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This paper presents kinematic equations and solutions for an in-parallel actuated
robotic mechanism based on Stewart’s platform. These equations are required for in-
verse position and resolved rate (inverse velocity) platform control. NASA Langley has a
Vehicle Emulator System (VES) platform designed by M.LT., which is based on Stewart’s

platform.

The inverse position solution is straight-forward and computationally inexpensive.
Given the desired position and orientation of the moving platform with respect to the

base, the lengths of the prismatic leg actuators are calculated.

The forward position solution is more complicated and theoretically has sixteen so-
lutions. The position and orientation of the moving platform with respect to the base
is calculated given the leg actuator lengths. Two methods are pursued in this paper to
solve this problem. The first is based on a simplified model where the six moving platform
ball joint locations are limited to three pairs. The second method accomodates the exact
model. Both use numerical solution techniques; the first is a fixed-point iteration, while
the second is a gradient-correction Newton-Raphson method. The simplified model results
in error when applied to the VES model. A comparison of model error and computation

time is presented, to contrast the two forward position methods.



The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian
velocity of the end-effector, the required leg actuator rates are calculated. The Newton-
Raphson Jacobian matrix resulting from the second forward position kinematics solution
is a modified inverse Jacobian matrix. This represents a significant computation savings
when using resolved rate control and the second forward position method. No matrix

inversion is required for the resolved rate solution, and thus this control method is free of
singularities.

Examples and simulations are given for the VES. Translation and rotation motions are
studied to demonstrate the leg inputs, the forward position solution convergence, and the

simplified forward position model error for the platform under inverse position or resolved

rate control.



1 INTRODUCTION

In-parallel actuated manipulators are robotic mechanisms with a closed-chain, parallel
kinematic structure, as opposed to the open-chain, serial kinematic structure of common
industrial manipulators. Although serial manipulators are more widely applied due in

rpart to their anthropomorphic nature, interest in parallel manipulators is growing because
of several advantages. Compared to serial manipulators, parallel manipulators have a
higher structural stiffness, which eliminates the cantilever effect of open serial chains and
allows greater positioning accuracy and repeatability. Associated with this is a greater
capacity to withstand or apply external loads. The payload-to-weight ratio for parallel
manipulators is significantly higher than for serial manipulators. Dynamic characteristics
are improved due to less mass and base-mounted actuators, which allows higer operating
speeds. The advantages of parallel manipulators are inherent in the mechanical structure,
allowing less sophisticated controllers to achieve better performance, compared to serial
manipulators. A major disadvantage of parallel manipulators is a reduced workspace.
Serial manipulators generally have a larger overall workspace with the ability to reach
into small spaces. Hunt (1983) provides a good introduction and overview of in-parallel
actuated robotic mechanisms. A kinematic, dynamic, and workspace study of planar

parallel robotic mechanisms is given in Williams (1988).

Stewart platform-based mechanisms are the most common practical implementation
of in-parallel actuated manipulators to date. The Stewart platform was originally designed
as an aircraft simulator (Stewart, 1965). The original Stewart’s platform had three legs,
each articulated with a revolute joint in the center. The parallel nature of a common
Stewart platform adaptation is shown in the general kinematic diagram of Fig. 1. This
device consists of a moving platform and a fixed base, each with six spherical joints.
Connecting the platform and base are six legs with prismatic joints. The platform of Fig.

T

1 theoretically has twelve degrees of freedom, calculated by the Kutzbach equation, Lg.



1. (Mabie and Reinholtz, 1987). In Eq. 1, DOF is the number of degrees of freedom, N is
the number of links, including the fixed link, and J; is the number of i~ degree of freedom

joints in the manipulator. Primatic joints have one and spherical joints three degrees of

freedom.

DOF =6(N — 1)~ 5J; —4Jy ~3J3—2Ja = Js
DOF = 6(14 — 1) — 5(6) — 3(12) (1)
DOF = 12

However, six of these twelve degrees of freedom are useless freedoms, rotations about
the axes of each leg. Practical designs of such platforms constrain these six extra freedoms.
The platform thus has six degrees of freedom which allow general positioning and orienting

in three dimensions.

Most current Stewart platform applications are in aircraft simulators and related fields.
Dieudonne, et. al., (1972) present the inverse and forward kinematics for a six degree
of freedom aircraft motion platform simulator. These authors use the Newton-Rapshon
method to solve the forward kinematics problem (referred to in their paper as the inverse
transformation). Application to real-time computing is studied. In recent years, however,
several authors have considered the six degree of freedom platform for robotic applications
(e.g. Fichter (1986), Powell (1982), Sugimoto (1987), and Yang and Lee (1984)). These
papers include theoretical modeling and practical implementation of Stewart platform-

based manipulators and other in-parallel actuated manipulators.

There is an interesting duality concerning Kinematic solutions of serial vs parallel
manipulators. For serial manipulators, the forward position kinematics solution is generally
straightforward and unique, and the inverse kinematics solution involves coupled nonlinear
equations with multiple solutions. The opposite is generally true for in-parallel actuated
manipulators (Wi!ié&mﬁ, 1088). Analytical solutions of the forward position kinematics
problem for parallel manipulators are cumbersome, when they exist. Analytical solutions
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boil down to solving high-ordered polynomial equations which require numerical techniques
when the order is greater than four. The platform equation is an even ordered sixteenth
degree polynomial, which may be transformed into a general eighth order polynomial
(Nanua, et. al, 1990). Tﬁis polynomial involving grossly complicated terms is solved
numerically, and the sixteen possible solutions are extracted. It is often more efficient
to solve the basic kinematic equations numerically (Nguyen, et. al., 1991). This method
returns one of the sixteen possible solutions which is nearest to the initial guess. The
platform kinematics solutions of Nguyen, et. al. (1991) is similar to that of Dieudonne, et.
al. (1972) A promising compromise is the method of homotopy (Watson, 1990). This is
an efficient numerical technique for solving systems of nonlinear equations which requires
no initial guess and returns all possible solutions. Homotopy is not pursued in the current
paper.

This paper presents forward and inverse position kinematics, plus the resolved rate so-
lution (inverse velocity kinematics) for the general Stewart platform based parallel manip-
ulator in Fig. 1. The Vehicle Emulator System (VES), a platform to be used for studies of

“multiple manipulator dynamics and disturbance compensation, is used in computer simu-
lations. The inverse position kinematics solution is presented first. This solution is unique,
straight-forward, and computationally inexpensive. Two methods are then presented for
the forward position kinematics solution. The first deals with a simplified platform model
and is adapted from ﬁNamla, et. al., 1990} . The second is for the exact platform model
and follows the method of {Nguyen, et. al., 199]%. Both models use a numerical technique
to solve the basic coupled nonlinear forward position kinematics equations. The simplified
model uses a one-point iteration method which is a divergence from Nanua, et. al. (1990},
while the exact model uses a Newton-Raphson method with first order gradient correction.
An advantage of the latter method is that the Newton-Raphson Jacobian matrix yields
the platform inverse .I acobian matrix with little modification. Therefore, the resolved rate

(inverse velocity) solution follows with little additional computation. Static examples are
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given to demonstrate calculations for the equations of this paper. Platform simulations are
presented to demonstrate translation and-rotation motion. In addition, the simulations

study the error resulting from the simplified forward kinematics model.



VES Vehicle Emulator Simulator

{m} Dextral Cartesian coordinate frame m

{B} Fixed base coordinate frame

{P} ' Moving platform coordinate frame

Liyi=1,2,...,6 Variable platform leg lengths

[nT] Homogeneous transformation matrix of {m} relative to {n}
[nR] Orthonormal rotation matrix of {m} relative to {n}

rij Element (i,j) of [2R]

"V} Position vector from origin of {n} to {m}, expressed in {n}
i Euclidean norm of V

|A B Distance between A and B

iy Biy i cosb;, sinf;, tand;

B;,i=12,...,6 Fixed base joint locations

P,i=1,2,...,6 Moving platform joint locations ‘

Q:,i=1,23 Moving platform joint locations in simplified model

{Bis, Biy,0}" Components of ?Vp;

{Piz, Py, 0} Components of “Vp;

{Oix, 01y, 0} Components of 5V,

a;,i=1,2,3 Fixed lengths between moving platform joints in simplified model
bt =1,2,3 Fixed lengths between fixed base joints

0;,1=12,3 Intersection of |B;Byi-(| and its normal to Q; in simplified model
rii=1,2,3 Distance from B, to 0; along |Bz:Bazi-1| in simplified model
Niyi=1,2,3 \ Length of normal to [B2;Bai- i| from O; to Q;

Bii=1,2,3 Fixed angle from Xp to normal between |By;By;—,| and origin of {B}
f;,0=1,2,3 Angle variables from base to Bq; in simplified model
Bgii=1,2,3 Unit direction vectors in the direction of N;, simplified model
D;, Ei, Fii=1,2,...,5 Kinematic terms for simplified model

{Q} Intermediate frame for forward kinematics, simplified model
L1k Columns of [BR]

(BT, Simplified forward position kinematics solution, with error
Er Translational error in [37,]

Er Rotational error in [FT.]

[RE] Rotational error difference matrix

rp ’ Radius from origin of {B} to any B,

rp Radius from origin of {P} to any P;

{z,y,2}7 Components of 7Vp ,

By 0uyy 0 7 - Y - X Euler angles describing [ R]

X {xsyszaex;{)}’seZ}T

¢ Time derivative of C

Liyi=1,2,...,6 Linear velocity of variable leg lengths

{z,9,2}" Linear velocity of {P} with respect to {B}, expressed in {B}
{wx,wy,wz}T Angular velocity of {P} with respect to {B}, expressed in {B}
{X}‘ / {SB, 9;5;9X,HY;92}T

B{x} {(E, g:z.wa;wY;wZ}Ta eXpreSsed in {B}

BlJ) Jacobian matrix expressed in {B}, associated with B{X}

Bl Jal Modified Jacobian matrix expressed in {B}, associated with {X}
[Inn) Jacobian matrix for Newton-Raphson solution procedure

> 4 Correction vector for Newton-Raphson solution procedure

¢ Tolerance for numerical method convergence
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s PHYSICAL DESCRIPTION OF THE VES

The Automation Technology Branch of NASA Langley Research Center plans to use a
platform designed and built by M.LT., named the Vehicle Emulator System (VES). This
platform is an adaptation of Stewart’s platform. The original Stewart’s platform aircraft
simulator had only three legs articulated with a middle revolute joint (Stewart, 1965).
Multiple serial manipulators can be mounted on the platform for disturbance compensation
experiments. The platform can represent a moving manipulator base in space, such as the

Space Shuttle Remote Manipulator System (RMS) or a free-flying vehicle.

The VES platform kinematic diagram is shown in Fig. 2. There are six legs with
hydraulically actuated prismatic joints. The total leg lengths are denoted L;,: = 1,2,...,6.
The minimum total leg length is 1.524 m(60 in) and the maximum is 2.286 m(90 in). The fixed
base ball joint locations are B;, i =1,2,...,6 and the moving platform ball joint locations
are P, i =1,2,...,6. Figures 3a and b show the fixed base and moving platform geometry,
respectively. The definitions for {B} and {P)} are shown on these figures. As evident from
Figs. 3a and b, there is symmetry in the design. Ball joint locations occur in pairs on both
the fixed and moving platforms, each pair separated by 0.152 m(6 in). The base joints lie on
a circle of radius rp = 1.340 m(52.77 1n) and the moving platform joints lie on a circle of radius
rp = 0.305 m(12.00 in). The components of vectors "Vp; and ”"Vp; are given in Appendix A.
The homogeneous transformation matrix |[27| describes the position and orientation of {P}
relative to {B} (Craig, 1988). Equation 2 gives the position and orientation decoupling of
(BT,

pr- | B v .
0 0 o |

When all six leg lengths are equal, [ZR] = |1], and ?Vp = {0,0,r}7, where » is a dis-

placement along Zp.



4 POSITION KINEMATICS

The methods and equations of this paper are derived for the general platform of Fig.

1. The VES platform is used for examples and simulations.

Inverse Position Kinematics

The inverse position kinematics problem solves for the joint variables given the position
and orientation of the moving platform with respect to the base: Find L;,s = 1,2,...,6, given
[8T]. The solution is straight-forward and unique, based on the geometry of Fig. 1. Given
[2T], the location of the moving platform in space is completely determined. The leg
lengths are solved using the Euclidean norm between corresponding base and platform

ball joint locations.

L; = HBVP,‘, -B Vg,‘u ‘ 1=1,2,...,6 (3)

In order to express the moving platform ball joint locations in {B}, Eq. 4 is used.

BYp = [RT)" Vi (4)

Values for 2Vp, and "Vp, are given in Appendix A, based on Figs. 3a and b.

The inverse position kinematics solution was used to find a minimum workspace for
the VES platform. This workspace is the largest cubical volume reachable by the platform
in translation, with [ER| = {I]. The conservative minimum workspace is a cube of side
s = 0.457m(1.5ft), determined using trial and error subject to L, = 1.524m and L,u. = 2.286m,

For a more complete treatment of the platform workspace, refer to Cwiakala (1986).

Forward Position Kinematics

The forward position kinematics problem solves for the position and orientation of
the moving platform with respect to the base given the joint variables: Find [2T], given
Lii=1,2,...,6. This problem involves coupled nonlinear equations. No analytical solution
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exists because the reduced polynomial order of the problem is sixteen (Nanua, et. al., 1990).
This means that potentially sixteen solutions exist. There are no analytical solutions to

polynomial of order greater than four.

This section present two forward position kinematics solution methods. The first is
derived from a simplified platform model, adapted from Nanua, et. al. (1990). Method
two, based on Nguyen, et. al. (1991) involves the exact theoretical piatform kinematic
model. Both forward position solutions use an iterative method. The first is a fixed-
point iteration method. The second method uses a first order Newton-Raphson gradient
correction. The associated Jacobian matrix is shown to lead to the resolved rate solution in
Section 4. The first method uses a simpler iteration, requiring less computation per cycle.
The first method has inherent error because the moving platform ball joints are located
in three pairs instead of the distinct locations in Fig. 2. The theoretical error associated
with the second method is essentially zero, dependent on the convergence tolerance and

the computer precision.

Simplified Model

Nanua, et. al. (1990) claim to present the first analytical forward position kinematics
solution for a Stewart platform-based manipulator. Their work is based on a simplified
model of Fig. 1. The joint locations B; can occupy any position. However, the joint
locations P, are restricted as follows: P, and P; are co-located at Q,, P; and P, at Q, and
P, and P at Qg. The simplified kinematic model for the VES platform is shown in Fig. 4a.
Figure 4b presents the associated moving platform detail. The fixed base is unchanged,

pictured in Fig. 3a.

The following fixed lengths are defined for the moving and fixed platforms, respectively.

ay = |Q:Qz]
az = |Q2Qa| {8a)
ag = |Q3Qy|
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by = |BB;|
by = |B3By] (5b)
bg = tBbBGl

Three kinematic chains are studied in the simplified model: B;Q;B;B;, BsQ:B4Bs,
and B;Q;BsBs. A representative chain is shown in Fig. 5 where 1 = 1,2,3 for the three
chains. Point O, is the intersection between |B;;B,i-,| and its normal to Q;. As the input
leg lengths vary, the locations of Q; and O; move, the unit direction vector Bq; changes,
and the lengths r, and N; change. The cosine law is applied to determine r; from known

information at each time step.

L% = L2, | + b7 — 2Lai-1bicoss (6)
i = Loi-cosy; (7)
- b? ¥ L§i~1 - L%i (8)

’ 2b;

The instantaneous value of N, is determined via the Pythagorean theorem.

Ny =/ L3 i ()

With this information, a reduced simplified model is constructed as shown in Fig. 6.
The forward position kinematic equations are derived from the following constraints, which

dictate that the lengths between the moving platform joints remain constant.

a? = [PV —F Vol
a2 =[PV -7 Vool (10)

2 =[PV =F Vaul

The left hand sides of Eq. 10 are known constants, given in Appendix A for the
VES platform. The‘ right hand sides are expressed through the platform geometry, with

anknowns 6; in terms Pq;,1 = 1,2,3.

BVQ{ = BV{;;‘ -+ NgD(!i (11)
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where:
r Oa',:l:
By ;=" Vpai-i+ j(BVLm ~F Vpaii) = | Oiy (12)
' 0
The unit direction vectors ‘g, pointing from O; to Qi, are calculated using simple
rotation matrices. The fixed angles § (pictured in Fig. 7) are measured in the fixed base

plane from Xp to the normal between [ByBzi-(| and the origin of {B}.

cfici
Bai = { shic (13)
84 .

The forward position kinematics equations, Eqs. 14, 15, and 16, are obtained by
substituting Eq. 11 into Eq. 10 and simplifying. First, Egs. 12 and 13 are substituted

into Eq. 11. Equations 14, 15, and 16 are three coupled transcendental equations in the

three unknowns 6,,6;, and 6.

Dyecy +D202+D36162+,D43182+D5’:~0 (14)
Fieq + Escy + Escocn + Fysq83 + Ey =0 (15)
Fies + F261+F36361 4 Fyszs) 4+ Fp =20 (16)

The coefficients for Eqgs. 14, 15, and 16 are given below.

Dy = 2N[cfi{O1x — O2x) sf1(O1y — Oav)]

Dy = —2N3|cfa(O1x — O2x) + s2(01y — Oay)]

Dy = ”“ZN{NQC(ﬂl - ﬁg) P 5 ) (17)
D4 == '"'ZNiNg

Dy = (Oix —02x)? + (O1y ~ Oav)? + NI + N} —d}

E, = 2N3|cfz(O2x — Oax) + sf2(O2y — Osy )]

Ey = —2N|cfs(O2x — Osx) + sf3(Ozy ~ Osv )]

E3 = —2N3Nsc(f2 — fa) (18)
Ey = ~2NoNs

Ey = (ng - 03,\:)2 -+ (Ogy - ()31/)2 -+ N22 + N§ - a%

Fy = 2N3|cfs(Oax — Oix) + 3a(Osy — Ory)]

Fy = ~2N,[cf1(Osx — O1x) + sp1(Oay — Orv)]

"y = ~2NyNye(Bs ~ fu) (19)
Fy = —~2Ns N,y

Fy= (Osx —O0ix)* + (Osy — O,y)? + N} + N7 — a3
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At this point, Nanua, et. al. (1990) apply Bezout’s method (Salmon, 1964) to Egs.
14, 15, and 16 twice, eliminating 2 and 6, to solve for §; “analytically”. The two remalning
unknowns are solved after 6, is known, using f,he tangent half-angle substitution (Williams,
1990) in Egs. 14 and 16. The ¢, solution is not truly analytical because it is calculated
from a sixteenth order polynomial in the tangent half-angle of 6,, which must be solved
using a numerical technique. The intermediate terms for the polynomial coefficients are
not reported in Nanua, et. al. (1990). Upon determination of these coefficients using
a computer symbolic manipulation program, these intermediate terms were found to be
quite complex. Therefore, an alternate approach, an efficient Newton-Raphson iterative
technique, was used to solve Egs. 14, 15, and 16 directly for the three unknowns. This

method is presented in Appendix B.

When the three unknown angles 6; are solved, the simplified model approximation to
(BT], [BT.), is calculated with Eq. 20. The intermediate frame {Q} is used (see Fig. 4b).
Unit vectors (3,7,k) are the columns of [GR]. The term BV, is determined from Eq. 11,

using Egs. 12 and 13.

(BT.) = (57 (77 (20)
B 1 B 5 -
Br)=1__ [ET - i { ch;z} _lr 3k ! {FVa1} (21)
SRR EC .
0 0 0o | 1 } 0 0 0o | 1
A (BV(u =B VQQ)
q == = ki 21a
[(BV 1 =8 V)l (212)
5= (FV, ~B V) x (BV«,gz_:B chs) (21b)
OV, —B V) x (BV o ~B V)l
po (Vg =P Vas) [PV =P Vaa) x (P Va2 =7 Vo)l (21¢)
TEV G —F Vo) x [(PVoi =7 V) % (BY 42 =B V)l



1 3
HR IS
[ - =
rTl= 4 B 6 (22)
0 0 0 1

The forward position kinematics solution [$T.] from the simplified platform model has
inherent error due to the simplified moving platform ball joint locations. (compare Figs. 3b
and 4b). The simplified model was pursued because the solution algorithm was expected to
be faster than the exact model. A measure of error is required to determine the deviation
of the simplified model from the true solution. The error measure used is given in terms
of translational error and rotational error. Let [ZT] represent the true solution and [BT.]

the simplified model result.

The translational error is the Euclidean norm of the algebraic difference of the two

position vectors.

Er = |PVp -7 Vp| (23)

The rotational error is more complicated because algebraic subtraction does not apply

to rotation matrices. The following difference matrix is used.

|Rs| = [RRJ PR = [P RJT[PR) (24)

If there is no rotational error, |Rp| = [I]. A measure of rotational error is obtained
by extracting the Z-Y-X Euler angles from [Rp] (Craig, 1988). Denoting these as g =
{6xp,0ve,0zp)7, asingle rotational error is obtained by using the Euclidean norm. If there
is no rotational error, 65 = {0,0,0}7.

Ep = |0z (25)

The simplified model error is studied in a static example (Section 5) and in platform

simulations (Section 6).

Ezact Model
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Nguyen, et. al. (1991) present an iterative forward position kinematics solution for a
genyera,l platform, shown in Fig. 1. This method is attractive because it yields the exact
theoretical solution, within the convergence tolerance. In addition, a modified inverse
Jacobian matrix is extracted from the Newton-Raphson Jacobian matrix. Therefore, the
resolved rate solution is achieved with little additional computational cost. The exact
model for the VES platform is given in Fig. 2. Associated ball joint location details are
shown in Fig. 3, and the corresponding vector components are presented in Appendix A.

The forward position solution presented in this section is adapted from Nguyen, et. al.
(1991).
Given the six actuator leg lengths, the forward position problem is to find [ET]. The

position and orientation structure of this homogeneous transformation matrix is given in

Eq. 2. There are six unknowns associated with |27, represented as X = {z,y,2, fx,0y,0z}7.

by = { ’ } (20)

The Z-Y-X Euler convention (Craig, 1988) is chosen to represent the orientation of

The position vector is:

{P} with respect to {B}, which leads to the following rotation matrix.
riy T2 T3 CyCz  —CxSz + 85 8yCx Sg8y + Cp8yCz
Tor  Tan o Tas| = |cySs €aCat Sa8y8s  —S8aCa T Cadyd: (27)
r3i . Tgz 738

(PR =

3y Szly CxCy

To derive the forward position kinematics equations, a vector loop closure equation
is written for each leg, expressed in terms of the unknowns. Figure 8 shows the vector
diagram for the ith actuator leg. This kineﬁxatic diagram includes the base and moving
platform ball joint locations, plus {B} and {P}. Fori=1,2,...,6, [2.R] = [1]; therefore,
vectors expressed in {B:} have the same components as those in {B}. From Fig. 8, the

vector loop closure equation is Eq. 28.
Biy,. =By, + |ER) " Vp (28)
where:
Biyy =Pvp -1 Vi (29)
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Let the moving platform and base spherical joint locations be denoted as follows.

Pim Bia: .
"Vpi=1{ P By g =< Biy (30)
0 0 i

Using Eqgs. 26, 27, 29, and 30 in Eq. 28, the vector representing leg i is Eq. 31. The

orientation unknowns appear in the r;; terms.

) z -+ rilpi:n + 7'12]3{1/ - Bi:n
Bivpi = $ y + roy P + 122 Piy — Biy (31)
z+ 131 P + 132y

The constraint equation for the ith leg is the Euclidean norm of the leg length.

L =7V (32)

Substituting Eq. 28 into Eq. 32, the ith constraint equation is:
fi(X) =0 i=1,2,...,6 (33)
filX) =22 + v® + 2% + 2(Piaris + Pyri2)(z — Bin) + 2(Pisray + Piyraz)(y — Biy)+
2(}):':»:7'31 -+ 1’:’31"32)2 - 2(:5Bim + yBiy) + T?: + 1“% - L? =0 (34)

The unknowns 4,,6,,6. appear in Eq. 34 through the r;; terms, given in Eq. 27.
The result reported in Eq. 34 was simplified using the following relationships. The first
three are orthonormal constraints on rotation matrices. The values for rp and rp, given in

Appendix A, are constant for all 1.

ri s s =1 (35q)

riy+ "gz +ri=1 (35b)

ryyrig + rogres  ragrag = 0 (35¢)
r% = B?, + BE,, (35d)

ri = P2 + P2

1y

(35¢)
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Equation 34 is written for each of the six legs. The form of each equation is identical;
the components of ?Vp; abd "Vp; change. Equation 34 can also be used for the inverse
position kinematics solution. Given [£T], Li,i=1,2,...,6 is easily calculated. The result is

the same as that presented in Section 3.1.

To solve the forward position kinematics problem, the system is six coupled nonlinear
equations in the six unknowns X = {z,y,2,0x,0y,¢ z)}7. The solution method is a first deriva-
tive gradient correction Newton-Raphson iterative technique. It is presented in Appendix
C. When the solution is obtained to the desired convergence tolerance, [ET] is formed using

Eqgs. 26 and 27 in Eq. 2.
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ELOCITY KINEMATICS

Velocity kinematics is concerned with the relationship between the moving platform
Cartesian velocities and the linear rates of change of the leg actuators. The forward
velocity kinematics problem calculates the Cartesian velocities given the leg rates. The
inverse velocity kinematics solution (resolved rate solution) solves for the leg rates given

the Cartesian velocities.

The forward velocity equation is Eq. 36. The Jacobian matrix Z|J] is a linear operator

which maps actuator velocities into Cartesian velocities.
P{x} ="y Ly (36)

where: '
B{X} = {Z$ 3./, é: stwawZ}T

{L} = {Ll) L?s ey LG}T
A common method for manipulator control is the resolved rate solution, obtained by
inverting Eq. 36.

L} =21 (X} (37)

As mentioned previously, a modified inverse Jacobian matrix is extracted from the
Newton-Raphson method Jacobian, associated with the exact forward position kinematics
solution, given in Appendix C. This section presents the derivation of the modified inverse
Jacobian matrix. The relationship between the modified inverse Jacobian matrix and that

of Eq. 37 is also developed.

Moving the L? term to the right hand side of Eq. 34 and taking one time derivative

yields Eq. 38.

6
IS Afi ;&
2L;L; = Z;E{X’} (38)

i=1
Dividing by 2L;, an equation similar to the form of Eq. 37 is obtained.

L1 =08fi h
Li= EEJ.:IaXJ‘ {X;} (39)
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The form of Eq. 39 differs from that of the resolved rate solution, Eq. 37, because

Bix} # %X. (40)

In the above equation, equality holds for the translational velocities, but not the
rotational velocities. The Cartesian translational velocities, plus the Z-Y-X Euler angle
rates are defined to be:

d P N -
{X} == RZX -t {x,y,z,é’x,f)y,ﬁz}'r (41)

Therefore, the inverée Jacobian matrix in Eq. 39is a modiﬁed inverse Jacobian matrix.
From Appendix C, the modified inverse Jacobian matrix is related to the Newton-Raphson
Jacobian matrix, as shown in Eq. 43. This result is intuitive because the inverse velocity
problem and forward position iteration require the partial derivatives of the functions, Eq.

34, with respect to the Cartesian position variables, X.

(L) =" (Jn] ™ (XY (42)
Pl = {i%} = {E%JNR] (43)

To calculate the modified inverse Jacobian matrix, each component in all rows iof
[Jnp] is divided by 2L;. It is more efficient to factor this term out and divide only once per

row. The terms of [Jnr] are given in Appendix C.

The relationship between the modified and actual inverse Jacobian matrices is now
presented. As noted previously, the Cartesian angular velocity vector is not obtained by
time differentiation of the Euler angles. Rather, the following rotational velocity kinematic

transformation is required (Kane, et. al. (1983), Appendix IT).

{6} = [4}{w} (44)
;( g;{ [1 Spby C'rh;] (WY }
i éy } =10 c¢x —382 iwy
¢ bz %.0 lr: ‘:‘: wz



With the definition in Eq. 41, the relationship between the modified and actual inverse

Jacobian matrices is Eq. 46. This was obtained by using Eqs. 37, 42, and 44.

[Jur] | [Jur]
Bl =|=~- | --- (45)
| (Yool | [Uerl
[ o] | Vurll4]
Balt=--- | --- (46)
| el | [Uer][A)

The resolved rate solution is Eq. 37, using Eq. 46. This paper does not present the
symbolic form of Eq. 46. Rather, the resolved rate solution is obtained by using Eq. 44

and then Egs. 41 and 45 substituted into Eq. 42.

As seen fron'; Egs. 37, 43, and 46, the resolved rate solution does not require a matrix
inversion. Rather, the inverse platform Jacobian matrix is adapted from Jyr, given in
Appendix C, Egs, C.6. Equation 43 reveals that 5]Jy|"! always exists uniquely unless one
or more L; = 0, which is physically impossible. Therefore, the resolved rate solution is
singularity-free. In contrast, many serial industrial manipulators have singularities which

degrade overall performance.

Fichter (1986) found that singularities for a Stewart Platform-based manipulator are
positions where the end-effector gains one or more degrees of freedom. This is in contrast
to serial manipulator singularities where the manipulator loses one or more freedoms.
However, this result was shown for the simplified platform model of Fig. 4a. The VES
Platform model, Fig. 2, cannot be placed in the special configurations Fichter identified
because the moving platform ball joints are separated by a finite distance. Therefore,

uncontrollable added-freedom singularities do not occur in the VES Platform.
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6 EXAMPLES

This section presents static examples to demonstrate computation for the kinematic
equations of this paper applied to the VES platform. The first examples find [ET] for the
minimum, middle, and maximum leg lengths, Ly = 1.524, Laip = 1.905, and Laax = 2.286.
The exact forward position kinematics solution (Section 3.2.2 and Appendix C) is used.
At the minimum and maximum conditions, the workspace shrinks to a point. Example 1b
is a good reset position for the VES platform, where X = {0,0, 1.531,0,0,0}7. The middle
condition is defined as the average of the minimum and maximum leg lengths. Note that
this does not exactly correspond to the average of the minimum and maximum Cartesian
space values. Figure9 shows the Z components of ’Vp as a function of L;,i=1,2,...,6 where
all leg lengths are equal. This relationship is weakly non-linear, as seen by comparison

with the dotted line in Fig. 9.

la) {Lan} = {1.524,1.524,1.524, 1.524,1.524,1.524}7
1.000 0.000 0.000 0.0007
0.000 1.000 0.000 0.000
0.000 0.000 1,000 1.019
0 0 0 1

[P7] =

1b) {Lnip} = {1.905, 1.905,1.905,1.905,1.905, 1.905}7

1.000 0.000 0.000 0.0007

0.000 1.000 0.000 = 0.000

0.000 0.000 1.000 1.531
0 0 0 1

(27 =

1c) {Lasax} = {2.286, 2.286,2.286,2.286, 2.286, 2.286}"
1.000  0.000 0.000 0.000
0.000 1.000 0.000 0.000

0.000 0.000 1.000 1.985
0 0 0 1

[PT) =

A general input {X} is commanded for Example 2.
2) {X} = {0.200,0.400,1.500,25.0, 15.0,40.0}7

The transformation matrix [37] is calculated using Eqgs. 26 and 27 in Eq. 2.

0.740 —0.499 0.451 0.2@01
L7] = ' 0.621 0764 —0.173 0.400
P ~0.250 0.408  0.875 1.500}
Lt 0 0 o 1
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From [T}, the inverse position kinematics solution is found with Eqgs. 3 and 4.

{L} = {1.981,1.828,1.939,2.143,2.212,1.672}"

Using these actuator leg lengths, both forward kinematics solutions are employed to
reproduce the original [ET]. For both methods, the convergence tolerance is ¢ = 0.000001;
the meaning is not the same for the two models (see Appendices B and C). In addition,
the number of iterations to convergence and the error is presented for each method. The
initial guess for each model is the nominal reset position, 6;(: = 1,2,3) = {73.8°,73.8°,73.8°}7

for the simplified model and X = {0,0, 1.531,0,0,0}7 for the exact model.

The simplified model (Section 3.2.1 and Appendix B) calculated the following [27,] in
19 iterations. The translational error is Er = 0.067m. The rotation error difference matrix
is given, extracting fxp = 6.144°, 0y 5 = 5.387°, 0, = 8.829° and thus Ep = 12.030°.
0.848 -0.419 0.324 0.197
0.483 0.863 —0.148 0.333

~0.218 0.282 0.934 1.493
0 0 0 1

[PT) =

0984 -0.143 0.108
[Rgl= | 0.153 0.984 —-0.092
-0.094  0.107 0.989

The exact model (Section 3.2.2 and Appendix C) calculated the following [T} in 6
iterations. The translational error is zero, to three decimal places. The rotation error
difference matrix is given, extracting fxp = 0.083°,fyp = 0.040°,6z5 = —0.020° and thus

Er = 0.004°.
0.740 —0.500 0.450 0.200

0.621 0.765 -0.172 0.400
~0.2568  0.407 0.876  1.500
0 0 0 1

[PT) =

1.000  0.000  0.001
[Rp]= | 0.000 1.000 -0.002
~0.001  0.001  0.999
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7 PLATFORM SIMULATIONS

A series of three platform motion simulations is presented in this section. The first is
a pure straight-line translation, the second is a pure rotational move, and the third is a
combination of the first two. Smooth trajectory generation is ignored for these kinematic

simulations.

For each simulation, the following steps are followed. The input is {5{}, from which a
series of eleven commanded homogeneous transformation matrices are obtained for each
second, starting at zero and ending at ten seconds. Below, only the first and last of
these are reported for each case. From this data, the inverse position kinematics problem
is solved. With the inverse position solution as input, the simplified and exact forward
position kinematics solutions are calculated for each second and compared to the original
homogeneous transformation matrices. The error is calculated for the simplified model
solution. The exact model solution error is zero, 1o the nearest thousandth place in the
resulting homogeneous transformation matrices. The resolved rate solution is obtained
with few calculations following the exact forward position solution. Each forward position
simulation starts at the first computation step using the respective nominal reset positions
given in Section 5 as an initial guess. The current solution is used as the initial guess for
the remaining steps. The convergence tolerance is e = 0.001.

The input information is given below for each of t;he three simulations. The simulation
results for the inverse position solutions are given in Figs. 10a, 1la, and 12a, for the
translation, rotation, and translation/rotation simulations, respectively. The associated
resolved rate solutions are given in Figs. 10b, 11b, and 12b. The simplified forward

position solution errors are reported in Figs. 10c, 11c, and 12c.

1) Straight-Line Translation

&) [ —0.005) (6x) (o0
¥ } = ¢{ 0.030 } by (=4 0.0 %
% 0.060 bz 0.0
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1.000 0.000 0.000 0.000 1.000 0.000 0.000 —0.050
0.000 . 1.000 0.000 0.000 0.000 1.000 0.000 0.300

n —
[PT1= | 9000 0.000 1.000 1.100|°|0.000 0.000 1.000 1.700
0 0 0 1 0 0 0 1
2) Pure Rotation
z 0.0 bx 0.0698
g =100 fy = { 0.0524
s 0.0 bz 0.0349

1.000 0.000 0.000 0.000 0.750 -0.216 0.625 0.000

0.000 1.000 0.000 0.000 0.433 0.875 -0.216 0.000

0.000 0.000 1.000 1.500(’ | -0.500 0.433 0.750  1.500
0 0 0 1 0 0 0 1

[PT] =

3) Straight-Line Translation and Rotation

T ~0.005 fx 0.0698
v =< 0.030 fy ¢ = { 0.0524
z 0.060 b 0.0349

1.000 0.000 0.000 0.000 0.750 —0.216  0.625 —0.050

{BTI — 0.000 1.000 0.000 0.000 0.433 0.875 —-0.216 0.300

r 0.000 0.000 1.000 1.100]'| —-0.500 0.433 0.750 1.700

0 0 0 1 0 G 0 1

Table I presents the number of iterations required at each time step for the simplified
and exact forward position solutions, for the three simulations. The exact solution required
a consistent number of iterations for all cases, either two or three. The simplified solution
generally required a larger number of iterations. It performed better for the rotation case.
The simplified solutions at the first computation step required more iterations to converge

on the first solution from the relatively distant initial guess. The exact model does not

display this behavior.
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Table I: Number of Iterations for Forward Position Simulations

Simplified and Exact Models

Step 1) Simp 1) Exact 2) Simp 2) Exact 3) Simp 3) Exact
1 11 2 16 2 11 2
2 9 2 1 3 9 3
3 9 2 3 3 7 3
4 9 2 2 3 7 3
5 9 2 2 3 6 3
6 9 2 2 3 5 3
7 9 2 2 3 4 3
8 9 2 2 3 4 3
9 9 2 2 3 4 3

10 8 2 2 3 4 3
11 8 2 2 3 3 3

The primary interest in the simplified model is less computations per iteration {com-
pare Appendices B and C). An informal measure of computation time revealed little dif-
ference between the exact and simplified solution times. This is due to more iterations,
plus the need to calculate [?T,] using Eqgs. 20, 21, 22, 11, 12, and 13. Therefore, based on
Table I and the severe errors reported in Figs. 10c, 1lc, and 12¢, the simplified model is
not an attractive alternative. The exact model has the additional advantage of providing
the resolved rate solution with little additional calculation, based on the Newton-Raphson

Jacobian matrix terms of Appendix C.
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8 CONCLUSION

This paper presents the kinematic mathematical models for an in-parallel actuated
robotic mechanism based on Stewart’s platform. Position and velocity equations and solu-
tions are given for a general platform. Examples and simulations are given for the Vehicle
Emulator System (VES), a platform designed for NASA Langley by M.I.T. Equations in
this paper are required for inverse position control and/or resolved rate (inverse velocity)

control of the VES platform.

The inverse position solution is straight-forward and computationally inexpensive.
Given the desired position and orientation of the moving platform with respect to the

base, the lengths of the prismatic leg actuators are calculated.

The forward position solution is more complicated and theoretically has sixteen solu-
tions. Two methods are pursued in this paper to solve this problem. Both use numerical
solution techniques which produce one of the sixteen solutions; using the current position
as an initial guess, the solution tracks the desired position. The first forward kinemat-
ics solution method is based on a simplified model where the six moving platform ball
joints are grouped in three pairs. A fixed point iteration routine is used for solution of
the basic equations. The second method is based on the exact VES platform model. A

gradient-correction Newton-Raphson technique is used for solution.

The first forward kinematic model has inherent error due to the simplified platform
model geometry. This method was pursued because of a perceived reduction i con}\uta—

tional time. ) However, an informal measure of computation time revealed no significant

—difference between the two methods. A study of simplified model error shows that signifi-
cant error results from the first solution technique. For these reasons, the second method
using the Newton-Raphson technique is preferred, which yields the theoretically exact

solution. In addition, the Newton-Raphson Jacobian matrix yields the platform inverse

Jacobian matrix, with little modification. This represents a significant computation savings
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for resolved rate control.

The velocity kinematics section presents the resolved rate solution. Given the desired
Cartesian velocity of the end-effector, the required leg actuator rates are calculated. As
mentioned above, the Newton-Raphson Jacobian matrix resulting from the second forward
position kinematics solution ‘s a modified inverse Jacobian matrix. The relationship be-
tween the modified and actual Jacobian matrices is given. For the resolved rate solution,
no matrix inversion is required because the inverse matrix is calulated directly from plat-
form geometry in the forward position kinematics Newton-Raphson solution. The parallel
platform is free of singularities in the resolved rate control method. In contrast, most serial

industrial manipulators have several singularities which degrade overall performance.

Static examples are given to demonstrate calculations of the various equations of this
paper. Translation and rotation motions are studied in ten second simulations to demon-
strate the leg inputs, the forward position solution convergence, and the simplified forward

position model error for the platform under inverse position or resolved rate control.

27



9 ERENCES

Craig, J.J., Introduction to Robotics: Mechanics and Control, Addison Wesley Publish-
ing Co., Reading, MA, 1988.

Cwiakala, M., “Workspace of a Closed-Loop Manipulator”, ASME Paper 86-DET-95, 1986.

Dahlquist, G., and Bjorck, A., Numerical Methods , Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1974.

Dieudonne, J.E., Parrish, R.V., and Bardusch, R.E, “4n Actuator Estension Transforma-
tion for a Motion Simulator and an Inverse Transformation Applying Newton-Raphson’s Method”, NASA
Technical Note TN D-7067, Langley Research Center, November, 1972.

Fichter, E.F., “A4 Stewart Platform-Based Manipulator: General Theory and Practical Construction”,
International Journal of Robotics Research , Vol. 5, No. 2, 1986, pp. 157-182.

Hunt, K.H., “Structural Kinematics of In-Parallel Actuated Robot Arms”, Journal of Mechanisms,
Transmissions, and Automation in Design , Vol. 105, No. 4, December 1983, pp. 705-712.

Kane, T.R., Likins, P.W., and Levinson, D.A., Spacecraft Dynamics , McGraw-Hill
Book Co., New York, 1983.

Mabie, H.H., and Reinholtz, C.F., Mechanisms and Dynamics of Machinery, John Wiley
& Sons, New York, 1987.

Nanua, P., Waldron, K. J., and Murthy, V., “Direct Kinematic Solution of a Stewart Platform?”,
IEEE Transactions on Robotics and Automation , Vol. 6, No. 4, August 1990, pp. 438-443.

Nguyen, C.C., Zhou, Z., Antrazi, S.S, and Campbell, C.E., “Effcient Computation of
Forward Kinematics and Jacobian Matriz of a Stewart Platform-Based Manipulator”, Proceedings of the
IEEE Southeastcon 91 , April 1991.

Powell, 1., “The Kinematic Analysis and Simulation of the Parallel Topology Manipulator”, The
Marconi Review , Vol. 45, No. 226, 3rd Quarter 1982, pp. 121-138.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes:
The Art of Scientific Computing , Cambridge University Press, Cambridge, 1986.

Salmon, G., Lessons Introductoru to the Modern Higher Algebra (5th Ed.) , Chelsea,
New York, 1964.

Stewart, D., “A Platform with Siz Degrees of Freedom”, Proceedings of the Institute of Me-
chanical Engineers (London), Vol. 180, Part 1, No. 15, 1965-66, pp. 371-386.

Sugimoto, K., “Kinematic and Dynamic Analysis of Parallel Manipulators by means of Motor Alge-
bra”, Journal of Mechanisms, Transmissions, and Automation in Design , Vol. 109, 1987, pp.
3-7.

Watson, L.T., “Globally Convergent Homotopy Algorithms for Nonlinear Systems of Equations”, TR
90-26, Department of Computer Science, Virginia Polytechnic Institute and State Univer-
sity, Blacksburg, VA, 1990.

Williams, R. L., “Planar Robotic Mechanisms: Analysis and Configuration Comparison”, Doctoral
Dissertation, Department of Mechanical Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 1988.

Yang, D.C.H, and Lee, T.W., “Feasibility Study of a Platform Type of Robotic Manipulator from o
Kinematic Viewpoint”, Journal of Mechanisms, Transmissions, and Automation in Design , Vol.

106, No. 2, June 1984, pp. 191-198.

28



PP A , LATFORM PA TERS

This appendix presents nominal geometric parameters for the VES platform. The
following are the ball joint locations of the fixed base, expressed in {B}. The units for all

terms in this appendix are mm.

1338.1 -603.0 ~735.1
Dy, = 706(;7, Dy, = 1109'(7;1 By, = 11:3.9
1:0 1:0 1:0
-735.1 —603.0 1338.1
By, = —-13200.9 BVps - ~101%7.1 DY = -g%2
1:0 1:0 ltO

The vectors below are the ball joint locations of the moving platform, expressed in

{P}.
213.6 81.5 —295.1
217.4 . 293.6 , 76.2
Vo= 0.0 "Vra=4 "0 "Vrs=1 oo
1.0 1.0 1.0
~295.1 81.5 213.6
. -76.2 -293.6 2174
"Vps= 0.0 "Vpg = 0.0 "Vpo = 0.0
1.0 1.0 1.0

Vectors below are the ball joint locations of the moving platform for the simplified

forward position kinematics model, expressed in {P}.

152.4 ~304.8 152.4
Pry ) 2639 r B X P ) 2639
Vor=9 90 Vaz = 0.0 Vas = 0.0

1.0 1.0 1.0

The lengths a; and b;,i = 1,2,3 are fixed lengths separating ball joints in the moving

platform and the fixed base, respectively. These terms are defined in Egs. 5a and 5b.
ay = (g = Ay = 528.0

b] = bz == b"; = 2242.0

The ball joints of the moving platform and the fixed base lie on circles of radii rp
and rp, respectively. These radii are measured from the origins of {P} and {B}. They are
required in Eqgs. 34.
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APPENDIX B: FORWARD POSITION SOLUTION FOR SIMPLIFIED MODEL

There is no general method suitable for solving every non-linear system of equations.
In this appendix, a conceptually simple one-point iteration numerical method (Dahlquist
and Bjorck (1974), Section 6.9.1) is presented to simultaneously solve Eqs. 14, 15, and 16,

derived from the simplified forward position kinematics model.

Let the following represent a non-linear system of n equations in n unknowns.
Fy(X) = 0; i=12...,n (B.1)

where:
X ={z1,22,...,20}7
The one-point iteration method requires that each of the n equations be symbolically solved

for a different unknown to yield:
J:J’:f.?'()“(); i=42,...,n (BZ)

where:
X={z}"ii#5
Starting from an initial guess for X, Eqs. B.2 are calculated iteratively, updating each z;

for subsequent use. The convergence criteria for this method is given in Dahlquist and

Bjorck (1974, Section 6.9.1). The convergence of this method is linear.

Equations 14, 15, and 16 are three transcendental equations in the three unknowns
8,,62,65. In order to facilitate writing them in the form of Eq. B.2, they are viewed as
three equations in the six unknowns c;, s;;7 = 1,2,3. The unknowns ¢;;i = 1,2,3 are solved
from Eqgs. 14, 15‘, and 16, respectively.

=Dy — Dysysy — Dy

= B3

¢ Dy + Djeq ( )
. “‘E263 - E48283 - E{,

Cg = E; n Egsg (34)
“"FQC}_ - F48331 ha Fs

_ B.5

¢ Fi -+ FgC; ( )
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The remaining unknowns s;;i = 1,2,3 are related to the ¢, terms through ¢ + s? = 1. This

yields three constraint equations, written to isolate the s; unknowns.

gy =4/1-c? (B.6)
8y =14/1— c% (37)
83 =14/1~-¢3 (B.8)

With a suitable initial guess as the starting point, Egs. B.3 through B.8 are used for
iteration, continuously updating ¢, si;1 = 1,2,3. In using this method for practical platform
control, the previous solution constitutes an excellent initial guess. For the first time step,
a designated reset position is the initial guess. At the reset position introduced in Section
5, the angles 6;,1 = 1,2,3 are {73.8°,73.8°,73.8°}7. These values are approximate due to the
simplified model error, discussed in Sections 3.2.1 and 6. The iteration continues until the

change between each successive c;, s is sufficiently small.
!MAX(CI' ~ Cippmy )! <€ (B‘Qa)

IMAX(8i — Sipnov )l < € (B.9b)

where i+ = 1,2,3 and ¢ is a user-defined tolerance. In practical implementation of this

algorithm, convergence was achieved even for distant initial guesses.

The unknown angles 6; are obtained from the solved values of ;.
f; = cos™{ci) 1=1,2,3 (B.10)

The inverse cosine function is double-valued, yielding =£6;. Only the positive angles are
admissible due to VES platform workspace limits, as evident in Fig. 6. All three angles
are confined to the first quadrant, 0 < §; < 90°. Due to mechanical limits, the angles are

restricted significantly further than this, 65.4° <6, <77.5°.

(liven the three intermediate angles, the simplified model approximation to the forward

position kinematic solution, [ET.], is calculated using Eqgs. 20, 21, 22, 11, 12, and 13.
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C: FORW, POS SOLUTION ¥O T MO

This appendix presents a solution method for the exact model forward position kine-
matics problem. As observed in Appendix B, there is no general method for solving non-
linear systems of equations. In this appendix the well known Newton-Raphson method
is used to solve Eqs. 34. This is a first order gradient correction method. The following

presentation is adapted from Press, et. al. (1986, Section 9.6).

Let the following represent a non-linear system of n equations in n unknowns.
Fi(X) = 0; i=1,2,...,n (C.1)

where:

X = {:xl,xg,...,:):,,}T

The above equations are expanded in a Taylor series about the neighborhood of X.
Neglecting the quadratic and higher terms, a linear system of equations results. The details

are in Press, et. al. (1986, Section 9.6).

[JH{sX} = ~{F:(X)} (C.2)

The unknown vector {§X} is the first order gradient correction for the current X vector.
The right hand side of Eq. C.2 is the negative of the non-linear functions (Eq. C.1)
evaluated at the current X. The matrix [J] is a Jacobian matrix, a multi-dimensional form
of the derivative.

o] (©23)

J)= |
1= |22

The process requires an initial guess for X. For each iteration, the update equation is
Eq. C.4. Iteration continues until the largest component of the correction vector is less
than a user-specified tolerance, as shown in Eq. C.5. The convergence criteria for the
Newton-Raphson method is given in Dahlquist and Bjorck (1974, Section 6.9.2). There is
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a quadratic convergence, which yields convergence in less steps than the linear convergence

of Appendix B.

Xn-{-l = Xu + 6X (C4)
MAX(|6X]) < € : (C.5)

Where ¢ is a user-defined tolerance (separate position and orientation criterion may be
defined), with a different interpretation than that of Appendix B. The tolerance of Ap-
pendix B is a limit on the change in successive sines and cosines of the angle 6;,¢ = 1,2,3
in Fig 6. The tolerance in the present method represents the precision for the Cartesian
values comprising [BT.], X = {z,y,2,0x,0v,0z}" .

The exact modél forward position kinematics problem requires the solution of Eqgs. 34.
Unlike the simlified model solution method presented in Appendix B, the exact solution
variables describe elements of [2T|. As in Appendix B, the first initial guess should be a
reset position where the forward solution is known. The current VES platform [BT] is a

good initial guess for the next control cycle, during subsequent motion.

The initial guess for a control cycle is of the following form.

{Xn} = {fllm Yoy 2oy Oxu, 9}’(), 92()}T

At reset, {X,} is {0,0,1.531,0,0,0} (see Section 5, Example 1b). With practical implementa-
tion of the Newton-Raphson method, convergence was achieved even for relatively distant

initial guesses.

For the VES platform, the non-linear functions of Eq. C.1 have identical form, Eq.
34. The only parameters which change are the fixed base and moving platform ball joint
jocations. Therefore, each row of the Newton-Raphson Jacobian matrix has the same form,
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given in Eq. C.6.

Inr(i, 1) = 2[z + Pigriy + Piyriz — Bis]

Innr(5,2) = 2]y + Piaray + Piyraz — Biyl

JInr(3,3) =2z + Pigra1 + Piyraa]

Innli,4) = 2[Pyrislz — B;.) + Piyras(y — Biy) + Piyrasz]

In (3, 5) = 2[(—Piasycs + Pigraze:)(z — Bie) + (= Pizsysz + Piyrszs:)(y — Biy) + (—Pizcy — Piysasy)?]

JInn(i,6) = 2|~ (Piarar + Piyraz)(z — Biz) + (Pisris + Piyri2){y — Biy)]
(C.6)

The subscript NR is used to distinguish the Newton-Raphson Jacobian matrix from
the VES platform Jacobian matrix. As derived in Section 4, Jyr is related to the inverse

of the VES platform Jacobian matrix.
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Figure 1
General Platform
Kinematic Diagram
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Figure 2
VES Pilatform
Kinematic Diagram
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Figure 3a
Fixed Base Detail
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Figure 4a
Kinematic Diagram

Figure 4b
P Moving Platform Detail

Figure 4
Simplified VES Platform Model
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Figure 5
General B-Q-B-B Chain
in VES Platform Simplified Model
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Figure 6
VES Platform
Reduced Simplified
Kinematic Diagram
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Figure 8
Kinematic Diagram for the ith Actuator
of the VES Platform
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Figure 9

VES Platform Vertical Translation,

Equal Leg Lengths
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Leg Lengths (m)

Figure 10a
Inverse Position Solution
VES Translation Simulation
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Leg Rates (m/s)

Figure 10b
Resolved Rate Solution
VES Translation Simulation
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Position Error (m)
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Figure 10c

Simplified Forward Model Error
VES Translation Simulation
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Leg Lengths (m)
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Figure 11a
Inverse Position Solution
VES Rotation Simulation
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Leg Rates (m/s)

d Figure 11b
Resolved Rate Solution
VES Rotation Simulation

0.03
o %
0.01 : L1DOT
‘ ” L2DOT
0.00 L3DOT
L4DOT
-0.01 | L5DOT
T/‘ # " a :/:, l » 1 L6DOT
-0.03 +
0 2 4 6 8 10

Time (sec)

48



Position Error (m)

Figure 11c
Simplified Forward Model Error
VES Rotation Simulation
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Figure 12a
Inverse Position Solution
VES Translation/Rotation Simulation
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Figure 12b
Resolved Rate Solution
VES Translation/Rotation Simulation
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Position Error (m)

Figure 12¢
Simplified Forward Model Error
VES Translation/Rotation Simulation
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