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Abstract.  This paper covers the mechanical design and modeling of a redundant 
omni-directional mobile robot developed for the Ohio University RoboCup goalie.  
The goalie robot is actuated redundantly with four wheels for good mobility.  In the 
paper, first the overall mechanical design of the system is discussed. Second, the 
inverse kinematics solution is obtained using the principle of virtual work.  Third, 
dynamic equations of motion of the system are derived in a symbolic form resulting 
in coupled nonlinear differential equations. Finally, a simulation demonstrates the 
inverse kinematics solution and simple independent PD wheel control of our 
redundant omni-directional goalie robot.  

 
1.  INTRODUCTION 
 
Omni-directional drive is the ability to move in any direction (0 to 360 degrees) at any given orientation.  
Using this type of drive system enables a robot to move in a given direction while being able to rotate 
during linear travel.  Time is saved by eliminating the need to rotate the robot before translating from point 
A to point B.  Omni-directional drive gives the goalie robot the ability to always face the ball while being 
able to move in any direction.  In addition, it provides simpler inverse kinematics solution for path 
planning.   For these reasons, many research groups are studying omni-directional (holonomic) mobile 
robots and vehicles [1-5]. 
 
The Ohio University (OU) RoboCup Team incorporates the omni-directional drive into their mobile robots. 
The OU RoboCup Team consists of 4 players and 1 goalie; the players and goalie each have separate 
mechanical, electrical, and software design in order to meet different performance specifications. For 
example, the players are designed to optimize forward motion, while the goalie is designed to optimize 
side-to-side motion. This paper will focus on the mechanical design, dynamic modeling, and simulation of 
the redundant, omni-directional RoboCup goalie. 
 
2.  DESIGN 
 
The design for the goalie has two main functions.  The major function is to have the ability to quickly move 
side-to-side to guard the goal.  This has been accomplished by having the wheels aligned horizontally for 
quick movement.  The other function is the kicking of the ball.  The current design not only allows for a 
strong kick but also the ability to catching ball under control. 
 
2.1  Constraints 
 
In order to compete in the Robocup tournament, robots have to meet specified size constraints.  The goalie 
robot can be no taller than 22.5 cm if local vision is to be used, and must fit within a 18 cm diameter 
cylinder.  Any part that may extend outward on the robot must be fully extended when placed inside the 18 
cm cylinder.  These size constraints greatly limit the arrangement of drive and kicking systems.  Kicking 
and drive systems are rectangular in shape and designing a layout to meet the robot size constraints results 
in “wasted space” around these systems.  To utilize these irregularly shaped spaces, one has to be creative 



in making them useful for housing various system components.  Currently a circular chassis is being used 
to explore various drive/kicking system layouts that will make use of these valuable spaces (Figure 1).  
 

 
 

Figure 1:  Top View of OU Goalie (circular chassis)  
 
2.2  Performance Specifications 
 
Through testing various radio controlled toy cars, experiments were performed to better visualize what kind 
of performance we desire for the goalie robot.  High value was placed on making the robot “zippy” which 
means it can move or change direction quickly but doesn’t have a high maximum velocity.  An acceleration 
of 2 m/sec and a maximum velocity of 1 m/sec were the performance specifications decided upon for the 
goalie’s locomotion. 
 
The kicking mechanism used on the goalie needed to be powerful enough to propel the ball at least half the 
length of the playing field.  This distance would “clear” the ball out of our defensive zone giving the 
defensemen time to regroup.  The kicker should not be able to kick the ball so hard that it is able to roll 
over the boundary fence at the opposing end of the field, which would result in a penalty.  Controlling the 
kicking power is accomplished by using a variable speed motor on the kicking mechanism.   
 
One advantage of the goalie is the ability to capture the ball and completely enclose it.  Enclosing the ball 
and hiding it from opposing robots operating on the global vision system can lead to confusion if they 
cannot locate the ball.  However if the goalie is to capture the ball, teammates can be notified of the ball’s 
location.   
 
2.3  Layout 
 
The goalie layout consists of the drive system and kicking mechanism (Figure 2).  To maintain traction on 
the drive wheels, the robot center of mass should be located on the central axes of the drive wheels.  Four 
wheels are being used to drive the robot omni-directionally.  Keeping the goalie’s center of mass near these 
axes becomes difficult once the kicker mechanism is added to the system.  The kicker mechanism shifts the 
center of mass toward the center of the robot, which can cause the rear wheel to slip.  Shifting the center of 
mass to compensate for the weight of the kicker can be accomplished through shifting battery positions 
toward the rear of the robot.  Additional ballast can be added to maintain drive wheel traction, but care 
must be exercised to not impede robot performance through weight addition. 
 



 
Figure 2:   OU Goalie   (a) CAD model                                     (b) Hardware Photograph 
 
There are 6 motors utilized in the robot assembly.  Four are placed in the wheel assembly to drive wheels.  
One is in kicker assembly and rotates the drive bar.  There is also a servomotor associated with the kicker 
assembly.   
  
2.4  Omni-Directional Drive  
 
The Kornylak Corporation manufactures the Omniwheel that appears in Figure 3(a). To minimize wheel 
width, the original Omniwheel is modified by removing material from the center and outer faces.  Removal 
of material also allowed room to insert a fabricated hub to be used for gear mounting.  Figure 3(b) shows 
the modified wheel mounted to an aluminum hub.  
 

     
Figure 3:  (a) Kornylak Omniwheel               (b)  Modified Omniwheel 

 
 

2.5  Kicking/Dribbling/Capturing Mechanism 
 
The kicking mechanism, Figure 4, is structured around one basic principle, capturing the ball.  It has the 
ability to rotate around a pivot point with this rocking motion controlled by a servomotor.  The servomotor 
is located on the goalie base and thus is stationary with respect to the kicker.  During the game the goalie 
will be located near the goal with its drive bar rotating backwards.  The drive bar will be encased in rubber 
tubing.  Initially the kicking mechanism will be at its highest point in the arc.  When the ball gets near the 
kicker the drive bar will capture the ball via backspin.  At this time the ball will be rotating between the 
drive bar and the idler bar, located underneath the robot.  Being underneath the robot will cause the ball to 
be hidden from the global camera.  The drive bar will then reverse direction and cause the ball to spin in the 
opposite direction between the two bars.  After the ball gains a sufficient amount of forward rotation the 
kicking mechanism will be rocked backed the servomotor.  This will allow the ball to be released while 
having topspin.  After releasing the ball the kicking mechanism will be brought up to its highest position in 
the rotating arc by the servomotor to wait for the next ball. 
 



 
 

Figure 4: Close-up of Kicker Assembly 
 
 
3.  Modeling 
 
The dynamic equations for the four-wheeled Ohio University RoboCup goalie is derived from the model 
shown in Figure 5, similar to [1]. 

Figure 5: Kinematic/Free-Body Diagram 
 
It is assumed the mobile robot is moving on a horizontal playing field.  As it is shown, the inertial 
coordinate frame XwYw is fixed on the plane and the moving coordinate frame XmYm is attached to the mass 
center of the mobile robot. Li is the distance from the mass-center to the center of the corresponding wheel. 



 φ is the orientation of the mobile robot with respect to wS.  As previously stated this robot is omni-
directional, giving us no nonholonomic constraint equations.    Also, it is important to point out that the OU 
RoboCup goalie has three degrees of freedom, but has four actuators meaning that the system is 
redundantly actuated. 
 
First, we define the position and force vectors of the mass-center for the OU RoboCup Goalie in the 
absolute coordinate frame as: 
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where MG is  the torque applied to the robot.  The coordinate rotation matrix Rw
m  giving the orientation of 

the moving frame with respect to the inertial frame is: 
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The following two equations relate Cartesian pose and wrench for the moving and inertial frames: 
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The pose and wrench vectors of the goalie in terms of the moving coordinates are: 
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Applying Newton’s 2nd Law:  

••

= SMF ww                                                           (4) 
 

where M is a positive-definite diagonal matrix with the mobile robots mass M on the diagonal.  Equation 
(4) can be rewritten in terms of the moving coordinates using Equations (1)-(3):  
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Simplifying Equation (5), the dynamic equations of the robot are: 
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where Im is the mass moment of inertia for the mobile robot.  To compute the relationship between the 
robot Cartesian coordinates and the wheel angles, the principle of virtual work is used.   Summing the 
forces and moments gives: 

 
(9) 

 
where Q is the Jacobian matrix based upon the system geometry, and Ti is the traction force from each 
wheel.  Since the virtual work done is same for the wheel and Cartesian coordinates, we write: 
 

••

= sfqT mTmT       (10) 
 
assuming that there is no slip in the wheel spin direction.  Thus, we can obtain the inverse kinematics 
solution of the OU RoboCup goalie from Equations  (9) and (10).  Given the Cartesian velocity, we may 
find the wheel angular velocities: 

 
       (11) 
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where r is the wheel radius and ωi is the wheel rotational rate.  The wheel dynamics for each assembly as 
given by [1] are as follows: 
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Where Iw is the mass moment of inertia for the Omniwheel, c is the viscous friction factor of the 
Omniwheel, k  is the driving gain factor or the gear ratio, and  ui is the driving input torque  
 
Then combining Equations (6)-(16) we have the following equations of motion written in matrix-vector 
form:  
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where: 
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After manipulation we have three coupled MIMO nonlinear differential equations of motion with wheel 
torques as the inputs and the robot Cartesian position and orientation as the outputs. 
 
4.  SIMULATIONS 
 
First, the inverse kinematics solution is simulated using Matlab.  The robot follows an arbitrary straight line 
from (-0.5, 0) m to (0.5, 2.5) m while maintaining the orientation as shown in Figure 6(a) and 6(b).  Figure 
6(c) shows the corresponding wheel angular position and velocity via the inverse kinematics solution. 



 
 

   (a)      (b)     (c) 
 

Figure 6: Inverse Kinematics Simulation Results 
 
 
 
Second, the dynamics of the system was simulated using Simulink, Matlab’s graphical interface.  A 
proportional derivative (PD) controller was implemented for each independent wheel, see Figure 7 .   
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Figure7: Simplified Closed-Loop Diagram 
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Figure 8: Unit Step Response with Independent PD Wheel Control 
 
The result from step inputs is shown in Figure 8.  The controller gains are selected such that the robot 
moves with nearly zero overshoot and with a very little steady state error at reasonable speed. The stability 
of the PD controller can be proved using Lyapunov and invariant–set  theorem (Refer to [6] for details). 
Also, it is important to note that this simulation deals only with mechanical factors like inertia and not any 
electrical components or digital control effects.  Wheel slip has not yet been modeled, therefore the real-
world results may not mimic the simulated results and we will have additional modeling work to perform. 
 
5.  CONCLUSIONS 
 
This paper presents the design, modeling and simulation for the Ohio University RoboCup goalie robot.  
The robot has a unique redundant omni-directional drive system with ball-catching, dribbling, and kicking 
capability.  We have presented the kinematics and dynamics equations, plus control simulation results 
using simple independent PD wheel control with the coupled nonlinear dynamics. 
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