step Responses

Poles:

first 1 0.3s = −

second 1,2 0.3, 3s = − −

third 1,2,3 0.3, 3, 4s = − − −

fourth 1,2,3,4 0.3, 3, 4, 5s = − − − −

68

Mimic Second-Order System with Higher Order Systems: Step Responses

Poles:

second 1,2 2 2s i= − ±

third 1,2,3 2 2 , 20s i= − ± −

eighth 1,2,3,4

5,6,7,8

2 2 , 20, 21
22, 23, 24, 25

s i
s

= − ± − −

= − − − −

original 1,2 2 2s i= − ±
10x 1,2 20 20s i= − ±

69

ITAE Performance Index Alternate pole shaping method

Control swiftness of response: change rise and peak time
Control error of response: change % overshoot, settling time

 These are competing requirements. How to choose desired poles for closed-loop system under
control? Try performance indices – many cases have been solved to tell you the optimal poles given
various performance measures (indices). Here we will only consider one: the integral of time multiplied
by the absolute error (ITAE).

()
0

ITAE t e t dt
∞

= ∫

 Minimize ITAE to simultaneously optimize competing requirements. Minimum ITAE means
short time and small error at once. For first- through sixth-order systems, the following characteristic
polynomials minimize ITAE (Dorf and Bishop). Design feedback controller to meet one of these
specifications and the shaping of the dynamic response will be optimized according to ITAE.

n Optimal Characteristic Polynomials
1 ns ω+

2 2 21.4 n ns sω ω+ +

3 3 2 2 31.75 2.15n n ns s sω ω ω+ + +

4 4 3 2 2 3 42.1 3.4 2.7n n n ns s s sω ω ω ω+ + + +

5 5 4 2 3 3 2 4 52.8 5.0 5.5 3.4n n n n ns s s s sω ω ω ω ω+ + + + +

6 6 5 2 4 3 3 4 2 5 63.25 6.6 8.6 7.45 3.95n n n n n ns s s s s sω ω ω ω ω ω+ + + + + +

The engineer must set the value for ωn to suit the system at hand.

Note for all cases (except the first order system) some overshoot is required to optimize ITAE.
Simulate with MATLAB to see this (using ωn = 3 rad/s for all plots below):

ITAE Desired Unit Step Responses

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)

y(
t)

1st
2nd
3rd
4th
5th
6th

70

3.2 Linear Full State-Feedback Controller Design

3.2.1 Background

 Original open-loop system:

Feedback Control Law:

Draw open-loop diagram first. Assume the output Y(t) is not performing as desired (underdamped,
unstable, etc.). Add full state X(t) feedback.

Diagram:

r(t) reference input same units and dimensions (m x 1) as U(t)

K constant state feedback gain matrix dimensions (m x n)

Feedback control law for SISO:

If r(t) = 0, the controller is a regulator (reject initial conditions and/ or disturbances) – maintain
equilibrium state Xe = 0.

Derive Closed-Loop State Dynamics Equation:

71

 If the original open-loop system represented by A, B is completely state-controllable, a matrix K
exists that can give arbitrary eigenvalues in the closed-loop system A – BK. That is, we can place the
roots (system poles) of the characteristic equation shown below anywhere.

So we can achieve stability and desired transient performance design specifications:

• rise time
• peak time
• percent overshoot
• settling time
• damping, frequency

3.2.2 Decoupled CCF Solution
Controllable Canonical Form (CCF) SISO:

A – BK =

Eigenvalues of A-BK are the roots of the closed-loop characteristic equation:

Equate the desired closed-loop characteristic polynomial α(s) (known numbers, determined by the
engineer in the dynamic shaping process) with α(s,ki), the closed-loop characteristic polynomial that is a
function of controller gain unknowns ki, 1, 2, ,i n=  :

With CCF, solution for K is decoupled:

If one or more state component is not controllable, cannot change the poles associated with these states.

72

Example: Controller pole placement via feedback gain matrix K

 Given the following third-order open-loop system:

0 1 0
0 0 1
18 15 2

A
 
 =  
 − − − 

0
0
1

B
 
 =  
  

 []1 0 0C = D = [0]

The first step in controller design is to understand the characteristics of the as-given open-loop system:

Open-loop characteristic polynomial: 3 22 15 18 0s s s+ + + =

Poles: eig(A) = roots([1 2 15 18]) = 1.28, 0.36 3.73i− − ±

Typical third-order lightly damped response:

 This open-loop system is already stable. Let’s design a closed-loop state feedback controller to
change the poles to improve transient performance. In this example let us choose a desirable dominant
second-order system. We want the resulting closed-loop system to mimic a generic second-order system
with 6% overshoot and 3 sec settling time. The associated dimensionless damping ratio and natural
frequency are calculated:

0.67ξ = 2nω =

The associated closed-loop dominant desired poles are:

1,2 1.33 1.49n ds i iξω ω= − ± = − ±

The original open-loop system is third-order, so we need to choose a third desired pole. Make it
negative, real, and 10 times higher than the real part of the dominant second-order poles:

3 13.33s = −

So the desired characteristic polynomial is (use MATLAB conv):

() ()()2 3 22.68 4 13.33 16 39.55 53.26s s s s s s sα = + + + = + + +

This will lead to better transient performance:

73

Controller design (determine unknowns ki, 1, 2, ,i n= )

A – BK =

A – BK =

() (,)isI A BK s kα− − = =

The top characteristic polynomial α(s,ki) is a function of the unknown controller gain matrix K, the
bottom is the numerical desired closed-loop characteristic polynomial α(s). Equate these two
polynomials to solve for K (with CCF, the solution for K is decoupled):

Units?

Units of k, c, m in a translational mechanical system.

Again, for a given open-loop SISO system in CCF, there is a simple decoupled solution for the
unknown full-state feedback gain matrix K:

1 1i i ik aα − −= −
where:
 1iα − are the desired characteristic polynomial coefficients
 1ia − are the open-loop characteristic polynomial coefficients

74

Controller Example Simulation
 Perhaps the most important step in controller design is simulation of the obtained closed-loop vs.
original open-loop results to demonstrate if there is any improvement (did you achieve your controller
design goals?). For our controller design example, using our existing simulation techniques and A–BK
for the closed loop dynamics matrix, with a unit step input:

The transient response looks better (designed for 6% overshoot and 3 sec settling time), but what
happened to the steady-state output magnitude? This is called output attenuation – the closed-loop
system has a stiffer virtual spring than the open-loop system.

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time (sec)

y

Open-loop
Closed-loop

75

3.2.3 Ackerman’s Formula
 To calculate K for any given SISO system (not just in CCF), assuming the linear feedback
control law:

Ackerman’s formula is:

where:
 K calculated constant state feedback gain matrix
 2 1nP B AB A B A B− =  

 controllability matrix

and α(A) is the desired closed-loop system controller characteristic polynomial evaluated with the
system dynamics matrix A instead of the scalar Laplace variable s:

Ackerman’s Formula Example
 Same open-loop system and desired behavior as before.

0 1 0
0 0 1
18 15 2

A
 
 =  
 − − − 

0
0
1

B
 
 =  
  

2P B AB A B = = 

1P− =

Strange, that looks like the M matrix from CCF! No, that’s not strange! T PM I= = if you start with
CCF, so 1M P−= better hold true!

() 3 2
3

35.26 24.55 14
16 39.55 53.26 252 174.74 3.45

62.10 200.25 167.84
A A A A Iα

 
 = + + + = − − − 
 − − 

K =

76

MATLAB functions for controller design:

 K = place(A,B,des)

• A,B are the open-loop systems dynamics and input matrices
• des is an array containing the n numerical desired poles

 K = acker(A,B,des)

• same inputs as for place
• for single input only – since the system is linear this will yield the same K results as a single

input place

3.2.4 Input Correction

 As seen in the above controller design MATLAB simulation, the feedback matrix K has achieved
the control of transient response as desired. However, the closed-loop steady-state value (assuming a
step input) has been changed from the open-loop case, which is undesirable. Therefore we must perform
input correction on reference input r(t) so the closed-loop controller yields the original open-loop
steady-state value.

One-dof translational mechanical system:

For constant f: (0y y= =  at steady-state)

State-space description

At steady-state:

so

77

Input Correction Example

0 1 0
0 0 1
18 15 2

A
 
 =  
 − − − 

0
0
1

B
 
 =  
  

 u=1 (unit step)

Open-loop steady-state value:

Check:

also checks with MATLAB simulation results. Now, the steady-state value with closed-loop state
feedback is:

So for the closed-loop system with state feedback controller, we must modify the reference input r:

where u is the open-loop input magnitude and corr is the correction factor.

For SISO systems, the correction factor is a ratio, found 2 ways (see equations below). This is
the ratio of the effective closed-loop system stiffness with controller to the actual open-loop system
stiffness. For the example:

()
()

3,1 53.26 0.056 2.96
3,1 18 0.019

CL ssOL

ssCL

A ycorr
A y

= = = = =

This is the reference input used to produce the corrected closed-loop controller results with the desired
steady-state value, shown below. The closed-loop transient response was designed for 6% overshoot
and 3 sec settling time (did this succeed?).

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time (sec)

y

Open-loop
Closed-loop

78

For input correction in MIMO systems, output attenuation correction is not so simple:

1) For the open-loop system, also use:

{ } [] { }{ }1
ssX A B U−= −

to determine the desired steady-state values (same as the open-loop system).

2) Then:

0

pinv()

ss c ss c

c c ss

c c ss

X A X B r
B r A X

r B A X

= = +
= −
= −



where pinv is the MATLAB Moore-Penrose pseudoinverse of non-square matrix Bc.

79

3.3 Linear Full State-Feedback Observer Design

3.3.1 Background

Recall the state-space control law is () () ()U t r t KX t= − . Controller design is straightforward
and the same pole-placement procedure is used for any controllable system. You can use the special
CCF decoupled solution or Ackerman’s formula for SISO systems to obtain the unique controller
solution. Use MATLAB function place for MIMO (or SISO) systems.
 Problem: Often in physical systems we cannot measure all of the components in the state vector
for feedback. Sometimes state vector components are not even physical quantities, but linear
combinations of physical quantities. So we must design an observer.

Observer – estimate full state vector for use in feedback controller based on known inputs U(t) and
measured outputs Y(t). We will integrate the observer with the current state-feedback controller system.

Observer Diagram (high-level):

X true current state vector
X̂ estimate for current state vector, from Observer

Modified control law:

We want to drive the estimation error to zero:

This error must converge to zero faster than the transient response dynamics of the linear system with
controller. Therefore, we choose observer eigenvalues at least ten times higher than the controller poles.

Original open-loop system:

Form for Observer:
 Choose the same form as the open-loop plant dynamics. Use a state vector estimate, add a zero
term, and assume D = [0]. L is the observer gain matrix, with dimension (n x p).

80

Observer Diagram (details):

Derivation of error dynamics equation:

If all ˆRe(eig()) 0A < then this is an asymptotically stable error equation and:

 If the original open-loop system represented by A, C is completely observable, then we can
arbitrarily place eigenvalues of A – LC by proper selection of matrix L. We must ensure the observer is
stable and we can control the rate and transient nature of convergence X̂ X→ .

3.3.2 Observer Design
 We must place the eigenvalues of A – LC to achieve observer estimation convergence faster than
the closed-loop controller transient response. Assume we have already found controller gain matrix K.
Compare to the controller design problem where we placed eigenvalues of A – BK to achieve stability
and the desired transient response design specifications. The order is reversed:

BK
LC

A matrix and its transpose have the same characteristic equation and the same eigenvalues. Therefore,
let us select L to control the eigenvalues of:

and then the eigenvalues of A – LC will be the same. Match format from controller design:

The algorithms for controller design (CCF, Ackerman, place) apply to observer design if:

A, C must be completely state observable.

81

The controllability matrix 1nP B AB A B− =   with AT and CT is:

 Full-state observer design is dual to the pole placement problem for design of full-state-feedback
controllers. Partial state observers are also possible (this would be more efficient: just estimate those
states you can’t measure via sensors).

Example: Observer pole placement via observer gain matrix L

 This is the same given open-loop system as the controller example; we use the controller

[]35.26 24.55 14.00K = designed previously. The form of the unknown L is given also.

0 1 0
0 0 1
18 15 2

A
 
 =  
 − − − 

0
0
1

B
 
 =  
  

 []1 0 0C = D = [0]
1

2

3

L
L L

L

 
 =  
  

In the controller design algorithm, replace:

Choose observer eigenvalues ten times higher than controller eigenvalues 1,2,3 1.33 1.49 , 13.33s i= − ± − ,
which were designed for 6% overshoot and 3 sec settling time.

Observer eigenvalues 1,2,3 13.33 14.90 , 133.33s i= − ± −

So the desired observer characteristic equation is:
3 2() 160 3955 53260OBS s s s sα = + + +

Desired observer coefficients are multiples of the controller coefficients, due to the 10x factor:

3 2() 16 39.55 53.26s s s sα = + + +

Match like powers of s between the function of L and desired characteristic equation:

82

This coefficient matrix looks like a skew-transpose of 1P− from controller design (more evidence of
duality):

1

15 2 1
2 1 0
1 0 0

P M−

 
 = =  
  

Actually we don’t need a matrix because the equations are partially decoupled (they would be fully
decoupled if you started with OCF). Caution – you must use only one realization A, B, C, D to design
the controller and observer, i.e. you cannot choose ACCF to obtain a decoupled controller solution and
then use AOCF to obtain a decoupled observer solution. Those two KCCF and LOCF would not work
together.

Units?

3.3.3 Ackerman’s Formula

Ackerman’s formula for observer design is:

 1) Ackerman’s observer formula: [] 10 0 0 1 () ()T T T

OBSL Q Aα−= 

where the observability matrix Q is: 1()
TT T T n T TQ C A C A C− =  

and ()T

OBS Aα is the desired observer characteristic polynomial evaluated with AT. For more evidence
of controller/observer duality, remember Ackerman’s formula for controller design is:

[] 10 0 0 1 () ()K P Aα−= 

 2) alternate Ackerman’s observer formula (transpose the formula of 1):

1

0
0

()()
0
1

OBSL A Qα −

 
 
 
 =
 
 
  



 3) MATLAB: LT = place(A’,C’,obs);

where obs are the n desired observer eigenvalues, ten times higher than the closed-loop controller poles
des, and we must use the transposes of A and C. The result, LT, must in turn be transposed to get L.

83

Controller & Observer Example Summary

 Original third-order open-loop LTI system, expressed in CCF:

0 1 0
0 0 1
18 15 2

A
 
 =  
 − − − 

0
0
1

B
 
 =  
  

 []1 0 0C = D = [0]

 State-feedback controller K:

[]35.26 24.55 14.00K =

0 1 0
0 0 1

53.26 39.55 16
cA A BK

 
 = − =  
 − − − 

 Bc = B Cc = C Dc = D = [0]

 State-feedback observer L:

1

2

3

158
3624
43624

L
L L

L

   
   = =   
     

158 1 0

ˆ 3624 0 1
43642 15 2

A A LC
− 

 = − = − 
 − − − 

84

Example Redux: Same observer design example, use OCF
 The solution for L was not fully decoupled when we started with the system in CCF. It will be a
fully decoupled solution for L when starting with OCF.

0 0 18
1 0 15
0 1 2

A
− 

 = − 
 − 

1
0
0

B
 
 =  
  

 []0 0 1C =
1

2

3

L
L L

L

 
 =  
  

[]1 2 3

1 2 3

0 1 0 0 0 1 0
0 0 1 0 0 0 1
18 15 2 1 18 15 2

T T TA C L L L L
L L L

    
    − = − =     
    − − − − − − − − −     

() () () ()3 2
3 3 2 1(,) 2 15 18T T T

OBS isI A C L s L s L s L s Lα− − = = + + + + + +

Use the same desired observer characteristic equation:

3 2() 160 3955 53260OBS s s s sα = + + +

Matching like powers of s between the function of Li and desired observer characteristic polynomial
yields a fully decoupled solution:

3

2

1

2 160
15 3955
18 53260

L
L
L

+ =

+ =
+ =

1

2

3

53242
3940
158

OCF

L
L L

L

   
   = =   
     

Note that this LOCF result is different than the original CCF example for observer design. This makes
sense since we started with different A, C matrices. Check these new LOCF results to ensure the proper
observer eigenvalues were created in the observer system matrix:

0 0 53260
ˆ 1 0 3955

0 1 160
OCFA A L C

− 
 = − = − 
 − 

The eigenvalues of ˆ

OCFA A L C= − are 13.33 14.89 , 133.33i− ± − , identical to those specified (ten times
the desired controller poles).

Also note that we cannot use the previously-calculated full state feedback gain matrix K for the
controller based on the CCF system, but we must calculate the new one based on the OCF system (this
solution, not shown, is NOT fully decoupled):

[]14.00 3.45 167.84OCFK = − −

14.00 3.45 149.84
1 0 15
0 1 2

c OCFA A BK
− 

 = − = − 
 − 

 Bc = B Cc = C Dc = D = [0]

85

3.4 Combined Closed-Loop Controller and Observer

 We now combine the actual and estimated state and observer error dynamics to derive the
combined controller/observer dynamics. The original open-loop system, the modified feedback control
law using the observer estimate for states, and the observer error dynamics equation are:

Define a new state vector W containing the original state and the observer estimation error:

Derive the super system including the full-state feedback and observer gain matrices K and L:

The system size has doubled to 2n. To simulate the closed-loop system dynamics with controller and
observer, use our existing MATLAB methods, with , , , , ,r r r rA B C D W r in place of , , , , ,A B C D X U .
For the example:

0

0 1 0 0 0 0
0 0 1 0 0 0

53.26 39.55 16 35.26 24.55 14
0 0 0 158 1 0
0 0 0 3624 0 1
0 0 0 43642 15 2

r
A BK BK

A
A LC

− 
=  − 

 
 
 
 − − −

=  − 
 −
 

− − − 

0
0
1

0 0
0
0

r
B

B

 
 
 
  

= =   
   

 
 
 

 [] []0 1 0 0 0 0 0rC C= = Dr = D = [0]

86

 One must include some artificial observer error via initial conditions on the observer error e, otherwise
the simulation will be perfect and no observer estimation convergence effect can be seen. This is agrees
with the real-world situation since we cannot know the initial error in general.

The super-system simulation results for the Example are plotted below using lsim with Ar, Br,
Cr, Dr, and W.

Note the observer error converges faster than the closed-loop controller dynamics, as desired.

Observer Error

()e A LC e= −

The Laplace transform of the above equation is:
()

()()
() ()

() 0

sE s A LC E s

sI A LC E s

= −

− − =

If () 0sI A LC− − = (as it must be for Observer L design), there are infinite solutions E(s)

If () 0sI A LC− − ≠ there is a unique solution E(s)

0 2 4 6 8 10
-0.1

0

0.1

x 1

Open-loop
Closed-loop
w/ Observer

0 2 4 6 8 10
-0.1

0

0.1

x 2

0 2 4 6 8 10
-0.5

0

0.5

time (sec)

x 3

87

3.5 Closed-Loop System Input Effort

 We must plot the required input effort in the simulation of closed loop systems (controller,
controller/observer) in order to ascertain if the required actuator commands are feasible:

• The actuator commands cannot change too fast to be realizable in the real world

• The actuator commands cannot exceed the limits of the physical actuator. If the limits are
violated this is called actuator saturation and the simulated control is not possible.

Closed-loop system control law:

Closed-loop system control law with observer:

Calculate and plot U(t) using MATLAB:

Even better, using Simulink:

Include real-world discussion on your closed-loop controller/observer simulation results regarding
actuator feasibility.

88

3.6 Disturbances Evaluation after Controller/Observer Design

What are disturbances?
 Disturbances are unknown, unmodeled, unwanted actions external to the control system that
interfere with the expected behavior. Examples:

Disturbance sources:

• Friction
• Wind
• Bumps
• Unmodeled dynamics
• Non-linearities
• Changing load inertia
• System changes over product life
• Contact with workspace
• Gravity

 We can model disturbances as input(s) affecting (subtracting from or adding to) the actuator
input effort (the same units as your open-loop system input). The disturbance is felt by the actuator as
something interfering with normal operation.

Compare transient response and steady-state error associated with open- and closed-loop
systems, with and without the disturbances included. Generally you will find that the closed-loop
system with controller and observer will perform much better than the open-loop system given unwanted
disturbances.

General disturbance diagrams (open- and closed-loop):

89

4. Optimal Control

 Linear state-feedback controllers can be designed to stabilize a controllable system and provide
desired transient response.

Can also optimize (usually minimize) objective functions

• time
• error
• energy
• combinations
• other

Performance Index (Objective Function):

If r(t) = 0, the controller is a regulator (reject initial conditions and/or disturbances) whose job is to
maintain the equilibrium state Xe = 0. Any deviation X is the error.

4.1 XTX Optimal Controller

Let us choose to minimize the error X for our objective function:

 (scalar)

To obtain minimum J, we assume the existence of an exact differential such that:

where Q is a constant symmetric matrix. Derivation details:

which satisfies the exact differential when:

This is the same form as the Lyapunov stability analysis equation.

90

For the SISO case, solve for:

()1 2, , , nQ Q k k k= 
Then:

Assuming stability (this must be the case), () 0X ∞ = , so:

Choose 1 2, , , nk k k to minimize J.

Optimal Control Example

Minimize ()0
TJ X X dt

∞
= ∫

0 1
10 0.5

A  
=  − − 

0
1

B  
=  

 
 u KX= − []1 2K k k= () 1

0
1

X  
=  

 

Minimize J:

91

For k1 = 1 and () { }0 1 1 TX = , the optimal value is k2 = 11.5. The second k2 value (–12.5) causes the
closed-loop system to be unstable.

We plot the state step responses below and compare with results from a standard controller
design. With this J, we minimize error w/o regard to time (slower response but less error).

 Standard, “tight” controller: ξ = 0.8 and ωn = 5 rad/sec
 Optimal XTX regulator: ξ = 1.81 and ωn = 3.32 rad/sec

0 50 100 150 200
0

2

4

6

8

10

12

14

k
2

J

0 2 4 6 8 10

-2

0

2

x 1

Open
Closed
XTX

0 2 4 6 8 10

-2

0

2

time (sec)

x 2

92

4.2 Linear Quadratic Regulator (LQR) Optimal Controller

We now minimize a new objective function to consider input effort as well as the previous state error:

where Q n n∈ × and R m m∈ × are weighting matrices. This objective function minimizes control effort
U in addition to error X.

 The LQR derivation requires Hamiltonian theory from advanced dynamics (see Williams and
Lawrence). The highlights are given here. Minimize J subject to:

Solve the Matrix-Ricatti Equation for a new gain matrix KLQR (LQRK n n∈ ×):

The new LQR optimal control law is:

The new closed-loop system dynamics matrix ACLQR is:

LQR Example
 This is the same example as the open-loop system in the XTX controller:

0 1
10 0.5

A  
=  − − 

0
1

B  
=  

 
 Q = I2 R = 1 () 1

0
1

X  
=  

 

Solve via MATLAB:

K_LQR = are(A,BB,Q); % Solve algebraic Ricatti equation

Where BB = 1 T TBR B BB− = (for R = 1). Result:

The simulation results (step responses to the given initial conditions) for both states are plotted below.

93

The LQR controller yielded ξ = 0.18 and ωn = 3.17 rad/sec. This is ‘looser’ transient response than we
have been doing all quarter. What went wrong? Let us also compare this with the standard and XTX
controllers:

0 2 4 6 8 10

-2

0

2

x 1

Open
LQR

0 2 4 6 8 10

-2

0

2

time (sec)

x 2

0 2 4 6 8 10

-2

0

2

x 1

Open
Closed
XTX
LQR

0 2 4 6 8 10

-2

0

2

time (sec)

x 2

94

Let us plot the single input effort U(t) required for each controller:

 Nothing went wrong! The LQR is the first controller that tried to minimize U(t) as well as the
error X(t). The input energy requirement is much lower for the LQR than the other controllers! Also,
though the states look like they follow the open-loop case, they do damp out much faster, so the error is
not nearly as bad as the open-loop case. There is a tradeoff between error and input effort that LQR
balances, while the other methods ignore the input effort.

Comparison of all controllers in the example

System s1,2 ξ ωn

Open-loop

0.25 3.15i− ±

0.079

3.16

Standard
state-space
controller

4 3i− ±

0.80

5

XTX optimal
controller
(overdamped)

–1, –11

1.81

3.32

LQR optimal
controller

0.58 3.12i− ±

0.18

3.17

0 2 4 6 8 10
-25

-20

-15

-10

-5

0

5

10

time (sec)

u
Closed
XTX
LQR

	1. Preliminaries
	1.1 Introduction
	1.2 Classical Control Overview
	1.3 Review of Matrices and Linear Algebra
	1.4 MATLAB Introduction

	2. State-Space Fundamentals
	2.1 State-Space Description of Dynamical Systems
	2.2 Solution of State-Space Equations
	2.3 Simulation of State-Space Systems
	2.4 Controllability and Observability
	2.4.1 Controllability
	2.4.2 Observability
	2.4.3 MATLAB for Controllability and Observability

	2.5 Similarity Transformations and Canonical Realizations
	2.5.1 Similarity Transformations
	2.5.2 Controllable Canonical Form (CCF)
	2.5.3 Observable Canonical Form (OCF)
	2.5.4 Diagonal Canonical Form (DCF)
	2.5.5 MATLAB for Canonical Realizations

	2.6 Stability
	2.6.1 Eigenvalue Test for System Stability
	2.6.2 Stability Analysis Based on Energy and Phase Plots
	2.6.3 Lyapunov Stability Analysis

	3. Full-State Feedback Controller and Observer Design
	3.1 Shaping Dynamic Response
	3.2 Linear Full State-Feedback Controller Design
	3.2.1 Background
	3.2.2 Decoupled CCF Solution
	3.2.3 Ackerman’s Formula
	3.2.4 Input Correction

	3.3 Linear Full State-Feedback Observer Design
	3.3.1 Background
	3.3.2 Observer Design
	3.3.3 Ackerman’s Formula

	3.4 Combined Closed-Loop Controller and Observer
	3.5 Closed-Loop System Input Effort
	3.6 Disturbances Evaluation after Controller/Observer Design

	4. Optimal Control
	4.1 XTX Optimal Controller
	4.2 Linear Quadratic Regulator (LQR) Optimal Controller

