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2.  Modeling 
 
2.1  System Modeling 
 
Force-Voltage Analogy 
 
 Single series loop with L, R, C elements, voltage input, current output (add a capacitor to the 
Term Example armature circuit, ignore back-emf).  Figure: 
 

 
 
 

Model ODEs:  
( ) 1( ) ( ) ( )di tL Ri t i t dt v t

dt C
+ + =∫  

 

   
( ) ( ) ( ) ( )dv tm cv t k v t dt f t

dt
+ + =∫  

 
 
Force-Voltage Analogy 
 

 
Variable Type 

 

 
Translational 

 

 
L-R-C Circuit 

 
input forcing 
(through) f(t) v(t) (voltage) 

 
output 
(across) v(t) (velocity) i(t) 

 

inertia m L 
 

damping c R 
 

stiffness k 1/C 
 

 

  

v(t) L

R

+
-

i(t)

C
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3.  Linear System Simulation 
 
3.1  Solution of Ordinary Differential Equations 
 
3.1.1 First-Order ODEs 
 
First-Order System Example 2 
 Same ck system and initial condition, but ( ) 5sin 2f t t=  

Solve  ( ) 50 ( ) 5sin 2x t x t t+ =    subject to x(0) = 0 
 
Solution: 

( )505( ) 25sin 2 cos 2
1252

tx t e t t−= + −  

 
 equivalent alternate solution form: 

( )( )505( ) 25.02sin 2 0.04
1252

tx t e t−= + −   using sin( ) sin cos cos sina b a b a b− = −  

 
 

• The response x(t) starts at zero as specified by the initial condition. 
• The transient solution goes to zero by about t = 0.10 sec. 
• Steady-state solution is ( )( ) 25.02sin 2 0.04ssx t t= −  m. 
• ω = 2 rad/s   ω = 2πf  f = 1/π = 1/T  T = π sec 

 

0 1 2 3 4 5 6 7 8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

t (sec)

-5/1252 cos(2 t)+125/1252 sin(2 t)+5/1252 exp(-50 t)

x(
t) 

(m
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Alternate form for particular solution (Example 2): 
 

Sum-of-angles formulae:  
cos( ) cos cos sin sin
sin( ) sin cos cos sin

a b a b a b
a b a b c a b

± =
± = ±



 

 

( )
25sin 2 cos 2 sin(2 )

sin 2 cos cos 2 sin
t t C t

C t t
φ

φ φ
− = −

= −
 

 
sin 2 : 25 cos
cos 2 : 1 sin

t C
t C

φ
φ

=
− = −

 

 
( )2 2 2 2 2cos sin 25 1C φ φ+ = +   626 25.02C = =  

 
sin 1
cos 25

φ
φ

=     1 1tan 0.04
25

φ −  = = 
 

 rad 

 
( )25sin 2 cos 2 25.02sin 2 0.04t t t− = −  

 

In general: 2 2
1 2C B B= +   1 2

1

tan B
B

φ −  −
=  

 
 when 

( )
1 2( ) sin 2 cos 2
sin 2

Px t B t B t
C t φ

= +

= −
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A Final First-Order ODE example R, C series electrical circuit (voltage v(t) input, current i(t) output): 

 
 

Model (from KVL and electrical circuit element table): 
1( ) ( ) ( )Ri t i t dt v t
C

+ =∫  

 

substitute charge q(t):  
( ) ( )

( ) ( )

i t dt q t

i t q t

=

=
∫



  
1( ) ( ) ( )Rq t q t v t
C

+ =  

 
Given R = 50 Ω and C = 0.2 mF, solve: 50 ( ) 5000 ( ) 1q t q t+ =  subject to (0) 0q =  and a unit step voltage 
input v(t).  Solution: 

( )1001( ) 1
5000

tq t e−= −   1001( ) ( )
50

ti t q t e−= =  

 

 
 

• As expected from the circuit dynamics, the charge q(t) in the capacitor builds up to a constant 
given a constant voltage input. 

• Also as expected, the capacitor current i(t) goes to zero at steady-state. 
• The steady state charge value is qSS = 1/5000. 
• The time constant is 0.01RCτ = = , so at 3 time constants (t = 0.03 sec) both the q(t) and i(t) 

values have approached 95% of their respective final values. 

v(t)

R

+
-

i(t) C

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

1.5

2 x 10-4

q(
t)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

i(t
)

t (sec)
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First-Order System Examples 
c, k  massless translational mechanical system 

force input f(t)  and displacement output x(t) 

( ) ( ) ( )cx t kx t f t+ =    
 
m, c  springless translational mechanical system 

force input f(t)  and velocity output v(t) 

( ) ( ) ( ) ( ) ( )mx t cx t mv t cv t f t+ = + =      
 
cR, kR  massless rotational mechanical system 

torque input τ(t)  and angular displacement output θ(t) 

( ) ( ) ( )R Rc t k t tθ θ τ+ =    
 
J, cR springless rotational mechanical system 

DC servomotor, torque input τ(t) and angular velocity output ω(t) 

( ) ( ) ( ) ( ) ( )R RJ t c t J t c t tθ θ ω ω τ+ = + = 

    
 
L, R  series electrical circuit 

voltage input v(t) and current output i(t) 

( ) ( ) ( )di tL Ri t v t
dt

+ =    

 
R, C  series electrical circuit 

voltage input v(t) and current output i(t), or charge ( ) ( )q t i t dt= ∫  

1 1( ) ( ) ( ) ( ) ( )Ri t i t dt Rq t q t v t
C C

+ = + =∫     

 
 

The time constants for these 6 examples are: 
1

R

R R

cc m J L RC
k c k c R

τ →  

 All first-order ODEs are solved in the same way as Example 1 (assuming a unit step input), all 
have the same type of time response graph, all share the same time constant behavior (after three time 
constants 3τ the output response is within 95% of its final value). 

First-order system models are given in: 
www.ohio.edu/people/williar4/html/PDF/ModelTFAtlas.pdf. 

f(t)

x(t)

c

k

f(t)

x(t)

m
c

k

(t)

R

θ (t)τ

cR

J

(t)θ (t)τ

cR

v(t) L

R

+
-

i(t)

v(t)

R

+
-

i(t) C

http://www.ohio.edu/people/williar4/html/PDF/ModelTFAtlas.pdf�
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3.1.2 Second-Order ODEs 
 
Derivation of underdamped homogeneous solution form 
 
In this case we have complex conjugate characteristic polynomial roots: 1,2s a bi= ± . 
 
For this example assume 1,2 1 3s i= − ±  as in the Section 3.1.2 401 NotesBook example. 
 
 

Euler’s identity must be used:  
cos sin
cos( ) sin( ) cos( ) sin( )

i

i

e i
e i i

θ

θ

θ θ

θ θ θ θ−

= +

= − + − = −
 

 
 

( )
( ) ( )( )

1 2
1 2

( 1 3 ) ( 1 3 )
1 2

3 3
1 2

1 2

( )

cos3 sin 3 cos3 sin 3

s t s t
H

i t i t

t it it

t

x t A e A e
A e A e

e A e A e

e A t i t A t i t

− + − −

− −

−

= +

= +

= +

= + + −

 

 
where we used θ = 3t in Euler’s identify.  Simplifying by collecting (factoring) terms: 
 

( ) ( )( )1 2 1 2( ) cos3 sin 3t
Hx t e A A t A A i t−= + + −  

 

Let  
( )

1 1 2

2 1 2

B A A
B A A i

= +

= −
   

 
We can only have real solutions when starting with real ODE coefficients, so *

1 2A A=  (these constants 
must be complex conjugates of each other): 
 

1

2

RE IM

RE IM

A A A i
A A A i

= +
= −

  1

2

2
2

RE

IM

B A
B A

=
= −

 

 
 

 Therefore  ( )1 2( ) cos3 sin 3t
Hx t e B t B t−= +  

Bi are the real constant unknown homogeneous solution coefficients 
 
And the general underdamped homogeneous solution form given 1,2s a bi= ±  is: 

( )1 2( ) cos sinat
Hx t e B bt B bt= +  

 
That is, the real part of the poles is placed in the exponential and the imaginary part of the poles is 
placed as the circular frequency of the cos and sin functions. 
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Second-Order System Example 1 
 
 m = 1 kg,  c = 7 Ns/m,  k = 12 N/m 
 

Solve ( ) 7 ( ) 12 ( ) ( ) 3 ( )x t x t x t f t u t+ + = =    subject to 
(0) 0.10
(0) 0.05 /

x m
x m s

=
=

 

 
 
This system is overdamped 

Real distinct roots, relatively slower response, no overshoot 
 
 
 

This solution is left to the interested reader. 
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Second-Order System Example 2 
 m = 1 kg,  c = 6 Ns/m,  k = 9 N/m 

Solve ( ) 6 ( ) 9 ( ) ( ) 3 ( )x t x t x t f t u t+ + = =   

Subject to 
(0) 0.10
(0) 0.05 /

x m
x m s

=
=

 

 
1. Homogeneous Solution ( ) 6 ( ) 9 ( ) 0H H Hx t x t x t+ + =    
 

Assume ( ) st
Hx t Ae=   ( )2 6 9 0sts s Ae+ + =  

 
Characteristic polynomial:  ( )22 6 9 3 0s s s+ + = + =  
 

1,2 3, 3s = − −   Real, repeated roots 
 

Homogeneous solution form  3 3
1 2( ) t t

Hx t A e A te− −= +  
 
 
2. Particular Solution  ( ) 6 ( ) 9 ( ) 3P P Px t x t x t+ + =   
 

( )Px t B=   0 6(0) 9 3B+ + =   so   ( ) 1/ 3Px t B= =  
 
 
3. Total Solution 

3 3
1 2

3 3 3
1 2 2

( ) ( ) ( ) 1/ 3

( ) 3 3

t t
H P

t t t

x t x t x t A e A te
x t A e A e A te

− −

− − −

= + = + +

= − + −

 

 
 Now apply initial conditions: 

1 2

1 2

(0) 0.10 (0) 0.33
(0) 0.05 3

x A A
x A A

= = + +
= = − +

 

 
1

2

0.233
0.65

A
A

= −
= −

 

 
( ) 3( ) 0.233 0.65 0.33tx t t e−= − + +  

 
This system is critically-damped 

Real, repeated roots – fastest response without overshoot 
 
Check solution 

Plug answer x(t) plus its two derivatives into the original ODE.  Also check the initial conditions. 
 
Plot – check transient and steady state solutions, plus total solution. 
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Second-Order System Example 2:  Forced m-c-k System 
 
Model:    ( ) ( ) ( ) ( )mx t cx t kx t f t+ + =   

 

( ) 6 ( ) 9 ( ) 3 ( )x t x t x t u t+ + =         ( )
(0) 0.10
0 0.05 /

x m
x m s

=

=

 

 

( )22 6 9 3 0s s s+ + = + =  
 

Solution:   ( ) 3 1( ) 0.233 0.65
3

tx t t e−= − + +  

 
Plot of x(t) vs. t 

 
 

• The total solution x(t) starts at 0.1 m, ( )x t  is non-zero, as specified by the initial conditions. 
• Transient approaches zero after t = 2.5 sec 
• Critically damped; –3 root goes to zero slightly faster alone than with t 
• Steady-state value is xSS = 1/3 m. 

0 1 2 3 4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (sec)

x(
t)
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Second-Order System Example 4:  Forced m-k System 
 

Model:    ( ) ( ) ( )mx t kx t f t+ =   (no damping) 
 

( ) 9 ( ) 3 ( )x t x t u t+ =        
(0) 0.10
(0) 0.05 /

x m
x m s

=
=

 

 
2 9 ( 3 )( 3 ) 0s s i s i+ = − + =  

 
Solution: ( ) (7 30)cos3 (1 60)sin 3 1 3x t t t= − + +  

 
Plot of x(t) vs. t 

 
 

• x(t) starts at 0.1 m, ( )x t  is non-zero, as specified by the initial conditions. 
• Simple harmonic motion 
• Undamped; zero viscous damping coefficient 
• Transient solution oscillates forever about the particular solution 1/3 
• ω = 3 rad/s   ω = 2πf  f = 3/2π = 1/T  T = 2π/3 = 2.09 sec 

 
This system is undamped 

Complex-conjugate roots with 0 real part, simple harmonic motion, no damping, theoretically 
never stops vibrating. 
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3.2  The Laplace Transform 
 
Partial Laplace Transform Table 
 

  
f(t) 

 

 
F(s) 

 

1 
 

Dirac delta  δ(t) 
 

1 

2 unit step  u(t) 
1
s

 

3 unit ramp  r(t) = t 2

1
s

 

4 tn  
n

sn
!
+1  

5 e at−  
1

( )s a+
 

6 1 ate−−  ( )
a

s s a+
 

7 
1

( ) ( )

at bte e
ab a a b b b a

− −

+ +
− −

 
1

( )( )s s a s b+ +
   a b≠  

8 n att e−  1

!
( )n

n
s a ++

 

9 sin tω  

 
ω

ωs2 2+  
 

10 cosωt  

 
s

s2 2+ ω  
 

11 e tat− sin ω  

 

2 2( )s a
ω

ω+ +  
 

12 e tat− cosω  

 

2 2( )
s a

s a ω
+

+ +
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Partial Laplace Transform Table (continued) 
 

  
f(t) 

 

 
F(s) 

 

13 cos sinat b ae t tω ω
ω

−  − +     
 

 

2 2( )
s b

s a ω
+

+ +
 

 

14 
2 2( )

sin( )atb a
e t

ω
ω φ

ω
−− +

+    1tan
b a

ωφ −=
−

 

 

2 2( )
s b

s a ω
+

+ +
 

 

15 2
sin

1
ntn

de tξωω ω
ξ

−

−
;  21d nω ω ξ= − ;  1ξ <  

 
2

2 22
n

n ns s
ω

ξω ω+ +  
 

16 2
1 sin( )

1

nt

d
e t

ξω

ω φ
ξ

−

− +
−

;   1cosφ ξ−= ;  1ξ <  

 
2

2 2( 2 )
n

n ns s s
ω
ξω ω+ +  

 

17 

 

2 2 2 2

1 sin( )
ate t

a a
ω φ

ω ω ω

−

+ −
+ +

;   1tan
a

ωφ −  =  −   
 

 

2 2

1
[( ) ]s s a ω+ +  

 

18 

 
2 2

2 2 2 2

1 ( ) sin( )atb b a e t
a a

ω ω φ
ω ω ω

−− +
+ +

+ +
 

1 1tan tan
b a a

ω ωφ − −   = −   − −     
 

2 2[( ) ]
s b

s s a ω
+

+ +
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3.2.2  ODE Solution via Laplace Transforms 
 This subsection presents an alternate solution for the 1st-order ODE problem from the 401 
NotesBook™.  Again, this ODE is solved using the Laplace Transform method – but now, if we have a 
Laplace Transform table of sufficient detail, as on the preceding pages, we can skip the partial fraction 
expansion step and use the table directly. 
 
ODE Solution via Laplace Transforms Examples   
 
First-Order ck mechanical system Example 1 

Solve ( ) 50 ( ) 5x t x t+ =  for x(t),  subject to x(0) = 0 and a step input of magnitude 5. 
 
We already did this ODE solution via the slow ME way and the Laplace Transform method with partial 
fraction expansion. 
 
 
Take Laplace transform of both sides (don’t forget the initial condition – but it is given as zero): 

[ ] 5( ) (0) 50 ( )

5( ) 50 ( )

sX s x X s
s

sX s X s
s

− + =

+ =
 

 
Solve for variable of interest, X(s) – the Laplace transform of the answer, x(t): 

5( 50) ( )

5( )
( 50)

s X s
s

X s
s s

+ =

=
+

 

 
Up to this point the solution is identical to that in the 401 NotesBook™.  But now we can skip the partial 
fraction expansion if we use the following Laplace Transform table entry: 

( )
( )

aF s
s s a

=
+

  ↔  ( ) 1 atf t e−= −
 

 
We must algebraically modify X(s) so that the same constant a appears in the numerator and 
denominator, by multiplying by 1 (10/10): 

10 5 1 50( )
10 ( 50) 10 ( 50)

X s
s s s s

   
= =   + +   

 

 
Taking the inverse Laplace transform of X(s) yields the solution x(t): 

{ }1 1 1

50

1 50 1 50( ) ( )
10 ( 50) 10 ( 50)

1( ) (1 )
10

t

x t L X s L L
s s s s

x t e

− − −

−

      
= = =      + +      

= −

 

 
This is the same solution obtained twice previously. 
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4.  Transfer Functions and Block Diagrams 
 
4.2  Block Diagrams 
 
Simulink model and plots for the Example of Section 4.2: 

 

 
 Open-loop  Closed-loop 
  

Step Ydes

Step U

Step
Responses

1
s+3

H

s+1
s+2

Gc

1
s  +2s+82

G Open

1
s  +2s+82

G

Ydes E U Closed Yact

Yact

Yact

Ysens

U Y Open
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4.4  Feedback 
 
Four reasons for using feedback: 
 

1. To modify the transient response of the system.  We can change open-loop poles to closed-loop 
poles with more desirable behavior to ensure stability and modify the system transient 
performance. 

 
 
2. To reduce steady-state error in the system. 
 
 
3. To decrease the sensitivity of the closed-loop system to variations in the open-loop plant transfer 

function.  Sensitivity is like a derivative ( )
( )

T s
G s

∆
∆

. 

 
 
4. To reduce the effects of disturbances, unmodeled dynamics, uncertainties, nonlinearities, 

parameters changing with time, and noise.  To increase system robustness. 
 
 

Feedback is not free.  A closed-loop feedback system is more expensive and complex, and thus 
less reliable, than an open-loop system.  Therefore, the engineer must determine if closed-loop feedback 
control is justified or if the open-loop system can perform adequately. 
 
 Fortunately for ME 401, there are a host of real-world dynamic systems which demand closed-
loop feedback control. 
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5.  Transient Response 
 
5.1  Second-Order System Damping Conditions 
 

Here is the MATLAB program to create the figure for the example of Section 5.1, comparing the 
overdamped, critically-damped, underdamped, and undamped second-order system responses to a unit 
step input. 
 
%-------------------------------------------------------------------- 
%   Over-, Critically, Under-, and Undamped cases using step function 
%       Dr. Bob, ME 401 
%-------------------------------------------------------------------- 
clear; clc; 
 
num = [1]; 
denOVER = [1 6 4];            % Overdamped 
denCRIT = [1 4 4];            % Critically-damped 
denUNDR = [1 2 4];            % Underdamped 
denUN   = [1 0 4];            % Undamped 
 
polesOVER = roots(denOVER);  % Poles for each case 
polesCRIT = roots(denCRIT); 
polesUNDR = roots(denUNDR); 
polesUN   = roots(denUN); 
 
OVER = tf(num,denOVER); 
CRIT = tf(num,denCRIT); 
UNDR = tf(num,denUNDR); 
UN   = tf(num,denUN); 
 
t = [0:0.01:8]; 
[yOVER,xOVER] = step(OVER,t); % Unit step responses 
[yCRIT,xCRIT] = step(CRIT,t); 
[yUNDR,xUNDR] = step(UNDR,t); 
[yUN,xUN]     = step(UN,t); 
 
figure; 
plot(t,yOVER,'r',t,yCRIT,'g',t,yUNDR,'b',t,yUN,'m');  % Plot unit step responses 
set(gca,'FontSize',18);  
grid; ylabel('\ity(t)'); xlabel('\itt (\itsec)'); 
legend('Over','Crit','Under','Un'); 
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Over-, Critically-, Under-, and Un-damped Examples using impulse 
 

Solve: 

( ) 6 ( ) 4 ( ) ( )
( ) 4 ( ) 4 ( ) ( )
( ) 2 ( ) 4 ( ) ( )

( ) 4 ( ) ( )

y t y t y t t
y t y t y t t
y t y t y t t

y t y t t

δ
δ
δ
δ

+ + =
+ + =
+ + =

+ =

 

 

 



 

for y(t), all subject to zero initial conditions 
(0) 0
(0) 0

y
y

=
=

 and an impulse input. 

For the impulse responses, solve the same ODEs as the step examples in the 401 NotesBook, 
subject to zero initial conditions and impulse input δ(t).  Note that though we specified zero initial 
conditions (0) 0y =

 

and (0) 0y = , for the impulse responses only the y(0) initial condition can be 
satisfied, i.e. all (0)y  initial velocities take their own value, different from zero as seen below. 
 
Impulse responses plot: 

 
 
The impulse input final value is 0. 
 
 The above figure was generated using the same MATLAB program as given above, but 
substituting MATLAB function impulse for step. 
  

0 1 2 3 4 5 6 7 8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y(
t)

t (sec)

 

 

Over
Crit
Under
Un
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MATLAB Simulink 
 
 MATLAB has a powerful graphical user interface (GUI) called Simulink.  From the MATLAB 
command window type simulink and you can create and simulate any control system described by 
block diagrams and transfer functions.  Look around to find the transfer function, step input, and scope 
(plot) output blocks.  Simply drag and drop the desired block to the Simulink workspace.  Double-click 
on any block to change its parameters.  Connect blocks with lines using the mouse/cursor.  Simply press 
the play button to run your model.  It’s fast, fun, and addicting!  Make sure you can do the steps by 
hand, but you are free to use this tool for homework. 
 

For example, the Simulink diagram below recreates the unit step responses for the overdamped, 
critically-damped, underdamped, and undamped second-order system example of Section 5.1.  All 
transfer functions are fed by the same Step input.  The mux, or multiplexer, block is used to compare 4 
results in one plot, in this case combining 4 scalar signals to one vector signal, to send to the Plots 
scope.  The resulting plot is identical in form to that shown in the 401 NotesBook, though the Simulink 
graphics do not look as nice. 
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Impulse Input in Simulink 
 
 One can simulate the impulse responses in Simulink also.  Since there is no Impulse input 
block, we must create our own impulse input.  There are two possible methods. 
 
1.  The Dirac Delta impulse input δ(t) should have infinite magnitude but infinitesimal duration.  It is 
normalized in the sense that ( ) 1tδ =∫ , i.e. the area under the ‘curve’ is 1.  One way to approximate the 

impulse input δ(t) is to turn on a step input at t = 0 with a large magnitude M and then subtract from this 
step input another of equal magnitude M, starting at time ∆t = 1/M sec.  See the figure below.  I have had 
success with M = 1000 and 10000, among others.  Be sure to scope the resulting impulse input to ensure 
it is what you intended. 

 
 

2.  We know that ( )( ) du tt
dt

δ = , where u(t) is the unit step input and δ(t) is the impulse input.  See the 

figure below.  Again, scope the resulting impulse input to ensure it is correct.  It appears that this 
approach may not work when starting at t = 0 (it does not generate δ(t) but gives zero instead).  If you 
start the Simulink simulation at t = 1, it should work fine.  Again, be sure to scope the resulting impulse 
input to ensure it is what you intended. 
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impulse input

Step
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du/dt

Derivative
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5.3  Open-Loop and Closed-Loop System Examples 
 
Here is the MATLAB program to create the figure for the example of Section 5.3, comparing the 

open- and closed-loop system responses to a unit step input. 
 

%--------------------------------------------- 
%   Open-loop/Closed-loop Example 
%       Dr. Bob, ME 401 
%--------------------------------------------- 
clear; clc; 
%   Open-loop unit step response 
numo = [4];  deno = [1 2 4]; 
SysO = tf(numo,deno); 
zeroso = roots(numo);  poleso = roots(deno); 
[wno,zetao] = damp(deno); 
t = [0:0.01:6]; 
yo = step(SysO,t);  % Open-loop unit step response 
 
%   Closed-loop 
K = 10;     % Simple proportional controller 
numc = [4*K];  denc = [1 2 4+4*K]; 
SysC = tf(numc,denc); 
zerosc = roots(numc);  polesc = roots(denc); 
[wnc,zetac] = damp(denc); 
yc = step(SysC,t);  % Closed-loop unit step response 
 
%   Check hand-derivation of T(s)=[numc/denc] via MATLAB 
numgc = [K]; 
dengc = [1]; 
[numa,dena]   = series(numgc,dengc,numo,deno); 
[numc2,denc2] = feedback(numa,dena,[1],[1]); 
TCheck = tf(numc2,denc2) % Display T(s) check results 
 
%   Plot open- and closed-loop step responses 
figure; 
plot(t,yo,'r',t,yc,'g'); 
set(gca,'FontSize',18);  legend('Open-loop','Closed-loop'); 
axis([0 6 0 1.5]); 
grid; ylabel('\ity(t)'); xlabel('\itt (\itsec)'); 
  
%   Performance specs: open-loop 
wdo = wno(1)*sqrt(1-zetao(1)^2);                % Damped natural frequency 
tro = (2.16*zetao(1) + 0.60)/wno(1)             % Rise time 
tpo = pi/wdo                                    % Peak time 
poo = 100*exp(-zetao(1)*pi/sqrt(1-zetao(1)^2)) % Percent overshoot 
tso = 4/(zetao(1)*wno(1))                       % Settling time 
 
%   Performance specs: closed-loop 
wdc = wnc(1)*sqrt(1-zetac(1)^2);                % Damped natural frequency 
trc = (2.16*zetac(1) + 0.60)/wnc(1)             % Percent overshoot 
tpc = pi/wdc(1)                                 % Peak time 
poc = 100*exp(-zetac(1)*pi/sqrt(1-zetac(1)^2)) % Percent overshoot 
tsc = 4/(zetac(1)*wnc(1))                       % Settling time 
 
%   Right-click for performance specs: open- and closed-loop 
figure;  step(SysO); grid; 
figure;  step(SysC); grid; 
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5.4  First- and Second-Order Transient Response Characteristics 
 
 The Cartesian representation of the 3x4 subplots (step responses) from the 401 NotesBook 
Section 5.4 is for convenience only, since that is the way the MATLAB subplot works.  For more 
accuracy, the underdamped cases c. should be represented using polar coordinates (for this example 
shown to scale below) rather than Cartesian coordinates: 
 

 
 
Recall for underdamped poles the polar representation is r = ωn and 1sinθ ξ−= ; thus the two symmetric 
angles in the examples above are 5.7θ = 

 and 30θ =  . 
 

Also, remember all complex conjugates occur in pairs, as shown above (two poles generate one 
time response plot in all second-order cases, including the non-complex-conjugate cases). 
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 We can also perform the example of Section 5.4 using the impulse function in place of the 
step function; this is shown below. 
 

Transient Response Characteristics vs. Re-Im-plane pole locations 
(impulse responses, generic second-order system) 

Figure key: 
5.0=ξ    ωn = 2  

s i1 2 1 173, .= − ±  
c1. underdamped 

ξ = 01.    ωn = 2  
s i1 2 0 2 199, . .= − ±  

c2. underdamped 

ξ = 0    ωn = 2  
s i1 2 2, = ±  

d1. undamped 

ξ = −01.    ωn = 2  
s i1 2 0 2 199, . .= ±  

e1. 
ξ = 0 5.    ωn = 1  

s i1 2 05 0866, . .= − ±  
c3. underdamped 

ξ = 01.    ωn = 1  
s i1 2 01 0 995, . .= − ±  
c4. underdamped 

ξ = 0    ωn = 1  
s i1 2, = ±  

d2. undamped 

ξ = −01.    ωn = 1  
s i1 2 01 0 995, . .= ±  

e2. 
ξ = 2    ωn = 1  

s1 2 373 0 27, . , .= − −  
a.  overdamped 

ξ = 1   ωn = 1  
s1 2 1, = −  

b. critically-
damped 

ξ = 0    ωn = 0  
s1 2 0, =  

d3. special 
undamped 

ξ = −1(-1.005)   
ωn = 1( 0.99nω = ) 

s1 2 1, = (0.9,1.1) 
f. (g.) 

 

 
 

Note: while cases f and g may look identical between the step (401 NotesBook) and impulse (this page) 
responses, they are different – the impulse responses are going to infinity faster than the step cases. 
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Here is the MATLAB program to create the figure for the example of Section 5.4, comparing the 
various second-order system transient responses to a unit step input, based on pole locations.  To find 
the impulse responses of the previous page, simply substitute MATLAB function impulse for step. 
 
%--------------------------------------------------------------------- 
%  Generate plots to display transient unit step response characteristics 
%       given different dimensionless damping ratios and natural frequencies 
%  for the generic second-order system         Dr. Bob, ME 401 
%--------------------------------------------------------------------- 
clc; clear; figure; 
  
dt = 0.01; tf = 20; t = [0:dt:tf]; 
Xmin = 0; Xmax = tf; Ymin = 0; Ymax = 2; 
  
subplot(3,4,1); 
zeta = 0.5;  wn = 2; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t);  
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r1 = roots(den); 
  
subplot(3,4,2); 
zeta = 0.1;  wn = 2; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t);  
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r2 = roots(den); 
  
subplot(3,4,3); 
zeta = 0;    wn = 2; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r3 = roots(den); 
  
subplot(3,4,4); 
zeta = -0.1; wn = 2; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax -50 50]);    r4 = roots(den); 
  
subplot(3,4,5); 
zeta = 0.5;  wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r5 = roots(den); 
  
subplot(3,4,6); 
zeta = 0.1;  wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r6 = roots(den); 
  
subplot(3,4,7); 
zeta = 0;    wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r7 = roots(den); 
  
subplot(3,4,8); 
zeta = -0.1; wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax -10 10]);    r8 = roots(den); 
  
subplot(3,4,9); 
zeta = 2;    wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r9 = roots(den); 
  
subplot(3,4,10); 
zeta = 1;    wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax Ymin Ymax]); r10 = roots(den); 
  
subplot(3,4,11); 
zeta = 0;    wn = 0; num = [1];    den = [1 0 0];            y = step(num,den,t); 
plot(t,y); axis([Xmin Xmax 0 200]);     r11 = roots(den); 
  
subplot(3,4,12); 
zeta = -1;   wn = 1; num = [wn^2]; den = [1 2*zeta*wn wn^2]; yf = step(num,den,t); 
zeta = -1.005; wn   = sqrt(0.99); num = [wn^2];  
den = [1 2*zeta*wn wn^2]; yg = step(num,den,t); 
plot(t,yf,'b',t,yg,'g'); legend('f','g'); axis([Xmin Xmax 0 16e09]); 
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5.6  Term Example Open-Loop Transient Response 
 

Here is the MATLAB program to create the figure for the example of Section 5.6, presenting  the 
Term Example open-loop transient responses for load shaft angle and load shaft angular velocity outputs  
given unit impulse, unit step, and unit ramp inputs. 
 
%------------------------------------------------------------------ 
%  Term example - electromechanical system transient responses 
%  Theta and Omega outputs for impulse, step, and ramp inputs 
%   Dr. Bob ME 401 
%------------------------------------------------------------------ 
 
clc; clear; 
 
numt  = [5];  dent  = [1 11 1010 0]; %  open-loop transfer function  V to ThetaL 
Syst = tf(numt,dent); 
polet = roots(dent); 
numw  = [5];  denw  = [1 11 1010];  %  open-loop transfer function  V to OmegaL 
Sysw = tf(numw,denw); 
polew = roots(denw); 
 
t0 = 0; dt = 0.005; tf = 0.8;    % evenly-spaced time array 
t  = [t0:dt:tf]; 
 
figure; 
 
subplot(321); 
[y,x] = impulse(Syst,t);     %  impulse 
plot(t,y); grid; axis([0 0.8 0 0.008]); 
 
subplot(322); 
[y,x] = impulse(Sysw,t);  
plot(t,y); grid; axis([0 0.8 -0.1 0.15]); 
 
subplot(323);         %  step 
[y,x] = step(Syst,t);  
plot(t,y); grid; axis([0 0.8 0 0.004]); 
 
subplot(324); 
[y,x] = step(Sysw,t);  
plot(t,y); grid; axis([0 0.8 0 0.008]); 
 
subplot(325); 
[y,x] = lsim(Syst,t,t);      % unit ramp input u(t) = t 
plot(t,y); grid; axis([0 0.8 0 0.0016]); 
 
subplot(326); 
[y,x] = lsim(Sysw,t,t);  
plot(t,y); grid; axis([0 0.8 0 0.004]); 
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Term Example Transient Response, Extended 
 
 We can extend the Term Example transient responses example from 401 NotesBook Section 5.6 
for one more input (the unit parabola, 2( ) 2p t t= ) and one more output (αL(t), the angular acceleration 
of the load shaft). 
 
Figure key: 

θL(t) impulse  ωL(t) impulse  αL(t) impulse  

θL(t) unit step  ωL(t) unit step  αL(t) unit step  

θL(t) unit ramp  ωL(t) unit ramp  αL(t) unit ramp  

θL(t) unit parabola  ωL(t) unit parabola  αL(t) unit parabola  
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Electrical vs. Mechanical Rise Time 
 Usually the electrical system time constant L/R is small relative to the mechanical system time 
constant JE/cE.  This means that when voltage vA(t) is applied to the armature circuit, the armature 
current iA(t) rises much faster than the motor shaft angular velocity ωM(t)  does when iA(t) is applied to 
generate motor torque τM(t) .  See the figure below.  Here are the component first-order transfer 
functions and time constants for the armature circuit and rotational mechanical system dynamics: 

1
( ) 1( )

( ) ( )
A

A B

I sG s
V s V s Ls R

= =
− +  

0.1L
R

=   3
( ) 1( )
( )

M

M E E

sG s
s J s c

Ω
= =

Τ +  
1E

E

J
c

≅  

 
armature current  motor shaft angular velocity 

 
 Therefore, the electromechanical system open-loop block diagram transfer function could be 
simplified as follows.  For VA(s) input, ΘL(s) output, the open-loop transfer function is: 
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The simplified VA(s) input, ΘL(s) output transfer function is second-order and the simplified VA(s) input, 
ΩL(s) output transfer function is first-order: 
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6.  Controller Design 
 
6.1  Controller Design Introduction 
 
Second-order performance specifications revisited: inequalities 
 
 For controller design, how should we choose good behavior?  One must specify good poles as an 
input to the controller design process.  Thus far we have specified an exact desired percent overshoot 
(yielding an exact ξ) and an exact settling time (yielding an exact ωn knowing ξ from PO), from which 
the desired behavior characteristic polynomial is 2 22 n ns sξω ω+ + , from which the desired closed-loop 
poles can be found. 
 

A much more general and powerful method for specifying good controller behavior (desired 
closed-loop poles) is to specify inequalities for performance specifications rather than exact values.  In 
this example we require 2Pt ≤  sec, 5%PO ≤ , and 4St ≤  and the problem is to determine and show on 
the Re-Im plane acceptable regions for the closed-loop controller poles given these three simultaneous 
inequality constraints. 

 

a. From 
2

2
1

P
dn

t π π
ωω ξ

= = ≤
−

 

 
we have 2dω π≥  rad/sec (by symmetry, also 2dω π− ≤ −  rad/sec). 

 
 

b. From 
21100 5%PO e

ξπ

ξ

 − 
 − = ≤  

we have 0.69ξ ≥ , or 43.6θ ≥   (symmetric) 
 

 

c. From 4 4S
n

t
ξω

≅ ≤  

we have 1nξω ≥ , that is 1nξω− ≤ −  
 
 

Let us plot all three constraints on the Re-Im plane; we get three straight-line constraints, two of 
them symmetric about the Re axis.  Then we shade the acceptable side of each constraint line. 
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Plot inequality constraints on Re-Im pole plane: 
 

 
 

Acceptable range (cross-hatched) for three performance specification inequalities 
 

To satisfy the inequality requirements on the performance specifications, one may choose two 
symmetric underdamped complex-conjugate poles anywhere in the shaded regions.  The peak time and 
percent overshoot specifications dominate and the settling time constraint is not active. 
 

ξ=0.69

ω  = π/2d

Im

Re

−ξω  = −1n

ω  = −π/2d

ξ=0.69
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ITAE Performance Index  Alternate method for choosing good desired closed-loop poles. 
control swiftness of response:  change rise and peak time 
control error of response:  change % overshoot, settling time 

 
 These are competing requirements.  How should we choose the desired poles for the closed-loop 
system controller design?  Try performance indices – many cases have been solved to tell you the 
optimal poles given various performance measures (indices).  Here we will only consider one: the 
integral of time multiplied by the absolute error (ITAE). 

0
( )ITAE t e t dt

∞
= ∫  

 
 Minimize ITAE to simultaneously optimize competing requirements.  Minimum ITAE means less 
time and smaller error in balance.  For first- through sixth-order systems, the following characteristic 
polynomials minimize ITAE.  If we design the feedback controller to meet one of these specifications, 
the shaping of the dynamic transient response will be optimized according to ITAE.  The engineer must 
set the value for ωn to suit the time nature of the desired closed-loop system.  Note for all cases (except 
the first order system) some overshoot is required to optimize ITAE.  We simulate with MATLAB to see 
this (using ωn = 3 rad/s for all plots below). 
 

Order Optimal Characteristic Polynomials 
1 ns ω+  
2 2 21.4 n ns sω ω+ +  
3 3 2 2 31.75 2.15n n ns s sω ω ω+ + +  
4 4 3 2 2 3 42.1 3.4 2.7n n n ns s s sω ω ω ω+ + + +  
5 5 4 2 3 3 2 4 52.8 5.0 5.5 3.4n n n n ns s s s sω ω ω ω ω+ + + + +  
6 6 5 2 4 3 3 4 2 5 63.25 6.6 8.6 7.45 3.95n n n n n ns s s s s sω ω ω ω ω ω+ + + + + +  

 

 
ITAE Desired Unit Step Responses 
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6.2  Root-Locus Method 
 
Examples 2:   Re-create these examples in MATLAB.  For each, be sure to interpret what is happening 
in the root locus plot. 
 

2a. 2( )
( 4)
sG s

s s
+

=
+

 

 
 

2b. 2 3 2

1 1( )
( 2)( 4) ( 10 32 32)

s sG s
s s s s s s s

+ +
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+ + + + +
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=
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Example 3   Conditionally stable example (continued) 
 
The unit step responses for Root-Locus Example 3 from the 401 NotesBook are shown below, as 

K increases.  Clearly we need a method for determining K to yield a desirable closed-loop system. 
 

 
 

Conditionally-stable example, unit step responses as K increases from 0.  K values legend: 
 

0 0.01 0.07 
0.40 1.03 1.96 
2.73 3.20 6420 

 
Unstable for 0.001 0.160K≤ ≤  (using rlocfind(Sys)) 
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Relate ξ and ωn to the Re-Im poles plane 
 Recall the underdamped generic second-order system poles are: 

2
1,2 1n n n ds i iξω ω ξ ξω ω= − ± − = − ±   ( 0 1ξ< < ) 

 
Further recall the graphical representation of these underdamped s1,2 pole locations (derived earlier in 
the 401 NotesBook™, this is symmetric as shown below).  We measure θ with the right hand from the 
positive vertical (by symmetry, measure θ with the left hand from the negative vertical): 

 
The radial distance is ωn and 1sinθ ξ−= .  We can use MATLAB to create ωn, ξ grids on the root-locus 
plot.  This sgrid result is shown above and is symmetric about the Re axis. 
 

dmp = [0:0.1:1];  om  = [1:1:5];  sgrid(dmp,om); 
 
 Also, we can add vertical lines to the left of zero for lines of constant settling time (i.e. constant  

–ξωn) and symmetric horizontal lines for lines of constant peak time (i.e. constant 21d nω ω ξ= − ). 
 
Put your root-locus plot on the same figure: 

hold on; 
rlocus(Sys); 
[K,poles] = rlocfind(Sys) 

 
 Be sure the root-locus figure is active (if there are other MATLAB graphics figures on the 
screen). The MATLAB window gives you a cross-hair cursor with which to select a point on the root-
locus plot.  Choose a point where the root-locus plot intersects a desirable ωn, ξ or other desirable pole 
specification.  MATLAB responds with the K value and associated poles. 
 
 For controller design, check out rltool, very powerful and cool!  rltool has built-in grid 
tools for two of the generic second-order system performance specifications (settling time and percent 
overshoot), plus ξ and ωn: right-click →  design requirements →  new. 
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6.8  Controller Design Example 2 
 
 This example uses a similar open-loop transfer function as in Controller Design Example 1, but it 
is an unstable open-loop plant transfer function (negative damping term): 

2

10( )
10

G s
s s

=
− +

 

 
Step 1.  Analyze the open-loop system behavior. 

There is only one small change in the open-loop transfer function compared to Controller Design 
Example 1: there is a negative sign on the open-loop s term.  The negative damping injects energy into 
the system instead of dissipating energy. 
 

open-loop poles 1,2 0.5 3.12s i= + ±   Positive real poles, UNSTABLE! 
tR = 0.08 s  tP = 1.01 s  PO = 165.4%  tS = –8 s 

 
These transient characteristics are all BOGUS since they are calculated based on the underdamped, 
positive damping, performance specification equations.  The open-loop unit step response is: 
 

 
 
When we use MATLAB function step for this problem and right-click for the performance 
specifications, no useful results are generated. 
 
 
Step 2.  Specify the desired behavior for the closed-loop system.  
 

( )( )2 3 2( ) 26.7 5.33 14.93 32 157.2 398.2
DESCL s s s s s s s∆ = + + + = + + +  

 
 

Step 3.  Specify the form for the controller transfer function. 

PID Controller:  ( ) I
C P D

KG s K K s
s

= + +  
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Step 4.  State the controller design problem to be solved. 
 

Given 2

10( )
10

G s
s s

=
− +

, H(s) = 1, 3 2( ) 32 157.2 398.2
DESCL s s s s∆ = + + + , and ( ) I

C P D
KG s K K s
s

= + +  

 
Solve for the PID controller gains KP, KI, and KD.  Then evaluate the PID controller performance. 
 
 
Step 5.  Solve for the unknown gains to achieve the desired behavior for the closed-loop system.    
Derive the closed-loop transfer function as a function of the PID controller gains: 
 

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

2 2

2 2

2 2 2

2 2

2

2 2

2

3 2

10 10

10 10( ) ( )( )
1 ( ) ( ) ( ) 10 10 10

1
10 10

10
( )

10 10

10
( )

1 10 10

D P I D P I

C

C D P I D P I

D P I

D P I

D P I

D

K s K s K K s K s K

s s s s s sG s G sT s
G s G s H s K s K s K s s s K s K s K

s s s s s s

K s K s K
T s

s s s K s K s K

K s K s K
T s

s K s

+ + + +

− + − +
= = =

+ + + − + + + +
+

− + − +

+ +
=

− + + + +

+ +
=

+ − + + +( ) ( )10 10P IK s K+

 

 
 

Match the symbolic form (function of KP, KI, KD) with the numerical desired characteristic polynomial – 
use the same third-order desired characteristic polynomial from Controller Design Example 1, which is 
an augmented version of the second-order behavior with 5% overshoot and 1.5 sec settling time. 

 
 

 Denominator parameter matching (fully-decoupled solution): 
 

3

2

1

0

1 1
1 10 32

10 10 157.2

10 398.2

D

P

I

s
s K
s K
s K

→ =

→ − + =

→ + =

→ =

    
3.3
14.72
39.82

D

P

I

K
K
K

=
=
=

 

 
 

There is only one small change, compared to the stable underdamped system PID controller from 
Controller Design Example 1: only KD changed slightly (it was 3.1 before; now it is 3.3 for the unstable 
system), but KP and KI are identical. 
 
  



 37 

Step 6.  Evaluate the PID controller performance in simulation. 
 

Open- vs. Closed-Loop unit step responses: 

 
    Open-Loop   Closed-Loop PID 
    tR  =  N/A sec  tR  =  0.05 sec 
    tP  =  ∞  sec  tP  =  0.16 sec 
    PO =  NaN   PO =  10.7% 
    tS  =  ∞  sec  tS  =  1.03 sec 
    eSS  =  ∞    eSS  =  0% 
 
 
Step 7.  Include an output attenuation correction factor if necessary. 
 

Again, no output attenuation correction factor is required thanks to the KI term – the effective 
closed-loop stiffness is the same as the open-loop stiffness.  The KI  term ensures zero steady-state error. 

 

Closed-loop transfer function: 
2

3 2

33 147.2 398.2( )
32 157.2 398.2
s sT s

s s s
+ +

=
+ + +

 

 
 
We stabilized the unstable system but did not achieve the desired transient characteristics.  The above 
PID closed-loop system response is again too fast and too sharp.  The desired poles are matched, but the 
settling time is approximately 1.0 sec, faster than the specified the 1.5 sec.  The percent overshoot is 
approximately 10.9%, violating the 5% overshoot specification.  Therefore, we need a pre-filter. 
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Step 8.  Include a pre-filter transfer function GP(s) if necessary. 
 
Two unwanted zeros were introduced by the PID controller; these can be cancelled by a pre-filter. 

 
Pre-filter transfer function:  

2

398.2( )
33 147.2 398.2PG s

s s
=

+ +
 

 
Note the 398.2 numerator is included since the pre-filter shouldn’t attenuate the output.  Again plotting 
the unit step responses, we now see that the performance specifications are met. 
 
 
Example 2 PID Controller Open-, Closed-, and Closed-loop with pre-filter unit step responses: 
 

 
 
 Open-Loop   Closed-Loop PID  Closed-Loop PID with Pre-Filter 
 tR  =  N/A sec  tR  =  0.05 sec  tR  =  0.55 sec 
 tP  =  ∞  sec  tP  =  0.16 sec  tP  =  1.15 sec 
 PO =  NaN   PO =  10.7%  PO =  4.9% 
 tS  =  ∞  sec  tS  =  1.03 sec  tS  =  1.59 sec 
 eSS  =  ∞    eSS  =  0%   eSS  =  0% 
 
 

The pre-filtered closed-loop unit step response is theoretically identical to that of the Lead and 
PID Controller Design Example 1 cases. 
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6.10  Whole T(s) Matching Controller Design: the J-Method 
 
Standard negative feedback closed-loop block diagram: 

 
 
Summary of controller design via parameter matching: 

• Step 1.  Analyze the as-given open-loop system behavior. 
• Step 2.   Specify and evaluate the desired behavior for the closed-loop system.  This step 

yields a numerical desired characteristic polynomial for the T(s) denominator, called ∆DES(s). 
• Step 3.  Specify the form for the controller transfer function.  Assume a standard form for 

your controller GC(s). 
• Step 4.  State the controller design problem to be solved. 
• Step 5.  Solve for the unknown gains to achieve the desired behavior for the closed-loop 

system.  Derive closed-loop transfer function as a function of controller gains and parameters: 
( ) ( )( )

1 ( ) ( ) ( )
C

C

G s G sT s
G s G s H s

=
+

 

• Match the symbolic parameters in the denominator of T(s) with your numerical desired 
characteristic polynomial – term-by-term according to s powers (make sure both 
polynomials have the same leading coefficient for the highest s power). 

• Solve for the controller unknowns, determine the correction factor (if necessary), 
determine the pre-filter transfer function GP(s) (if necessary), and simulate the resulting 
performance. 

• Step 6.  Evaluate the controller performance in simulation. 
• Step 7.  Include an output attenuation correction factor if necessary. 
• Step 8.  Include a pre-filter transfer function GP(s) if necessary. 
• Repeat Step 6. 
• Step 9.  Re-design and re-evaluate the controller if necessary, if the performance specs are 

not met. 
 
There are possible drawbacks with this method, the biggest being: the order of the closed-loop system 
must match the number of controller unknowns.  If the number of unknowns is less, there is no solution 
(overconstrained) and if the number of unknowns is greater, there are infinite solutions 
(underconstrained).  In either of the mismatch cases we can use trial-and-error controller design.  This 
can be frustrating and ineffective since there are n∞  solutions, where n is the number of controller 
unknowns. 
 Further drawbacks include the need for most standard controllers to add a correction factor for 
output attenuation and a pre-filter transfer function GP(s) to cancel the unwanted introduced zero(s). 
 There is a better method, here called the whole T(s) Matching Controller Design, or simply the J-
Method.  This is named after ME student Jason Denhart who, in Spring 2008, posed the question: Why 
can’t we just specify the entire numerical T(s) and solve for the exact GC(s) necessary to provide that 
T(s)? 

-
G(s)

H(s)

G  (s)
R(s) E(s) Y(s)U(s)

Y       (s)

C

SENS Y(s)
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The J-Method 
• Step 1.  Analyze the as-given open-loop system behavior. 
• Step 2.   Specify and evaluate the desired behavior for the closed-loop system.  This step 

yields a numerical desired characteristic polynomial for the T(s) denominator (see Note 1 below), 
plus the desired T(s) numerator. 

• Step 3.  State the controller design problem to be solved.  The former Step 3 is skipped, i.e. 
the J-Method determines the controller form in the solution procedure so there is no need to 
assume a standard controller form for GC(s). 

 
Given: The plant and sensor transfer functions G(s) and H(s) in the context of our 

standard closed-loop negative feedback diagram. 
 The desired closed-loop behavior, expressed by a whole numerical T(s) (as 

opposed to the desired closed-loop characteristic polynomial only as before). 
 Find:  The form and the unknowns (gains) of the controller transfer function GC(s). 
 

• Step 4.  Solve for the unknown controller form including the unknown gains.  Use the 
standard equation: 

( ) ( )( )
1 ( ) ( ) ( )

C

C

G s G sT s
G s G s H s

=
+

 

 
Substitute your whole numerical desired T(s), plus the known numerical plant and sensor transfer 
functions G(s) and H(s), and solve for the unknown controller transfer function GC(s), without 
the need to assume a certain controller form: 

( )( )
( )(1 ( ) ( ))C

T sG s
G s H s T s

=
−

 

 
• Step 5.  Simulate the resulting closed-loop system performance. 
• Step 6.  Re-design and re-evaluate if necessary, if the performance specs are not met. 

 
Notes: 
1.  The order of the denominator of your desired T(s) must be equal or greater than the order of the 
denominator of G(s).  If the G(s) denominator is of higher order than the T(s) denominator, your 
resulting GC(s) will have a higher order in the numerator than the denominator, which is impossible to 
implement in MATLAB or Simulink, unless it happens to boil down to a PID form. 
2.  You do not need a correction factor – this is already loaded into your desired T(s). 
3.  You do not need a pre-filter transfer function GP(s) since we are matching the entire desired T(s). 
4.  The resulting controller GC(s) will not necessarily be of any recognizable classical controller form. 
5.  MATLAB was used to help with the algebra (either symbolically or numerically).  This should work; 
however, problems were encountered with large integers and excessive controller numerator and 
denominator orders. 
6.  If you follow the requirement for T(s) denominator order and make no algebra mistakes, the 
performance you obtain will be theoretically identical to a good classical controller with appropriate pre-
filter and correction factor. 
7.  The major drawback of the J-Method – this method does not handle disturbances well, as most other 
controllers do (presented later). 
8.  Another major drawback of the J-Method is that it requires perfect knowledge of the open-loop plant, 
which is impossible.  Thus, it is less robust to modeling uncertainties than other controllers. 
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Controller Design Example 1:  The J-Method 
Step 1.  Analyze the as-given open-loop system behavior. 

This step is the same as in Controller Example 1, with 2

10( )
10

G s
s s

=
+ +

. 

 
Step 2.   Specify and evaluate the desired behavior for the closed-loop system, to achieve 5% 
overshoot and 1.5 sec settling time.  We have used these performance specifications before; the 
associated desired whole closed-loop transfer function is (assuming a final value of 1 is desired from a 
unit step input): 

2

14.93( )
5.33 14.93

T s
s s

=
+ +

 

 
Step 3.  State the controller design problem to be solved. 

 Given 2

10( )
10

G s
s s

=
+ +

, H(s) = 1, and 2

14.93( )
5.33 14.93

T s
s s

=
+ +

 

 Solve for GC(s) via whole T(s) matching. 
 
Step 4.  Solve for the unknown controller form including the unknown gains.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result is:  
21.493( 10)( )

( 5.33)C
s sG s

s s
+ +

=
+

 

What type of controller is this? 
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Step 5.  Simulate the resulting closed-loop system performance. 
Simulink Evaluation for the J-Method Controller Design Example 1 
 

 
 
Simulink simulation results: 

 
 

Open-Loop  Closed-Loop J-Method 
 

There is no need for a correction factor or pre-filter. 
  

Step1

Step

Scope

10
s  +s+102

Plant2

10
s  +s+102

Plant1

s  +5.33s2
1.493*[1 1 10]

Gc
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Examples 
 To rigorously test the J-Method, the following three open-loop transfer functions G(s) and the 
following three desired whole closed-loop transfer functions T(s) were chosen, to be mixed-and-matched 
for a total of 9 examples: 

G(s) T(s) 

1.  
1

1s +
 a.  

2
2s +

 

2.  2

10
10s s+ +

 b.  2

15
6 15s s+ +

 

3.  2

10
( 1)( 10)s s s+ + +

 c.  3 2

450
36 195 450s s s+ + +

 

 
• The whole desired T(s) in a. is based on a time constant of τ = 0.5 sec. 
• The whole desired T(s) in b. started from our familiar specification of 5% overshoot and 1.5 sec 

settling time (leading to a dominant second-order desired denominator of 2 5.33 14.93s s+ + ).  
But I wanted nice integers for the multiple example combinations, so this one corresponds to 
2.13% overshoot and 1.38 sec settling time (ξ = 0.78, ωn = 3.87 rad/s, and  1,2 3 2.45s i= − ± ). 

• The whole desired T(s) in c. started from b., augmenting the denominator with a third pole 
3 30s = − , so the same dominant second-order behavior will appear (2.13% overshoot and 1.38 

sec settling time). 
• All whole desired T(s) in a., b., and c. artificially obtain a steady state value of 1 give a unit step 

input function, with selection of the numerator constant to match the denominator ‘spring’. 
 
Let’s do a few of these examples now.  Assume unity negative feedback for all examples. 
 
Example 1a 

Given open-loop plant 
1( )

1
G s

s
=

+
, ideal sensor transfer function H(s) = 1, and desired whole 

2( )
2

T s
s

=
+

, determine GC(s) via whole T(s) matching: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Answer:  
2( 1)( )C

sG s
s
+

=   (what kind of controller is this?) 
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Simulink simulation results 
 

 
 
Open-Loop  Closed-Loop J-Method 

 
The open-loop time constant of τ = 1 sec is halved to the closed-loop time constant of τ = 0.5 sec, which 
doubles the speed of the closed-loop system to reach 95% of the final value of 1. 
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Example 1b 

Given open-loop plant 
1( )

1
G s

s
=

+
, ideal sensor transfer function H(s) = 1, and desired whole 

2

15( )
6 15

T s
s s

=
+ +

, determine GC(s) via whole T(s) matching: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Answer:  15( 1)( )
( 6)C

sG s
s s

+
=

+
  (what kind of controller is this?) 
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Simulink simulation results 
 

 
 
Open-Loop  Closed-Loop J-Method 

 
The open-loop time constant was τ = 1 sec and the desired closed-loop performance specs of 2.13% 
overshoot and 1.38 sec settling time are met in simulation. 
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Example 2a 

Given open-loop plant 2

10( )
10

G s
s s

=
+ +

, ideal sensor transfer function H(s) = 1, and desired whole 

2( )
2

T s
s

=
+

, determine GC(s) via whole T(s) matching: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Answer:  
2 10( )

5C
s sG s

s
+ +

=   (what kind of controller is this?) 

This is an exception to the rule that the T(s) denominator must of order equal or greater than the order of 
the G(s) denominator, since it is a PID controller. 
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Simulink simulation results 
 

 
 
Open-Loop  Closed-Loop J-Method 

 
The open-loop behavior is the familiar stable underdamped system and the closed-loop time constant is 
τ = 0.5 sec which allows closed-loop system to reach 95% of the final value of 1 in 1.5 sec, thus meeting 
the design goals in simulation. 
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Examples Summary Table 
 
 For the combinations of examples considered, the table below summarizes the numerator and 
denominator orders using the J-Method.  Also given is the resulting form of the controller transfer 
function GC(s) (n.r.f. stands for ‘no recognizable form’). 
 

  T(s) 
  a. 1st-order b. 2nd-order c. 3rd-order 
 
 
 
 
G(s) 

 
1st 

st

st

1
1

, PI 
st

nd

1
2

, Lead/I 
st

rd

1
3

, n.r.f. 

 
2nd 

nd

st

2
1

, PID 1 
nd

nd

2
2

, n.r.f. 
nd

rd

2
3

, n.r.f. 

 
3rd 

rd

st

3
1

, n.r.f. 2 
rd

nd

3
2

, n.r.f. 2 
rd

rd

3
3

, n.r.f. 

 
 
Examples GC(s) Summary 
 
 For the nine example combinations considered, the table below summarizes the resulting 
controller transfer functions GC(s)  using the J-Method. 
 

  T(s) 
  a. 1st-order b. 2nd-order c. 3rd-order 
 
 
 
 
 
 
G(s) 

 
 
1st 

 
2( 1)s

s
+

 

 
15( 1)

( 6)
s

s s
+

+
 

 

2

450( 1)
( 36 195)

s
s s s

+
+ +

 

 
 
2nd 

 
2 10

5
s s

s
+ +    1 

 
21.5( 10)
( 6)

s s
s s

+ +
+

 

 

 
2

2

45( 10)
( 36 195)

s s
s s s

+ +
+ +

 

 
 
3rd 

 
3 22 11 10

5
s s s

s
+ + +    2 

 
3 21.5( 2 11 10)

( 6)
s s s

s s
+ + +

+
   2 

 
3 2

2

45( 2 11 10)
( 36 195)
s s s

s s s
+ + +

+ +
 

 
 
1Exception to the rule that the order of the denominator of your desired T(s) must be equal or greater 
than the order of the denominator of G(s). 
 
2Impossible to implement. 
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In addition to this set of nine examples, the J-Method has been successfully tested with the following 
(where the a-c cases represent the same desired closed-loop transfer functions as above): 
 

• Integrating open-loop transfer function G(s) (an s can be factored out in the denominator, i.e. 
there is no ‘spring’): 

2

10 10( )
( 1)

G s
s s s s

= =
+ +

 

 

a. 
1( )

5C
sG s +

=  b. 1.5( 1)( )
( 6)C

sG s
s

+
=

+
  c. 2

45( 1)( )
36 195C

sG s
s s

+
=

+ +
 

PD    Lead    n.r.f. 
 
 

• Non-ideal sensor transfer function ( ) 1H s ≠ : 
1( )

4
H s

s
=

+
  for 

1( )
1

G s
s

=
+

 

 

a. 
2

2

2( 5 4)( )
6 6C

s sG s
s s

+ +
=

+ +
  b. 

2

3 2

15( 5 4)( )
10 39 45C

s sG s
s s s

+ +
=

+ + +
  c. 

2

4 3 2

450( 5 4)( )
40 339 1230 1350C

s sG s
s s s s

+ +
=

+ + + +
 

 
 

• Open-loop transfer function G(s) with a zero: 

2

10( 1)( )
10

sG s
s s

+
=

+ +
 

 

a. 
2 10( )
5 ( 1)C

s sG s
s s
+ +

=
+

  b. 
2

2

1.5( 10)( )
( 7 6)C

s sG s
s s s

+ +
=

+ +
  c. 

2

3 2

45( 10)( )
( 37 231 195)C

s sG s
s s s s

+ +
=

+ + +
 

 
 

• Unstable open-loop transfer function G(s), e.g. Controller Design Example 2: 

2

10( )
10

G s
s s

=
− +

 

 

a. 
2 10( )

5C
s sG s

s
− +

=   b. 
21.5( 10)( )
( 6)C

s sG s
s s

− +
=

+
  c. 

2

2

45( 10)( )
( 36 195)C

s sG s
s s s

− +
=

+ +
 

 
 
Try all of these in Simulink simulation to evaluate their performance. 
 

All examples work as desired – except for the unstable cases which all have numerical instability 
problems, with the negative KP gains – the unstable poles cannot be cancelled perfectly.  So we 
CANNOT use the J-Method for unstable open-loop systems. 
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6.11  Closed-Loop Controller Input Effort 
 
Closed-Loop Controller Input Effort Examples 
 
 We now return to the Controller Design Examples 1, with the Lead controller (without and with 
pre-filter), the PID controller (without and with pre-filter), and the J-Method controller. 
 

 
 

Simulink Model for open-loop, Lead, PID, and J-Method Input Effort Simulation 
 
 

4.51

corr

Step

398.2
31s  +147.2s+398.22

Pre-filter PID1

11.62*0.76
11.62*[1   0.76]

Pre-filter Lead1

10
s  +s+102

Plant5

10
s  +s+102

Plant4

10
s  +s+102

Plant3

10
s  +s+102

Plant2

10
s  +s+102

Plant1

10
s  +s+102

Plant

PID

PIDController

PID u Scope

PID Scope

PID

PID Controller

s+31
11.62*[1   0.76]

LeadController

Lead u Scope

Lead Scope

s+31
11.62*[1   0.76]

Lead Controller

s  +5.33s2
1.493*[1 1 10]

JController

J u Scope

J Scope

4.51

Corr
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Lead Controller 
 

 
 

Output Unit Step Responses 
 

Open-loop, non-pre-filtered Lead, pre-filtered Lead 
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Lead Controller Input Effort (entire scale) 
 

Open-loop (1), non-pre-filtered Lead (52.4), pre-filtered Lead (1.1) 
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Lead Controller Input Effort (zoomed in) 
 

Open-loop (1), non-pre-filtered Lead (52.4), pre-filtered Lead (1.1) 
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PID Controller 
 

 
 

Output Unit Step Responses 
 

Open-loop, non-pre-filtered PID, pre-filtered PID 
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PID Controller Input Effort (entire scale) 
 

Open-loop (1), non-pre-filtered PID (324.7), pre-filtered PID (1.2) 
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PID Controller Input Effort (zoomed in) 
 

Open-loop (1), non-pre-filtered PID (324.7), pre-filtered PID (1.2) 
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J Controller 
 

 
 

Output Unit Step Responses 
 

 Open-loop, J-Method Controller 
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J-Controller Input Effort 
 

Open-loop (1), J-Method Controller (1.5) 
 
 

Input effort discussion 
 
 All open-loop input efforts are simply unit step inputs, shown for comparison purposes.  Without 
pre-filtering, the input effort required for the Lead and PID controllers is huge (peaks of greater than 50 
and greater than 300, respectively), so large we cannot see the details for the other curves on those plots.  
The pre-filtered Lead and PID controllers require maximum input efforts of just over 1 and nearly 1.2, 
respectively, a dramatic difference!  The J-Method requires no pre-filter – its maximum input effort 
requirement is 1.5 actuator input units. 
 
 Similarly, the non-pre-filtered Lead and PID controllers require very fast changing of the input 
actuator values, which may exceed physical capabilities of the real-world actuator.  The pre-filtered 
Lead and PID, plus the J-Method controllers do not require these radical rates of change for the actuator 
input efforts. 
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6.12  Disturbance Evaluation after Controller Design 
 
General disturbance diagrams (open- and closed-loop): 

 
 

 
 
Disturbance diagram with zero reference input 
 This is called a regulator, where the desired output (reference input) is R(s) = 0. 

 
Change this into a diagram that looks more similar to the standard closed-loop feedback diagram: 

 
 

The closed loop transfer function between the disturbance input D(s) and Y(s) output is: 
( ) ( )( )
( ) 1 ( ) ( ) ( )D

C

Y s G sT s
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 This is for MATLAB implementation, to simulate the effects of the disturbance input separately.  
Then use linear superposition in MATLAB to find the total solution as the sum of the reference input 
response (with zero disturbance) plus the disturbance input (with zero reference input). 
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Controller Design with Disturbances (one possible strategy – for use in ME 401) 
 1.  Design the controller as before with no disturbances – then evaluate in simulation. 
 2.  For the same controller(s), now apply a disturbance and evaluate how well the controller 
rejects the disturbance vs. the open-loop system, both with zero reference input. 
 3.  Repeat 2, apply a disturbance and evaluate how well the controller rejects the disturbance vs. 
the open-loop system, now with non-zero reference input. 
 
 One can test open- vs. closed-loop disturbance rejection behavior with various disturbances of 
different functions (impulse, step, ramp, sine wave, random, etc.), magnitudes, and times of application.  
Choose whatever makes the best sense for your real-world application. 
 
 
Pre-filtered PID Controller Example 1 with Disturbances 
 For open- and closed-loop disturbance rejection evaluation we now use the model and PID 
controller design results for Controller Example 1, presented earlier.  The desired behavior was designed 
for 5% overshoot and 1.5 sec settling time, augmented for a third-order desired characteristic 
polynomial.  The PID controller was designed using denominator polynomial matching and a pre-filter 
was required but no correction factor, thanks to the I term. 
 

 
 

Simulink Model for open-loop, disturbed open-loop, 
pre-filtered PID, and disturbed pre-filtered PID 

 
 
 For this simulation we specify a unit step disturbance that adds to the actuator input, turned on at 
t = 1 sec, whereas the basic open- and closed-loop step input turned on a t = 0 sec. 
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Open-loop, disturbed open-loop, pre-filtered PID, disturbed pre-filtered PID 
 
 
 This Simulink simulation shows that the open-loop system cannot deal with the disturbance at t = 
1 sec  since the open-loop transient response phase shifts and the steady state error is 100%.  In contrast, 
the closed-loop PID controller is also disturbed at t = 1 sec, but the closed-loop output relatively quickly 
returns to the designed trajectory.  Thus, the PID controller disturbance rejection is much better than that 
of the open-loop system. 
 
 
Pre-filtered Lead, pre-filtered PID, and J-Method Controller Example 1 with Disturbances 
 To compare the closed-loop disturbance rejection of different controllers, we now use the same 
model and Lead, PID, and J-Method controller design results from Controller Example 1, all presented 
earlier. 
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Lead, disturbed Lead, PID, disturbed PID, J-Method, disturbed J-Method 
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 Here the output responses of the pre-filtered closed-loop Lead and PID controllers are identical.  
Since they are designed based on the augmented third-order system, there is a little error and the J-
method controller (blue, the green is covered for the first second) is more accurate for the desired 5% 
overshoot and 1.5 sec settling time. 
 After the unit step disturbance is turned on at t = 1 sec, we see that only the PID controller can 
handle it well.  The Lead controller (magenta) has good transient dynamics under the disturbance but 
nearly 80% steady-state error.  The disturbed J-Method controller (blue) overshoots even higher, with 
worse transient dynamics; it is heading towards zero steady-state error, however, given enough time. 

Thus, the PID controller disturbance rejection is much better than that of the Lead or J-Method 
controllers in this example.  The PID controller was not designed for disturbance rejection, it just 
handles the disturbances better. 

 

 
 

Simulink Model for pre-filtered Lead, pre-filtered PID, 
and non-pre-filtered J-Method Controllers, without and with Disturbances 
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6.13  Term Example Controller Design 
 
Open-loop system physical diagram 

 
 
 We will design a controller to control the load angular velocity ωL(t).  Assume a perfect 
tachometer sensor, H(s) = Kt = 1, so there is negative unity feedback.  Open- and closed-loop feedback 
control system diagrams: 
 

 
Term Example Open-Loop Diagram 

 

 
Term Example Closed-Loop Diagram 
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Step 1.  Analyze the as-given open-loop system behavior. 
 
 Earlier the open-loop transfer function was derived and the real-world parameters for the NASA 
ARMII robot shoulder joint were substituted: 

( )( ) 2

( ) 5( )
( ) 11 1010

T

L

A E E T B

K
s nG s

V s Ls R J s c K K s sω
Ω

= = ≅
+ + + + +

 

 
( ) 2 2 22 11 1010OL n ns s s s sξω ω∆ = + + = + +  

 

1010 31.8nω = =  rad/sec  11 11 0.173
2 2 1010n

ξ
ω

= = =   1,2 5.5 31.3s i= − ±  

 
tR = 0.04 sec  tP = 0.10 sec  PO = 57.6%  tS = 0.71 sec 

 
This open-loop system has a different time scale than Controller Design Example 1; its output 

ωL(t) rises much faster in response to a unit step input vA(t).  Also, the steady-state value is 5/1010, 
whereas it was 1.0 for Controller Design Example 1. 
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First, take a look at the root-locus plots and unit step responses, for the proportional controller GC(s) = 
K, first for angular velocity output: 

 
 

 
 
Term Example, ωL(t) control, unit step responses as K increases from 0.  K values legend: 

0 52 96 
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Here are the root-locus plot and unit step responses, for the proportional controller GC(s) = K, for angle: 

 
 

 
 
Term Example, θL(t) control, unit step responses as K increases from 0.  K values legend: 
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The closed-loop system becomes unstable for 2222K ≥ !  Clearly the simple proportional controller will 
not work, since the angular velocity root-locus plot shows that the closed-loop dimensionless damping 
ratio must decrease as K increases. 
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Step 2.  Specify and evaluate the desired behavior for the closed-loop system. 
 To determine the numerical desired characteristic polynomial, let’s try something different:  
ITAE third-order.  Arbitrarily let ωn = 5: 

3 2 2 3 3 2( ) 1.75 2.15 8.75 53.75 125DES n n ns s s s s s sω ω ω∆ = + + + = + + +  
 
The associated desired closed-loop poles from third-order ITAE are: 2.60 5.34 , 3.54i− ± − . 
 
Step 3.  Specify the form for the controller transfer function. 

PID Controller:  
2

( ) I D P I
C P D

K K s K s KG s K K s
s s

+ +
= + + =  

 
Step 4.  State the controller design problem to be solved. 

Given 2

5( )
11 1010

G s
s s

=
+ +

, H(s) = 1, 3 2( ) 8.75 53.75 125
DESCL s s s s∆ = + + + , and 

( ) I
C P D

KG s K K s
s

= + + , Solve for the PID controller gains KP, KI, and KD.  Then evaluate the PID 

controller performance. 
 
Step 5.  Solve for the unknown gains to achieve the desired behavior for the closed-loop system. 

Derive the closed-loop transfer function as a function of the PID controller gains: 
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Match the symbolic form (function of KP, KI, KD) with the numerical ITAE desired characteristic 
polynomial. 
  
Denominator parameter matching (fully-decoupled solution): 
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KP and KD are negative! 
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Step 6.  Evaluate the PID controller performance in simulation. 
Open- vs. Closed-Loop unit step responses: 

  
Open-Loop  Closed-Loop PID 

 
Step 7.  Include an output attenuation correction factor if necessary. 
 Here the KI term forces the steady-state output to 1.0 (zero steady-state error for unit step input); 
however, the original system output was not 1.0 (it was 5/1010, we can’t even see it on the graph), so we 
need a correction factor to drive the closed-loop system to the same steady-state value (right plot): 
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Corrected closed-loop PID transfer function:  
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3 2
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1010 8.75 53.75 125

s sT s
s s s

 − + − +
=  + + + 

 

 
Again:  Controller design can easily make matters worse, if not done properly!  With negative KP, 
the closed-loop step response initially goes down while open-loop goes up.  The is a huge (negative) 
overshoot, and the transient response is slower than the open-loop case. 
 
Step 9.  Re-design and re-evaluate the controller. 

Perform design iteration until the closed-loop performance specifications are met in simulation.  
We have no pre-filter yet (Step 8), but we have a bigger problem in the negative KP and KD.   
 
Step 2.  Specify and evaluate the desired behavior for the closed-loop system. 
 So let’s choose a higher ωn in the third-order ITAE desired closed-loop numerical characteristic 
polynomial for faster response and positive KP, KD.  KP  is the limiting case, i.e. if we force it to be 
positive, KD will be positive also: 

11 5 1.75D nK ω+ =  
 

@ KD = 0, ωn = 6.29, but then KP will still be negative (KP  = –185); therefore let us instead set ωn so 
that KP  will be positive: 

21010 5 2.15P nK ω+ =    @ KP = 0, ωn = 21.7 
So try ωn = 30:  3 2( ) 52.5 1935 27000DES s s s s∆ = + + +  
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The new associated desired closed-loop poles from third-order ITAE are: 15.63 32.04 , 21.24i− ± −  
 

Step 5.  Solve for the unknown gains to achieve the desired behavior for the closed-loop system. 
Denominator parameter matching (fully-decoupled): 
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KP and KD are both positive as planned! 

 
Step 6.  Evaluate the PID controller performance in simulation. 
 
Open- vs. Closed-Loop unit step responses: 

 

 
Open-Loop  Closed-Loop PID 

 
 
Closed-loop transfer function: 
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Step 7.  Include an output attenuation correction factor if necessary. 

We include the same correction factor as above. 
 
 The controller response is much better with the positive KP and KD, but the third-order bend in 
the closed-loop response is not as desired.  The desired ITAE response is different, i.e. it doesn’t look 
like this closed-loop response.  Therefore, we need a pre-filter. 
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Step 8.  Include a pre-filter transfer function if necessary. 
 

Two unwanted zeros were introduced by the PID controller; these can be cancelled by a pre-
filter. 
 

Pre-filter transfer function:  
2

27000( )
42 925 27000PG s

s s
=

+ +
 

 
Note we specify the 27000 pre-filter transfer function numerator since the pre-filter shouldn’t attenuate 
the output.  When we plot the resulting unit step responses we see in the left plot below that the 
controller design is now successful: 
 

  
Open-Loop  Closed-Loop PID  Closed-Loop PID with Pre-Filter 

 
The pre-filtered closed-loop transfer function is: 
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The final closed-loop unit step response is now theoretically identical to the specified third-order 

ITAE behavior.  Note with the ITAE specification we didn’t need to specify percent overshoot, settling 
time, or peak time. 
 

For this controller, the angle θL(t) unit step response in time is given in the right plot above (note 
the steady-state error since the closed-loop PID lags the open-loop and the closed-loop PID with pre-
filter lags even further).  We just integrated the ωL(t) response to get these results, i.e. we included 
another s factor in the closed-loop system denominator. 

 
This Term Example controller design section is continued in the on-line 401 NotesBook 

Supplement, including Simulink model, and J-Method controller design and evaluation. 
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Step 6.  Evaluate the PID controller performance in simulation. 
 
Simulink Diagrams 

 
 
 
The Electromechanical System blocks above are Simulink masks for the open-loop plant: 
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J-Method Controller 
 Alternate design method for Term Example ωL(t) controller design. 
 
Step 2.  Specify the desired behavior for the closed-loop system We specify the entire desired closed-
loop T(s), not just the denominator.  To determine the numerical desired entire closed-loop T(s) transfer 
function, let’s try something different:  ITAE second-order. 
 

2 2

2
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DES n n

DES

s s s
s s s

ω ω∆ = + +

∆ = + +
  ωn = 30 (from successful PID controller design) 

The associated desired closed-loop poles from third-order ITAE are: 21 21.4i− ± . 
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Step 4.  Solve for the unknown controller form including the unknown gains.     J-Method: 
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Step 5.  Simulate the resulting closed-loop system performance. 
 
Simulink Evaluation for the J-Method Term Example Controller Design, Angular Velocity 
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Open-Loop  Closed-Loop J-Method Disturbed Closed-Loop J-Method 
 
 
No need for a correction factor or pre-filter. 
 
 
 This J-Method controller for the Term Example load shaft angular velocity ωL(t) control was 
successful as shown in the left plot above.  But how does this controller handle disturbances? 
 

As we have seen before, the J-Method controller is very poor at handling disturbances, in this 
case a unit step disturbance in voltage, subtracted at t = 1 sec.  The disturbed J-Method controller output 
response, shown in the right figure above, has unacceptable transient response and unacceptable steady-
state error. 
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6.14  Term Example Disturbances and Steady-State Error 
 

 
 
 Though we have not presented it, it is possible to design controllers specifically to reject 
disturbances.  This last example, the conclusion of the Term Example, discusses controller design to 
reject disturbances, specifically for achieving lower steady-state error. 
 
Term Example open-loop diagram with disturbance  

 
where VA(s) is the armature voltage input,  ΩL(s) is the load shaft angular velocity output, and D(s) is the 
disturbance modeled at the actuator input level (disturbance in torque, Nm). 
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Since V(s) = 0,   ( )
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s

=  

 
( )

( )( )
( ) ( ) ( ) ( ) ( )OL LDES L L

E E T B

Ls R
E s s s s D s

n J s c Ls R K K
+

= Ω − Ω = −Ω =
+ + +  

 

 
( )

( )( )

[ ]

lim ( ) lim ( ) lim
0 0ssOL OL OL

E E T B

ssOL
E T B

Ls R De e t sE s st s s sn J s c Ls R K K

RDe
n RC K K

+
= = =

→∞ → → + + +  

=
+

 

 
 
Closed-loop diagram with disturbance, tachometer, and P controller 
 

 
 
where ΩLDES(s) is the desired load shaft angular velocity output, and the other terms have been 
previously defined. 
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 Let ΩLDES(s) = 0 and check changes in ΩL(s) given a disturbance input.  Since ΩLDES(s) = 0, any 
ΩL(s) is the steady-state error, that is, we wish as low an output as possible for the closed-loop system. 
 

Derive the closed-loop disturbance transfer function  ( )( )
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Closed-loop steady-state error for a step disturbance of magnitude D: ( ) DD s
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For disturbance-rejecting controller design, ensure the closed-loop steady-state error is less than the 
open-loop steady-state error. 
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Numerical example from Term Example 
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  Kt tachometer selection 
  K proportional controller gain 
 
 
 Assume the tachometer gain is fixed.  Then the only way to reduce the closed-loop steady-state 
error is to increase proportional controller gain K as much as possible. 
 
 Now, this proportional controller for disturbance rejection is not very satisfying – we already 
know from the root-locus plot that the higher we make K, the worse the transient response will be (stable 
but more highly underdamped as K increases).  So this demonstrates another tradeoff in controller 
design – to ensure lower steady-state errors due to unknown, unwanted disturbances, we must accept 
worse transient response performance. 
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7.  Hardware Control in the Ohio University Robotics Lab 
 

7.1  Quanser/Simulink Controller Architecture 
 
Quanser/Simulink Controller Diagram 
 

 
 
 
Quanser/Simulink Controller Hardware 
 

  
 

 External I/O Board      Power Supply 
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Controlled via Quanser/Simulink 
 

 
 

Inverted Pendulum 
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Controlled via Quanser/Simulink (continued) 
 

 
 

8-axis NASA ARMII (Advanced Research Manipulator II) 
 
 

 
 

SPAM (SPherically-Actuated platform Manipulator) 
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Controlled via Quanser/Simulink (continued) 
 

 
 

4-dof GPS/IMU Calibration Platform 
 
 

 
 

3-dof Planar 3-RPR Parallel Robot 



 86 

Controlled via Quanser/Simulink (continued) 
 

 
 

6-dof Spatial 6-PSU Platform 
 

 

       
 

 RoboCup Player    Cable-Suspended Haptic Interface 
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Controlled via Quanser/Simulink (concluded) 
 

 
 

7-Cable Robot with Amplifiers 
 

 
Quanser/Simulink Split Diagram 

 
 
 Here the Simulink closed-loop feedback diagram for the 7-cable robot appears to be open (split) 
and incomplete; the plant is missing.  However, the real-world machine under control serves as the plant 
and no model of this plant is required since the real-world behaves as it will, much better than any model 
we can construct.  So the gap (split) in this diagram is where the real-world plant is (motors outputs to 
and sensors readings (stringpots in this example) from the real-world). 
 
 The seventh motor is controlled in a different way for tensioning the cables and entire end-
effector. 
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7.2  Programmable Logic Controller (PLC) Architecture 
 
PLC Controller Diagrams 
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Schematic of Controller Layout and Power Distribution 
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PLC Control System Hardware: Ladder Logic 
 



 90 

Controlled via PLC 
 

 
 

Stewart-Glapat Pallet Handling Device (PHD) 
 
 

  
 

       PLC Cabinet      PLC Interface 
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