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1.  Introduction 
 Universal Robots was founded in 2005 in Denmark, with 2 goals: provide robotic automation to 
small and medium companies, and produce Cobots (Collaborative Robots)  that are safe to operate in the 
same workspace as human workers.  To date, 46,000 Universal robots have been sold.  Their basic serial 
robot arm product is the URe-Series (Universal Robot) as shown in Figure 1.  The URe-Series of serial 
robot arms is also available (empowering, ease of use, everyone and evolution).  Improvements of the 
URe-Series include better positioning repeatability, built-in force/torque sensor, and more safety features.  
This document presents kinematics and dynamics equations for control of the URe-Series cobot.  The 
series of 4 Universal cobots all share the same kinematics and joint design (the differences are in size and 
strength). 
 

 
Figure 1.  Universal Robot UR3 Cobot 

www.universal-robots.com 
 
 The Universal Robots website lists the following industrial/automation/manufacturing 
applications for Cobots: assembly, dispensing, finishing, gluing, injection molding, lab analysis, machine 
tending, material handling, material removal, packaging, palletizing, pick-and-place, quality inspection, 
screw-driving, and welding.  Cobots are a relatively new paradigm in industrial and service robots where 
the robot is designed and programmed to safely interact with humans directly in their workspace.  
Traditional autonomous robots usually work alone, behind safety fencing and interlocks, without human 
supervision.  Cobots are intended to assist and guide humans in manufacturing tasks, responding directly 
to and moving with human actions, pictured in Figure 2. 
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Figure 2.  Cobot Intended to Work with Humans 
 

www.universal-robots.com 
 

Presented is a description of the Universal Robot URe-Series of Cobots, followed by kinematics 
analysis and equations including Forward Pose Kinematics (FPK) and Inverse Pose Kinematics (IPK) 
expressions and solutions.  Numerical examples are given for both FPK and IPK with both snapshots and 
trajectories.  The workspace of this serial robot arm is presented.  The velocity equations and Jacobian 
matrix are also derived and used in a resolved-rate control scheme which has many advantages over IPK-
based control.  Singularity analysis is also presented.  Then Newton-Euler numerical recursion is presented 
to solve the inverse dynamics problem. 
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2. URe-Series Cobot Description 
 

As seen in Figure 3, the kinematic structure of all 4 members of the Universal Robot URe-Series 
(also the original URe-Series) is identical, composed of six R-joints in series.  At first glance the URe-
Series of cobots appear rather traditional in design, similar to many previous 6-dof serial robot arms: it 
consists of a waist-shoulder-elbow arm followed by an offset pitch-yaw-roll wrist. 

 
Here are some unique aspects of the URe-Series designs.  The workspace is large, even for a serial 

robot, relative to its size, due to significant 360   motion range on all six joints (plus unlimited 
bidirectional rotation for the sixth joint of the UR3e).  The joints are offset in order to allow as much of 
the generous joint limits motion as possible.  Also, the joints are modular (more on this later).  There is an 
unfortunate offset in the 3-dof wrist, so that all three wrist joints do not share a common origin.  However, 
an advantage in the design involves the 3 parallel Z axes in the consecutive 2nd, 3rd, and 4th revolute joints 
(this advantage is not unique to URe-Series robots). 

 
Table 1 presents the reach, payload, footprint, mass, and payload-to-mass ratio for each member 

of the UR3-series of cobots (UR3e, UR5e, UR10e, and UR16e).  We see that the size, reach, maximum 
payload capacity, and robot mass increase for the UR3e, UR5e, and UR10e robots.  However, the 
UR16e robot can handle a significantly higher payload, though it is smaller than the UR10e robot, using 
the identical motors to the UR10e robot.  Evidently the number in the series name is the maximum 
payload mass in kg. 
 

 
 

Figure 3.  Universal Robot URe-Series of Cobots 
 

www.universal-robots.com 
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Table 1:  Universal Robot Ure-series Data 
 

 

model 

 

UR3e UR5e UR10e UR16e 

reach 
(mm) 

500 850 1300 900 

payload 
(kg) 

3 5 10 16 

fooprint 
(mm - dia) 

128 149 190 190 

mass 
(kg) 

11.2 20.6 33.5 33.1 

payload-to-mass 

ratio 
0.27 0.24 0.30 0.48 

power 
consumption 

(Watts) 

100 200 350 350 

 
 
 We see the payload-to-mass ratio in the URe-Series is like average serial robot arms, i.e. poor.  But 
the UR16e model is respectable at 0.48. 
 
 The required power supply is 100 – 240 VAC at 50 – 60 Hz.  The I/O power supply is 24 V and 2 
A in the control box, and 12/24 V and 600 mA in the tool.  Universal Robot URe-Series cobots are built 
to handle a temperature range of 0 – 50 C  and a non-condensing relative humidity of 90%.  The robots 
may be mounted in any orientation and meet ISO clear room categories of 5.  The noise is stated to be less 
than 65 dB.  The materials used in these cobots are Aluminum, plastics, and steel.  The typical endpoint 
speed is 1 m/sec.  On-line programming is accomplished through a teach pendant / GUI with a 12” touch 
screen. 
 

The Universal Robots naming convention for the six revolute (R) joints, base-to-tool-plate, is: 
Base, Shoulder, Elbow, Wrist 1, Wrist 2, Wrist 3 (see Figure 4).  Table 2 presents the joint numbers, name, 
motion type, angle, and joint limits. 
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Figure 4.  URe-Series Joint-Naming Convention 
 
 

Table 2. Six-dof URe-Series Arm R Joints Naming Convention 
 

Joint 
Number 

Joint 
Name 

Joint 
Motion 

Joint 
Angle 

Joint 
Limits 

1 Base waist yaw 1  360   

2 Shoulder shoulder pitch 2  360   

3 Elbow elbow pitch 3  360   

4 Wrist 1 wrist pitch 4  360   

5 Wrist 2 wrist yaw 5  360   

6 Wrist 3 wrist roll 6  360  * 

 
*unlimited and bidirectional for the UR3e 
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Table 3 shows the maximum joint speeds for the URe-Series cobots, in units of rad/sec. 
 

Table 3. Six-dof URe-Series Joints Maximum Speed (rad/sec) 
 

Joint 
Number 

UR3e UR5e UR10e 

1     2 3  

2     2 3  

3       

4 2      

5 2      

6 2      

 
 
 As mentioned previously, the joints used throughout the URe-Series of serial cobots are modular 
(and thus replaceable), consisting of five different sizes as shown in Table 4.  Table 5 then shows the types 
of these five joints used in the various sizes of URe arms. 
 

Table 4. Five Sizes of URe-Series Modular Joints 
 

Joint Size 
 

Joint Torque 
(Nm) 

Torque Constant 
(Nm/Amp) 

Size 0 12   

Size 1 28  0.092 

Size 2 56   

Size 3 150  0.125 

Size 4 330   

 
Note: the joint torque values shown in Table 4 are the maximum possible torque; due to cobot 

safety, not all of this torque is available in practice.  Further, for gravity-mounted robots (in the vertical 
plane), the torque is effectively reduced more as the robot must lift its own weight against gravity. 

 
Each joint in the URe-Series has a harmonic gear with ratio n = 101. 
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Table 5. Modular Joints used in the Six-dof URe-Series 
 

Joint 
Number 

Joint 
Name 

UR3e UR5e UR10e UR16e 

1 Base Size 2 Size 3 Size 4 Size 4 

2 Shoulder Size 2 Size 3 Size 4 Size 4 

3 Elbow Size 1 Size 3 Size 3 Size 3 

4 Wrist 1 Size 0 Size 1 Size 2 Size 2 

5 Wrist 2 Size 0 Size 1 Size 2 Size 2 

6 Wrist 3 Size 0 Size 1 Size 2 Size 2 

 
 
 Clearly we see that, for a serial robot arm, the stronger motors must be towards the base, while 
towards the tool-plate, the motor may have less torque capacity.  Table 6 presents the positioning 
repeatability as reported by Universal Robots.  The Ure-series made a significant improvement in 
positioning repeatability. 
 
 

Table 6. URe-Series Universal-Robot-Reported Positioning Repeatability 
 

cobot UR3 UR5 UR10 

position repeatability (mm) 0.1  0.1  0.1  

cobot UR3e UR5e UR10e 

position repeatability (mm) 0.03  0.03  0.05  
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Collaboration     Safety 
 

Figure 5.  Additional Human / Cobot Photographs 
 

www.universal-robots.com 
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3. URe-Series Cobot Denavit-Hartenberg (DH) Parameters 
 
The modified Denavit-Hartenberg (DH, Denavit and Hartenberg, 1955) parameters are presented 

in this section for the serial chain of the Universal Robots 6-dof URe-Series cobots.  The Denavit-
Hartenberg (DH) Parameters (1955) are used to describe the links/joints geometry of a serial-chain robot.  
DH parameters have been adopted for standard kinematics analysis in serial-chain robots (Craig, 2005).  
The community has come to call Craig-style DH Parameters as ‘modified’, with the original DH 
Parameters interpretation by Paul as ‘standard’.  The modified DH parameters have certain advantages 
over the standard (the main one being that a Craig coordinate frame rotates right at it joint, rather than 
distal from the joint as in Paul). 
 

The Cartesian reference frame definitions for the URe-Series 6-dof serial arm are shown in Figure 
6. Table 7 gives the associated DH parameters (Craig convention, known as ‘modified DH parameters’). 
 

   
Figure 6. Six-dof Universal URe-Series Kinematic Diagram with Coordinate Frames 
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Table 7. Six-dof Universal Robot URe-Series DH Parameters 
 

i 1i   1ia   id  i  
1 0 0 0 1  
2 90  0 0 2 90  

 
3 0 2a  0 3  
4 0 3a  4d  4 90    

5 90 
 0 5d  5  

6 90  0 0 6  
 
 
Kinematic Notation 
 

See the right diagram in Figure 5 above; relative to Universal Robot’s notation, this document 
prefers to refer to joint 1 as the Waist (instead of Base), since the Base commonly refers to a fixed Cartesian 
coordinate frame {B} rather than a joint.  The Shoulder joint notation (S), and the Elbow joint notation 
(E) is straight-forward.  Point W1 above is the origin for the Wrist 1 Cartesian coordinate frame {4}, and 
point W2 above is the origin shared by the Cartesian coordinate frames {5} and {6} for the Wrist 2 and 
Wrist 3 joints. 
 

Table 8. Specific DH Lengths in the Six-dof URe-Series (mm) 
 

Parameter UR3e UR5e UR10e UR16e 

LB 152 163 181 170 

a2 244 425 613 476 

a3 213 392 572 361 

d4 131 133 174 194 

d5 85 100 120 120 

LTP 92 100 117 112 
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4. URe-Series Cobot Forward Pose Kinematics 
 

In general, the Forward Pose Kinematics (FPK) problem for a serial-chain robot is stated: Given 
the joint values, calculate the pose (position and orientation) of the end-effector frame of interest.  For 
serial-chain robots, the FPK problem set up and solution is straight-forward.  It is based on substituting 
each line of the Denavit-Hartenberg Parameters Table (Table 7) into the equation below (Craig, 2005), 
giving the pose of frame {i} with respect to its nearest neighbor frame {i–1} back along the serial chain: 
 

 
1

1 1
1 1 1 11

1 1 1 1

0

0 0 0 1 0 0 0 1

i i i
i i

i ii i i i i i ii
i

i i i i i i i

c s a

R Ps c c c s d s
T

s s c s c d c

 
     
     


 

   

   

  
                
  
      

 
Where the following abbreviations were used: cosi ic  , sini is  , cosi ic  , and sini is  . 

 
The equation above represents pose (position and orientation) of frame {i} with respect to frame 

{i–1} by using a 4x4 homogeneous transformation matrix.  The upper left 3x3 matrix is the rotation matrix 
1i
i R
    giving the orientation of frame {i} with respect to frame {i–1}, expressed in { i–1} coordinates.  

The upper right 3x1 vector  1i
iP  is the position vector from the origin of {i–1} to the origin of {i}, 

expressed in { i–1} coordinates. 
 

Then homogeneous transformation equations are used to find the pose of the overall end-effector 
frame of interest with respect to the base reference frame, to complete the FPK solution for each serial 
chain. 
 
4.1 Ure-series Analytical Six-dof FPK Expressions 
 

The statement of the FPK problem for the 6-dof serial chain of the Universal Cobot URe-Series 
is: 
 

Given 1 2 3 4 5 6( , , , , , )      , calculate 0
6T    and B

TPT   . 

 
where 1 2 3 4 5 6( , , , , , )       are the six joint angles,{TP} is the tool-plate frame and {B} is the fixed robot 

base reference frame (see Figure 6).  Dextral Cartesian coordinate frames are indicated by the curly 
brackets { }.  There are also seven numbered Cartesian coordinate frames {0}, {1}, … {6}. {0} is a fixed 
frame, while {1} through {6} are the active moving joint frames. 
 

Substitute each row of the DH parameters from Table 7 into the equation for 1i
iT

    to obtain the 

six neighboring homogeneous transformation matrices as a function of the joint angles for the six-dof arm. 
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1 1

1 10
1

0 0

0 0

0 0 1 0

0 0 0 1

c s

s c
T

 
 
      
 
 

  

2 2

1
2

2 2

0 0

0 0 1 0

0 0

0 0 0 1

s c

T
c s

  
       
 
 

  

3 3 2

3 32
3

0

0 0

0 0 1 0

0 0 0 1

c s a

s c
T

 
 
      
 
 

 

 

4 4 3

4 43
4

4

0

0 0

0 0 1

0 0 0 1

s c a

c s
T

d

 
       
 
 

  

5 5

54
5

5 5

0 0

0 0 1

0 0

0 0 0 1

c s

d
T

s c

 
 
       
 
 

  

6 6

5
6

6 6

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 
       
 
 

 

 
Where the following abbreviations were used: cosi ic  , sini is  , for 1,2, ,6i  . 

 
The basic Universal Cobot FPK solution is found from the following homogeneous transform 

equation to derive the active-joints FPK result. 
 

0 0 1 2 3 4 5
6 1 2 3 4 5 6 1 1 2 2 3 3 4 4 5 5 6 6( , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T T                                       

 
 Since Cartesian coordinate frames {2}, {3}, and {4} have parallel Z axes, the basic Universal 
Cobot FPK solution should be grouped as follows. 
 

0 0 1 4
6 1 2 3 4 5 6 1 1 4 2 3 4 6 5 6( , , , , , ) ( ) ( , , ) ( , )T T T T                           

 
where 0

1 1( )T     was given above, and the other two matrices are found by matrix multiplication and 

simplification: 
 

234 234 2 2 3 23

41
4 2 3 4

234 234 2 2 3 23

0

0 0 1
( , , )

0

0 0 0 1

c s a s a s

d
T

s c a c a c
  

   
        
 
 

 

 

5 6 5 6 5

6 6 54
6 5 6

5 6 5 6 5

0

0
( , )

0

0 0 0 1

c c c s s

s c d
T

s c s s c
 

 
 
      
 
 

 

 

Where the following abbreviations were used: 

23 2 3

23 2 3

cos( )

sin( )

c

s

 
 

 
 

  
234 2 3 4

234 2 3 4

cos( )

sin( )

c

s

  
  

  
  
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This particular grouping in matrix multiplication was used to significantly simplify the matrix 
1
4 2 3 4( , , )T       using the standard sum of angles formulae (in two levels of simplification): 

 
cos( )

sin( )

a b cacb sasb

a b sacb casb

 
  


 

 
Any time consecutive Z axes are parallel in a serial robot we can expect such sum-of-angles 
simplifications.  Now we can find the basic active-joints FPK solution 0

6T    by more matrix 

multiplications (but no more trigonometric simplifications): 
 

0
11 12 13 6

0
0 21 22 23 6
6 1 2 3 4 5 6 0

31 32 33 6

( , , , , , )

0 0 0 1

r r r x

r r r y
T

r r r z
     

 
 
      
 
 

 

 
 
The orthonormal rotation matrix elements for this FPK result are: 
 

11 1 5 6 1 234 6 234 5 6

21 1 5 6 1 234 6 234 5 6

31 234 6 234 5 6

( )

( )

r s s c c s s c c c

r c s c s s s c c c

r c s s c c

    

   

 

 

 

12 1 5 6 1 234 6 234 5 6

22 1 5 6 1 234 6 234 5 6

32 234 6 234 5 6

( )

( )

r s s s c s c c c s

r c s s s s c c c s

r c c s c s

  

   

 

 

 

13 1 5 1 234 5

23 1 5 1 234 5

33 234 5

r s c c c s

r c c s c s

r s s

 

  



 

 
And the FPK translational vector components giving the position of the origin of {6} with respect to the 
origin of {0}, expressed in the basis of {0} are: 
 

0
6 4 1 1 2 2 3 23 5 234

0
6 4 1 1 2 2 3 23 5 234

0
6 2 2 3 23 5 234

( )

( )

x d s c a s a s d s

y d c s a s a s d s

z a c a c d c

   

    

  

 

 
Note that, since the origins of Cartesian coordinate frames {5} and {6} are coincident at the wrist point, 
the translational terms above are only functions of the first four joint angles 1 2 3 4( , , , )    ; this will 

become an issue when we consider Inverse Pose Kinematics (IPK): 
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   
0

6
0 0 0

6 6 1 2 3 4 6
0

6

( , , , )

x

P P y

z

   
 
    
 
 

 

 
Additional, Fixed Transforms – Tool-Plate and Base Coordinate Frames 
 

To complete the FPK solution we need to include the Cartesian coordinate frames {TP} and {B} 
to find B

TPT   : 

 
0 6

0 6 1 2 3 4 5 6( ) ( , , , , , ) ( )B B
TP B TP TPT T L T T L                     

 
Where LB and LTP are known constants.  Note that these two additional matrices are not evaluated 

by any row in the DH parameter table (those were all used above), since there is no variable associated 
with these fixed homogeneous transformation matrices based on constant lengths.  Instead, they are 
determined by inspection, using the rotation matrix and position vector components of the homogeneous 
transformation matrix definition. 
 

0

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

B

B

T
L

 
 
      
 
 

  6

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

TP
TP

T
L

 
 
      
 
 

 

 

Note the origin of {TP} is now a function of 1 2 3 4 5( , , , , )      but it is still not a function of 6   since the 

last Z6 R-joint axis passes through the origin of {6}.  Of course, the position of a general tool held in a 
gripper attached to the tool-plate would be a function of all six joint angles 1 2 3 4 5 6( , , , , , )      . 

The FPK solutions can be evaluated numerically or symbolically, or using a combination of these 
two methods. 

 

4.2 Ure-series FPK Examples 
 
 Now we present three snapshot FPK examples for the Universal Robot UR3e, for all zero joint 
angles, a general case, and for the initial angles case.  Each shows four MATLAB views of the Cobot pose.  
Then a FPK trajectory example is given.  Translational units are m in all examples. 
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FPK Example 1: Zero Joint Angles 
 
Given Zero Joint Angles:    1 2 3 4 5 6 0 0 0 0 0 0        

 
The FPK results are: 
 

0
6

1 0 0 0

0 0 1 0.131

0 1 0 0.542

0 0 0 1

T

 
        
 
 

   

1 0 0 0

0 0 1 0.223

0 1 0 0.694

0 0 0 1

B
TPT

 
        
 
 

 

 

 
 

Figure 7. FPK Example 1, Zero Joint Angles 
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FPK Example 2: General Joint Angles 
 
Given General Joint Angles:    1 2 3 4 5 6 20 40 60 50 70 10              

 
The FPK results are: 
 

0
6

0.6722 0.3586 0.6477 0.3396

0.7401 0.3042 0.5997 0.2630

0.0180 0.8826 0.4698 0.076

0 0

3

0 1

T

 
 
      


   
  

 




 

0.6722 0.3586 0.6477 0.3992

0.7401 0.3042 0.5997 0.3182

0.0180 0.8826 0.4698 0.2715

0 0 0 1

B
TPT

    
 
      
 
 

  


 

 

 
 

Figure 8. FPK Example 2, General Joint Angles 
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The cobot arm pose shown in Figures 6 and 7 are for all zero joint angles.  The six joint angles for 
a suggested initial pose are given in Table 9.  A third snapshot FPK solution and MATLAB graphic for 
this initial pose is then presented. 
 

Table 9. Universal URe Initial Joint Angles 
 

Joint Number 
Joint 
Name 

Joint Variable 
Initial 

Angle (deg) 

1 Base 1  0 

2 Shoulder 2  45 

3 Elbow 3  90 

4 Wrist 1 4  45 

5 Wrist 2 5  90 

6 Wrist 3 6  0 
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FPK Example 3: Initial Joint Angles 
 
Given Initial Joint Angles:    1 2 3 4 5 6 0 45 90 45 90 0            

 
The FPK results are: 
 

0
6

0 0 1 0.3231

1 0 0 0.1310

0 1 0 0.0631

0 0 0 1

T

  
        
 
 

   

0 0 1 0.4151

1 0 0 0.1310

0 1 0 0.0889

0 0 0 1

B
TPT

  
       
 
 

 

 

 
 

Figure 9. FPK Example 3, initial joint angles 
 
The following FPK solution validations were performed successfully in all 3 snapshot examples: 
 

 The numerical and symbolic solutions for 0
6T    and B

TPT    agree. 

 
 The FPK solutions were performed by inspection (verifying the {TP} Cartesian position and the 

XYZTP pointing directions with respect to {B}) for Examples 1 and 3, which agreed with the above 
solutions. 
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All-Joints FPK Motion Simulation 
 
 In this MATLAB simulation we changed all six joints simultaneously and linearly, over their entire 

360   joint limits, in 100 steps.  The FPK results plots repeat over half the joint limit range, so this 
simulation is for joint limit ranges (0, 360 )   on all six joints.  Figure 10 shows the six joint angle inputs 
(all are identical). 
 

 
Figure 10.  All-Joints FPK Inputs, both UR3e and UR10e 

 
The plots of Figures 11 below show the resulting Cartesian translational portion of the FPK results, 

for the UR3e and UR10e Cobots.  The UR10e is significantly larger than the UR3e, which these results 
verify.  The published reaches are 500 vs. 1300 mm for the UR3e vs. UR10e cobots. 

 

  
UR3e       UR10e 

Figure 11.  All-Joints FPK Translational Results 
 

Since the size differences of these two cobots do not affect the rotational FPK results, the , ,  
Euler angles plots are identical, shown in Figure 12. 
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Figure 12.  All-Joints FPK Rotational Results, UR3e and UR10e (identical) 
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5.  URe-Series Cobot Workspace 

 

 
www.universal-robots.com 

Figure 13.  Universal UR3e 6-dof Cobot Reachable Workspace, top view and front view 
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Considering its size, this robot has a large reachable workspace, even for a serial robot, since all 
six R joints have generous 360   joint limits.  As the figures show, this is a full spherical reachable 
workspace!  Of course, mounted on a table, this would reduce to a hemisphere.  With its base suspended 
from a pedestal, as shown in the figure below, the spherical workspace is approached.  The same would 
be achieved for a single arm mounted on a floor-based pedestal (not shown). 
 
 

 
 

www.universal-robots.com 
 

Figure 13.  Dual Universal UR3e 6-dof Cobots mounted to a pedestal 
 
 
 During our FPK motion simulations, it was discovered that some joints’ motion for the published 

360   joint limits lead to physical interference between links.  This is obviously an essential issue which 
limits the effective reachable workspace, especially interior to the claimed spherical workspace. 
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6. URe-Series Cobot Inverse Pose Kinematics (IPK) 
 
According to Pieper’s principle, if a 6-dof serial robot has 3 consecutive coordinate frames meeting 

at the same origin, then an analytical solution is guaranteed to exist for the coupled nonlinear inverse pose 
kinematics problem.  This does not occur for the URe Cobots.  There is no spherical wrist where three 
consecutive wrist frame origins share the same point: instead, the offset d5 disrupts this desired attribute.  
But Pieper’s principle guarantees an analytical solution if his condition is met; it doesn’t say that there is 
no analytical solution in the absence of this condition.  So let us pursue an analytical solution for the 
Inverse Pose Kinematics (IPK) problem of the URe Cobots, despite the lack of a spherical wrist. 
 

In general, the Inverse Pose Kinematics (IPK) problem for a serial-chain robot is stated:  Given 
the pose (position and orientation) of the end frame of interest, calculate the joint values to obtain that 
pose.  For serial-chain robots, the IPK solution starts with the FPK equations.  The solution of coupled 
nonlinear algebraic equations is required and multiple solution sets generally result. 
 
6.1 Ure-series Analytical Six-dof IPK Solution 
 

The specific statement of the IPK problem for the 6-dof URe serial cobots (the entire series shares 
the identical kinematic design shown in Figure 6) is: 
 

Given:  the constant DH Parameters 

and the required end-effector pose  

0
11 12 13 6

0
0 21 22 23 6
6 0

31 32 33 6

0 0 0 1

r r r x

r r r y
T

r r r z

 
 
      
 
 

 

 
 
Calculate: the joint angles 1 2 3 4 5 6( , , , , , )       to achieve this pose 

 
Actually, in the real world, a more general pose input B

TPT    must be given.  Then the associated required 

IPK input 0
6T    is calculated from known constant homogeneous transformation matrices as follows: 

 
0 6

0 6

1 10 6
6 0

B B
TP TP

B B
TP TP

T T T T

T T T T
 

              

              

 

 
where the constant homogeneous transformation matrices 6

0 ,B
TPT T        were given in Section 4, Forward 

Pose Kinematics (FPK).  Remember these two matrices do not come from the DH Parameters table, but 
were found by inspection.  The IPK equations come from the FPK expressions;  but with the six joint 
angles now unknown, coupled nonlinear (transcendental) equations result, very difficult to solve compared 
to FPK. 
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Here are the form of the FPK equations; remember the LHS is a (consistent) given set of 16 
numbers representing the desired pose of {6} with respect to {0}: 
 

0 0 1 2 3 4 5
6 1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )T T T T T T T                                 

 
  So in principle 16 equations may be written to solve the IPK problem.  But 4 of these are useless 

(the last row [0 0 0 1]).  All three translational equations are useful and independent.  The remaining nine 
equations come from the  rotation matrix terms, only three of which are independent. 

 
A classic IPK solution approach is to invert some of the consecutive 

1 1( )i
i iT      homogeneous 

transformation matrices from the RHS and multiply them to the given numbers 0
6T    on the appropriate 

sides of the LHS.  For the URe Cobots, use the following homogeneous transformation equation to 
separate two unknowns 1 6,   from the other four unknown joint angles 2 3 4 5, , ,    : 

 
1 10 0 5 1 2 3 4

1 1 6 6 6 2 2 3 3 4 4 5 5( ) ( ) ( ) ( ) ( ) ( )T T T T T T T     
 

                            

 
Now we must inspect the resulting equations in order to find equations that may be solved for all 6 
unknown joint angles in some do-able order. 
 

1 10 0 5
1 1 6 6 6

0 0
11 1 21 1 6 12 1 22 1 6 13 1 23 1 12 1 22 1 6 11 1 21 1 6 6 1 6 1

0 0
21 1 11 1 6 22 1 12 1 6 23 1 13 1 22 1 12 1 6 21 1 11 1 6 6 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

r c r s c r c r s s r c r s r c r s c r c r s s x c y s

r c r s c r c r s s r c r s r c r s c r c r s s y c

 
 

           

        
         6 1

0
31 6 32 6 33 32 6 31 6 6

0 0 0 1

x s

r c r s r r c r s z

 
 
 
   
 
 

 

 

234 5 234 5 234 2 2 3 23 5 234

5 5 41 2 3 4
2 2 3 3 4 4 5 5

234 5 234 5 234 2 2 3 23 5 234

0
( ) ( ) ( ) ( )

0 0 0 1

c c c s s a s a s d s

s c d
T T T T

s c s s c a c a c d c
   

     
                     
 
 

 

 
 

First, the (2,4) (y-translational) terms involve only one unknown, 1 : 

 
0 0

6 1 1 46y c x s d   

 
Re-writing into classical form yields a well-known equation: 
 

1 1 1 1 1cos s 0inE F G    
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 where: 
0

1 6

0
1

4

6

1

yE

F x

dG

 




 

 
This equation may be solved for the unknown 1  by applying the well-known and perennial-favourite 

tangent half-angle substitution. 
 

 

If we define  1ta n
2

t
   

 
  then 

2

1 2

1
cos

1

t

t
 




  and 1 2

2
sin

1

t

t
 


 

 
Substitute this Tangent Half-Angle Substitution into the EFG equation: 
 

1 1 1

1 1 1

1 1 1 1 1

2

2 2

2 2

2

1 2
0

1 1

(1 ) (2 ) (1 ) 0

( ) (2 ) ( ) 0

t t
E F G

t t

E t F t G t

G E t F t G E

           

    

    

 

 
So we see this converts the original first-order trigonometric equation into a quadratic polynomial.  Using 
the quadratic formula, we can solve for the intermediate parameter t: 
 

2 2 2
11

1

1 1
1,2

1

F E F G
t

G E

   



 

 
Then solve for 1  by inverting the original Tangent Half-Angle Substitution definition: 

 

1,2

1
1 1,22 tan ( )t   

 
Note that we do not need to use the quadrant-specific atan2 function in the above solution, since the 
multiplier 2 takes care of possible the trigonometric uncertainty (dual values) of inverse trigonometric 
functions.  There are two valid solutions for 1 , from the   in the quadratic formula. 

 
Second, the (2,3) (rotational) terms now comprise one unknown 6 , since 1  has been found: 

 

22 1 12 1 6 21 1 11 1 6( ) ( ) 0r c r s c r c r s s    

 
The solution for 6  does not require the Tangent Half-Angle Substitution since the new G is zero. 
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6 12 1 22 1

6 21
6

1 11 1

tan
s r s r c

c r c r s
 


   

 

12 1 22 1 21 1 11 16 atan2( , )r s r c r c r s    

 
Note we must use the quadrant-specific inverse tangent function atan2 for the 6  solution above.  This 

yields a unique 6  for each of the two 1  results. 

 
Third, since 1  and 6  are now known, a ratio of the (2,1) to (2,2) rotational equations can be 

used to solve for 5 : 

 

21 1 11 1 6 22 1 12 1 6

23

5

51 13 1

( ) ( )r c r s c r c r s s

r c r s

s

c



  

 
 

 

21 1 11 1 6 12 1 22 1 6 13 1 23 15 ( )atan2( , )( )r c r s c r s r c s r s r c      

 
Note again we must use the quadrant-specific inverse tangent function atan2 for the 5  solution above.  

This yields a unique 5  for each of the two 1 6,   results. 

 
 Now we are halfway home!  Before step 4 we need to gather two intermediate equations, from the 
(3,1) and (3,3) rotational terms: 
 

234 531 6 32 6

32 6 23431 6

r c sr c

r c

s

r c s








  so  

31 6 32 6

32 6 31 6

234
5

234

r c r s
A

r c r

s
c

c s B




  

 

 
Fourth, substitute these intermediate terms 234c  and 234s  into the x and z translational equations 

(1,4) and (3,4), which have not yet been used.  This replaces the sum of three unknowns 2 3 4( )     in 

these translational equations with two angles 5 6,   that are now known. 

 

2 2 3 23 5 234 2 2 3 23
0 0

6 1 6 1

0
6

5

2 2 3 23 5 234 2 2 3 23 5

a s a s d s a s a s d A

a c

x

a c d c a c a c d

c y s

z B

       

    




 

 
Rearrange these equations to isolate the 2 3( )   terms: 

 
0 0

6 1 6 13 23 2 2 5

3 23 2 2 5
0

6

a s a s d A

a c a c d B

x c y s

z

   

   


   3 23 2 2

3 23 2 2

a s a s a

a c a c b

  

  
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Where, for convenience, define: 
 

0 0
6 1 6 1 5

0
56

a d Ax c y s

zb d B

  






 

 
Square and add the two equations to eliminate the 2 3( )   terms; this yields the following, our second 

EFG-type equation: 
 

2 2 2 2 2co s s 0inE F G    

 
 where: 

2 2

2

2 2

2

2 32
2 2

2

2F

G

E a b

a a

a a b a





 


  

 

 
This equation may be solved for the unknown 2  by again applying the trusty tangent half-angle 

substitution, the same method used earlier for 1 . 

 

1,2

2 2 2
2 2 2 2

2
2 2

F E F G
t

G E

   



   

1,2 1,2

1
2 22 tan ( )t   

 
Again, there are two valid solutions for 2 , due to the   in the quadratic formula; there are two 2  

solutions for each of the two valid 1  solutions, for a  total of 4 valid 1 2,   solutions so far. 

 
 Fifth, return to the x and z (1,4) and (3,4) translational equations (repeated below). 
 

3 23 2 2

3 23 2 2

a s a s a

a c a c b

  

  
 

 
Since squaring-and-adding used one independence, we are free to use them again in a different way.  Using 
a ratio of the equations: 
 

1,2 1,2 1,2 1,23 2 2 2 2 2atan2( , )a a s b a c      

 
Using the quadrant-specific inverse tangent function atan2 for the 3  solution above, there is a unique 

3  for each of the two valid 2  solutions (so there is no additional ballooning of number of solution sets 

here). 
 
 Sixth, and last, return to the two intermediate equations above, from the (3,1) and (3,3) rotational 
terms.  Since 2 3,   are now known (not to mention 6  is also known), the solution to 4  is now straight-

forward: 
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1,2 1,2 1,24 2 3atan2( , )A B      

 
Again, using the quadrant-specific inverse tangent function atan2 for the 4  solution above, there is a 

unique 4  for each of the two valid 2 3,   solutions (so there is no additional ballooning of number of 

solution sets here). 
 
 In Summary, there are 4 overall IPK joint angles solution sets 1 2 3 4 5 6( , , , , , )       to achieve the 

commanded pose, as detailed in Table 10. 
 

Table 10. The Four Universal Ure-series IPK Solution Sets 
 

Solution 
Set 

t1 / t2 sign 
1  2  3  4  5  6  

elbow 

1 + / – 
1a  

12 a  3a  
14 a  5a  6a  up 

2 + / + 
1a  

22 a  3a  
24 a  5a  6a  down 

3 – / – 
1b  

12b  3b  
14b  5b  6b  down 

4 – / + 
1b  

22b  3b  
24b  5b  6b  up 

 
 Here are the patterns seen in the four IPK solution sets: 1. For a given 1 , the elbow joint angle 3  

for elbow-up is negative of that for elbow-down, as expected.  2. For a given 1 , the last two wrist joint 

angles 5 6,   are the same for both elbow-up and elbow-down, also as expected. 

 
 At first eight distinct solution sets were expected, due to the similarity to PUMA-type 6-dof 6R 
serial robots.  However, that is for a spherical wrist, i.e. one in which the last three active (wrist) joint 
frames share a common origin.  The wrist offset d5 in the URe-series prevents this. 
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6.2 Ure-series IPK Examples 
 
 Now we present three Universal Robot UR3e snapshot analytical IPK examples, the same poses 
as in the FPK examples (for all zero joint angles, a general case, and for the initial angles case).  Unlike 
the FPK examples, there are multiple IPK solution sets to each case, which are presented analytically, 
something a numerical IPK solution procedure cannot do.  Translational units are m and angle units are in 
degrees, in all examples. 
 
IPK Example 1: Zero Joint Angles 
 
Given: 
 

1 0 0 0

0 0 1 0.223

0 1 0 0.694

0 0 0 1

B
TPT

 
        
 
 

 

 

we first use a homogeneous transformation equation 
1 10 6

6 0
B B

TP TPT T T T
 

                with constant matrices 
6

0 ,B
TPT T        to find: 

 

0
6

1 0 0 0

0 0 1 0.131

0 1 0 0.542

0 0 0 1

T

 
        
 
 

 

 
The IPK results are all identical, for all four solution sets: 
 

   1 2 3 4 5 6 0 0 0 0 0 0        

 
and the robot pose is the same as shown earlier, in FPK Example 1.  This is case is singular; however the 
IPK equations still work, for all four solution sets (identical).  Actually, this case is triply singular (all 
three singularity conditions are met – see the Velocity Kinematics Section). 
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IPK Example 2: General Joint Angles 
 
Given: 

0.6722 0.3586 0.6477 0.3992

0.7401 0.3042 0.5997 0.3182

0.0180 0.8826 0.4698 0.2715

0 0 0 1

B
TPT

    
 
      
 
 

  


 

 

we first use 
1 10 6

6 0
B B

TP TPT T T T
 

                with constant matrices 6
0 ,B

TPT T        to find: 

 

0
6

0.6722 0.3586 0.6477 0.3396

0.7401 0.3042 0.5997 0.2630

0.0180 0.8826 0.4698 0.076

0 0

3

0 1

T

 
 
      


   
  

 




 

 
The IPK results are: 
 

Solution 
Set 

t1 / t2 sign 
1  2  3  4  5  6  

elbow 

1 + / – 20 40 60 50 70 10 up 

2 + / + 20 95.5 –60 114.5 70 10 down 

3 – / – –124.5 –99.3 20.4 107.5 78.8 172.8 down 

4 – / + –124.5 –80.3 –20.4 129.3 78.8 172.8 up 

 
 As seen in the figures on the following page, all four solution sets achieve the same correct 
commanded Cartesian pose.  The four solutions are formed by permutations of the   in the solutions for 
joint angles 1  and 2 .  The second column in the table above reports the signs used in the quadratic 

formula of 1t  and 2t , leading to 1  and 2 .  The last column in the table above reports the elbow condition 

of each pose, i.e. elbow-up or elbow-down.  These results are also clearly visible in the figures on the 
following page. 
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Solution Set 1     Solution Set 2 

 

  
Solution Set 3     Solution Set 4 

 
IPK Example 2, Four Possible Solution Sets Poses 
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IPK Example 3: Initial Joint Angles 
 
 This example is for the same Initial Joint Angles introduced in FPK Example 3. 
 
Given: 
 

0 0 1 0.4151

1 0 0 0.1310

0 1 0 0.0889

0 0 0 1

B
TPT

  
       
 
 

 

 

we first use a homogeneous transformation equation 
1 10 6

6 0
B B

TP TPT T T T
 

                with constant matrices 
6

0 ,B
TPT T        to find: 

 

0
6

0 0 1 0.3231

1 0 0 0.1310

0 1 0 0.0631

0 0 0 1

T

  
        
 
 

 

 
The IPK results are: 
 

Solution 
Set 

t1 / t2 sign 
1  2  3  4  5  6  

elbow 

1 + / – 0 45 90 45 90 0 up 

2 + / + 0 127.2 –90 142.8 90 0 down 

3 – / – –135.9 –150.5 78.1 72.4 45.9 180 down 

4 – / + –135.9 –78.7 –78.1 156.8 45.9 180 up 

 
 As seen in the figures on the following page, all four solution sets achieve the same correct 
commanded Cartesian pose.  The four solutions are formed by permutations of the   in the solutions for 
joint angles 1  and 2 .  The second column in the table above reports the signs used in the quadratic 

formula of 1t  and 2t , leading to 1  and 2 .  The last column in the table above reports the elbow condition 

of each pose, i.e. elbow-up or elbow-down.  These results are also clearly visible in the figures on the 
following page. 
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Solution Set 1     Solution Set 2 

 

  
Solution Set 3     Solution Set 4 

 
IPK Example 3, Four Possible Solution Sets Poses 
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7. Ure-series Velocity Kinematics and Resolved-Rate Control 
 

An attractive alternative to the Inverse Pose Kinematics (IPK) problem for control of serial robot 
arms is the resolved-rate control method (Whitney, 1969), based on the inverse velocity solution.  The 
inverse velocity solution uses a linear set of equations which can easily be solved in a control loop at real-
time rates.  This section presents the URe-Series velocity kinematics, including the Jacobian matrix, 
followed by the resolved-rate control method. 
 
7.1 Ure-series Cobot Jacobian Matrix 
 

The Jacobian matrix [J] is a linear transformation mapping joint rates    to Cartesian velocities 

 X : 

 

   ( )

1 ( )( 1)

k kX J

m m n n

    

   

 

 

 
Where m is the dimension of the Cartesian (task) space, n is the dimension of the joint space, and we can 
express the resulting Cartesian velocities in any frame {k};    are the relative joint angle rates and hence 

are expressed about the n different local Z axes.  The Jacobian matrix is a function of the n joint angles , 
in general; therefore, it must be calculated anew with each motion. 
 
 The Jacobian matrix is a multi-dimensional form of the derivative: 
 

  i

j

f
J


 

  
  

 

 
where fi are the six pose functions, and j are the seven joint angles.  A thousand and one references state 
this about the Jacobian matrix, but it is only half-true.  It works well for translational terms, where: 
 

1

2

3

( )

( )

( )

f x

f y

f z

   
       
      

 

 
but there are no possible functions with respect to which we can take the partial derivatives to obtain the 
rotational terms of the Jacobian matrix.  The rotational terms may be found using a relative angular 
velocity vector equation. 
 

For the 6-joint URe-Series spatial Cobot arm, m = n = 6: 
 



37 
 
 

  Universal Robot Williams ©2024 

 

1

2

3

4

5

6








 
 
 
     
 
 
 
  








  k

x

y

z

x

y

z
X





 
 
 
    
 
 
 
  





 
 
Physical interpretation of the Jacobian matrix 
 

The ith Jacobian matrix column is the end-effector translational and rotational velocity due to joint 
i, with the joint rate i  factored out.  Then by linear superposition, the overall end-effector Cartesian 

velocity is the sum of all n columns (each multiplied by the respective joint rate).   Each Jacobian matrix 
column i is the absolute Cartesian velocity vector of the last active joint frame {N} with respect to the 

base frame, due to joint i only, and with the variable joint rate i  factored out (see Figure 11). 

 

       0 0 0

1 2

| | |

| | |

k

k

N N N N
J X X X

 
 

  
 
 


  

  
 

 
 
 

0

0

0

k

Nk i
N ki

N i

V
X



 
   
  



 
 
 
Here is Jacobian matrix column i, for a revolute joint: 
 

 
   

 
 
 
ˆˆ

ˆˆ

k k i ik i
i i Ni Nk

i k ik
i ii

R Z PZ P
J

R ZZ

              
         

 
where: 

   ˆ ˆk k i
i i iZ R Z     

 
is the third column of orthonormal rotation matrix k

iR    and: 

 

   k ii k i
N i NP R P     

 
where  i i

NP  is the translational part of homogeneous transformation matrix i
NT   (the fourth column, 

rows 1 through 3).  Here is the Jacobian matrix for an all-revolute-joint manipulator: 
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 
   

 
   

 
   

 

1
1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

k
k k kk k i k N

N i N N Nk

k k k
i N

Z P Z P Z P
J

Z Z Z

                     
            

 

 
 
For the 6-dof URe-Series cobot, N = 6, i = 1,2,3,4,5,6,, and the Jacobian and Cartesian velocity frame of 
expression (basis) is any convenient coordinate frame k.  Often k is chosen to be {0}. 

 

 
 

Figure 14.  Jacobian Matrix Column i Derivation Image, Revolute Joints 
 
 The Universal Robot URe-Series 6-dof Cobot Jacobian matrix is given below.  This Jacobian 
matrix expresses the velocity of {6} with respect to {0}, expressed in {0} coordinates. 
 

4 1 1 2 2 3 23 5 234 1 2 2 3 23 5 234 1 3 23 5 234 5 1 234

4 1 1 2 2 3 23 5 234 1 2 2 3 23 5 234 1 3 23 5 234 5 1 234

0 2 2 3 23 5 234 3 23 5 234 5 2340
6

( ) ( ) ( ) 0 0

( ) ( ) ( ) 0 0

0

d c s a s a s d s c a c a c d c c a c d c d c c

d s c a s a s d s s a c a c d c s a c d c d s c

a s a s d s a s d s d s
J

        
        

     
   

1 1 1 1 234 1 5 1 234 5

1 1 1 1 234 1 5 1 234 5

234 234 5

0 0

0

0

1 0 0 0

s s s c s s c c c s

c c c s s c c s c s

c s s

 
 
 
 
 

  
      
 
  

 

 
Cartesian Transformation of Translational and Rotational Velocities 
 
 The Jacobian matrix presented above relates the frame {6} translational and rotational velocities 
with respect to the {0} frame.  For real-world applications, it is more useful to command translational and 
rotational velocities at the tool-plate (or end-effector frame) {TP} instead.  The same Jacobian may be 
used if the following velocity transformations are used first: 
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       
   

6
6 6

6

TP TP

TP

V V P

 

  


 

 
That is, since link 6 is a rigid link containing both {6} and {TP}, the rotational velocity vector is the same 
over the whole link.  However, the angular velocity crossed into the position vector must be added to the 
translational velocity in {6} to yield that of {TP} (this statement must be reversed, i.e. subtracted, since 
we are given the velocities in {TP}).  As always, a common basis frame, such as {0}, must be used above 
to ensure the coordinates of all vectors are expressed in a single frame (we could equally use {B} as the 
reference frame, this would make no different at all since LB does not enter). 
 

 The reason we use the Jacobian matrix 
0 0

6J    instead of 
0 0

TPJ    is simplicity.  Length LTP would 

appear all over 
0 0

TPJ   , so 
0 0

6J    is simpler. 

 
 
Cartesian Wrench / Joint Torques Statics Transformation 
 
 It is well-known (Craig, 2005) that the relationship between static Cartesian wrenches (forces / 
moments) applied to the environment by the robot end-effector and the required robot joint torques to do 
this are calculated as follows: 
 

     T
J W   

 
Where   1n    is the vector of n joint torques,   1W m   is the Cartesian wrench (m forces and 

moments), n is the joint space dimension, and m is the Cartesian space dimension.  The Jacobian matrix 
[J] and Cartesian wrench {W} must be expressed in the basis coordinates of the same frame {k}.  Just like 
the joint rates, {} has no dependence on frame, since these are relative joint torques about the n Z axes.   

The Jacobian matrix [J] for static torque calculations is the same as that for velocity analysis.  This 
statics transformation is a mapping from Cartesian space to joint space which does not require an inverse.  
That is indeed a rare and beautiful property.  It can never be singular and any number of joints is allowed.  
Very little computation is required compared to matrix inversion, since only matrix transposition and 
multiplication is required.  Note that the associated wrench is applied at the frame for which the Jacobian 
matrix was derived for velocities, {6} in this work.  Therefore, another transformation is required when 
the robot should apply the wrench at the tool-plate {TP} (again using a common basis): 
 

   
       

6

6
6

TP

TP TP TP

F F

M M P F



  
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Crucial – Units 
 
 The translational rows of the Jacobian matrix have length units (m).  The rotational rows of the 
Jacobian matrix are unitless.  Therefore, since Cartesian velocity units of  X  are m/sec and rad/sec, for 

translational and rotational terms, respectively, in the overall velocity equation     X J   , one MUST 

use units of rad/sec for   , not deg/sec! 

 
 Further, the units and size mismatch between translational and rotational rows of the Jacobian 
matrix can cause numerical troubles, which is well-known for serial robots.  Using m rather than mm for 
length units will help this problem for the URe-Series Cobot arms. 
 
 
Universal URe-Series Cobot Singularity Analysis 
 
 Serial robot singularities occur when the determinant of the velocity Jacobian matrix goes to zero.  
For serial robots, a physical singularity is associated with a loss of motion in the Cartesian space.  (This 
is not an issue in the joint space, only Cartesian   joint space transformations.)  Safety issues arise, as 
joint rates tend towards infinity in the neighborhood of singularities, and the resulting motion is not what 
the engineer expects it to be. 
 

The determinant of the Universal URe Cobots Jacobian matrix 0 J    is: 

 
0

2 3 3 5 2 2 3 23 5 234( )J a a s s a s a s d s     

 
When this Jacobian matrix determinant is zero, the 6-dof serial arm is at a robot singularity.  Since cobot 
lengths 2 0a   and 3 0a  , there are three singularity conditions: 

 

3

5

2 2 3 2 3 5 2 3 4

sin 0

sin 0

sin sin( ) sin( ) 0a a d





     





     

 

 
Singularity Conditions 
 

1.  When 3sin 0  , the singularity condition is 3 360 , 180 ,0 ,180 ,360        . 

 
This singularity is the classic elbow-out, workspace-boundary, singularity common to all 

elbow-based serial robot arms.  It is not much of a problem, since it is on the edge of the useful 
workspace, where the cobot is not used effectively anyway. 
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The cobot kinematic diagram of Figure 6, with all angles zero, is in this elbow-out, 
workspace-boundary singularity.  This singularity is the reason for the choice of 3 90    initial 

angle shown in Table 9, i.e. as far away from this elbow-out singularity as possible. 
 

 
2. When 5sin 0  , the singularity condition is 5 360 , 180 ,0 ,180 ,360        . 

 
Though it appears similar to 1. above, this singularity is more troubling since it is a 

workspace-interior singularity, and thus reduces the effective workspace.  At this singularity, the 
wrist axes 4Z  and 6Z  are parallel, meaning instantaneously there is no way to perform a wrist yaw 

motion.  Geometrically, in any pose with this singularity condition, joints 2, 3, 4, and 5 are free to 
move as a four-bar mechanism while the end-effector frame remains stationary.  This is very 
interesting but most troubling for safety. 

 
The cobot kinematic diagram of Figure 6, with all angles zero, is in this internal wrist 

singularity, a most clumsy wrist design where there is a damaging singularity in the middle of the 
useful wrist motion range (the classic 6-dof 6R PUMA serial robot has a similar singularity).  This 
singularity is the reason for the choice of 5 90    initial angle shown in Table 9, i.e. as far away 

from this internal wrist singularity as possible. 
 

3. When  2 2 3 2 3 5 2 3 4sin sin( ) sin( ) 0a a d           , the specific angle values causing this 

singularity are much harder to enumerate.  Therefore, we will explain this singularity using 
geometry of the cobot serial chain. 

 
This third singularity condition results when the shared origin of the last two wrist 

Cartesian coordinate frames {5} and {6} lies on the plane formed by the first two rotational axes 

1Z  and 2Z .  Poses with this shoulder singularity condition are where the two IPK solution branches 

for 1  degenerate to one solution.  Alarmingly, this singularity allows the cobot to rotate freely 

without control about the vertical axis, a big safety challenge! 
 
The initial cobot angles given in Table 9 were chosen so this shoulder singularity is not 

near singularity condition 3.  It is not as far away as possible, since that would require the cobot 
end-effector being place on the workspace boundary.  Not only would that be singularity condition 
1, but it would not be a useful initial cobot pose for general tasks. 

 
These three singularity conditions are displayed in the CAD poses of Figure 12. 
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2.     1.     3. 

 
Figure 15.  URe-Series Cobots Singularity Conditions 

www.mecademic.com/resources/Singularities 
 
 Note that the third singularity condition formula is an important term in the FPK solution for both 
0

6x  and 0
6y , as presented earlier. 

 
 One disadvantage of the generous 360   joint limits on all joints of the URe Cobots is the 
possibility of much greater exposure to singularities.  Exact singularities are not the only problem; when 
the cobot approaches the neighborhood of singularities, the joint rates can increase to unacceptable levels.  
One, two, or three of these singularity conditions can occur simultaneously.  Again, there is not a 
singularity problem in joint-space.  However, in lead-through programming control (where sets of joint 
angles are played back over time by the cobot controller after a human operator has taught the required 
cobot poses by physically moving the end-effector), the operator must avoid singularities, otherwise such 
undesired  motions would interfere with the desired trajectories. 
 

Each singularity condition must be understood and avoided in the case of Inverse Pose Control 
and/or Resolved-Rate Control.  Often engineers arrange the task and cobot placement to totally avoid 
singularities during required Cartesian motions.  Even though this can be done off-line  with CAD and 
VR programs, it is painstaking and always leads to less performance from the cobot compared to what is 
possible.  Another way to face and deal with singularities is to numerically monitor 0J  in real-time in 

the cobot controls programming.  When joint rates are found to be increasing too high and too fast, these 
joint rates may be capped at a safe level.  Then the Cartesian motion will not be correct, but the cobot can 
get back on track after the singularity is passed and joint rates are again safe. 
  



43 
 
 

  Universal Robot Williams ©2024 

7.2 Ure-series Resolved-Rate Control 
 
Another useful application for the Jacobian matrix is the Inverse Velocity Problem, whose 

solution is the basis for the Resolved-Rate Control Algorithm (Whitney, 1969).  The Inverse Velocity 
Problem is stated, in general: 
 
 Given: 

The robot (including all constant DH Parameters), values for all of the joint variables {} 
(angles 

i  for R joints and lengths 
id  for P joints), and the end-effector translational and 

rotational Cartesian velocity  X ; 

 
 Find: 

All of the relative joint rates    (joint rates i  for R joints and id  for P joints). 

 
For the m = n case, the Inverse Velocity Solution is (for the UR3-Series Cobots, m = n = 6): 

 

   1( )k kJ X    
   

 
where we calculate the required relative joint rates    to achieve the given desired Cartesian velocities  

 k X , using the inverse of the configuration-dependent Jacobian matrix ( )k J   .  This only works for 

an m = n square matrix, assuming full rank, i.e. the Jacobian matrix determinant is not zero.  Here are two 
options to solve the Inverse Velocity problem in MATLAB.  In practical real-time implementations, use 
of numerical Gaussian elimination is more computationally efficient and more robust in the neighborhood 
of singularities. 
 
 Figure 16 shows the Resolved-Rate Control simulation block diagram; note that in simulation, we 
will assume perfect joint control, i.e. the actual joint values are the same as the commanded joint values, 
   A   .  Note that the Jacobian matrix must always be updated during resolved-rate motion 

simulation since it is a function of   . 

 

 
 

Figure 16.  Resolved-Rate Control Block Diagram 
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 Figure 17 shows the Resolved-Rate Control simulation algorithm flowchart for programming. 
 

 
 

Figure 17.  Resolved-Rate Algorithm Flowchart 
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6-dof Universal UR3e Resolved-Rate Control Simulation Example 
 
 Starting from the Initial Joint Angles for the Universal UR3e Cobot (from FPK Example 3 and the 
IPK Example): 
 

   1 2 3 4 5 6 0 45 90 45 90 0            

 
the following Cartesian velocities and wrench are applied at the tool-plate frame {TP}, motion with 
respect to the {0} frame, and in the basis frame of {0}: 
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 
 

       
 
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 
 
 
       

    
 
 
 

 

(m/sec and rad/sec)     (N and Nm) 
 
Assuming the input velocity and wrench are constant, the resolved-rate simulation in MATLAB yielded 
the following plots, running from 0 to 4 sec, using time steps of 0.04 sec. 
 
 The first step is to apply the velocity and wrench transformations from {TP} to {6}, given earlier.  
The reason for this is that the Jacobian matrix is simpler for motions of {6} rather than {TP}. 
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 

 

(m/sec and rad/sec)     (N and Nm) 
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 The final UR3e Cobot pose, after the specific resolved-rate motion simulation, is given in Figure 
18a.  The initial UR3e Cobot pose for the resolved-rate motion simulation was already given in Figure 9 
from FPK Example 3 (and Solution Set 1 from the IPK Example). 

 

 
 

Figure 18a.  Resolved-Rate Simulation, Final Cobot Pose 
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Figure 18b.  Resolved-Rate Simulation, Joint Rates 
 
 

 
 

Figure 18c.  Resolved-Rate Simulation, Joint Angles 
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Figure 18d.  Resolved-Rate Simulation, Cartesian Displacements 
 
 

 
 

Figure 18e.  Resolved-Rate Simulation, 0 0
6J    Determinant 
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Figure 18f.  Resolved-Rate Simulation, Pseudostatic Joint Torques 
 
 
 Figures 18b – 18f show the plot results from this UR3e Cobot resolved-rate motion MATLAB 
simulation. 
 
 Figure 18b shows the required joint rates to achieve the commanded Cartesian rates over the 4 
second simulation time period, followed by the associated joint angles (Figure 18c), integrated from the 
joint rates.  Figure 18d shows the 6-dof Cartesian displacements, calculated via the FPK solution; these 
demonstrate correct motion in the resolved-rate simulation since the constant slope of each Cartesian 
variable plot is the given constant Cartesian velocity.  Figure 18e shows this simulation never reaches one 
of the three types of singularities identified, since 0 0

6J    never crosses through zero.  However, near the 

middle of the motion time, the Cobot approaches the 5 0   wrist singularity.  This is verified in the 5  

plot of Figure 18c.  Lastly, Figure 18f shows the required six joint torques to exert the given constant 
Cartesian wrench, ignoring dynamics, at frame {TP} onto the environment during this simulated motion 
(pseudostatics). 
 
  



50 
 
 

  Universal Robot Williams ©2024 

8. URe-Series Cobot Dynamics 
 

 
Kinematics is the study of motion without regard to forces. 
 
Dynamics is the study of motion with regard to forces.  It is the study of the relationship between 
forces/torques and motion.  Dynamics is composed of kinematics and kinetics. 
 
 a)  Forward Dynamics (simulation) – given the actuator forces and torques, compute the resulting 
motion (this requires the solution of highly coupled, nonlinear ODEs):  Given {}, calculate      , ,     

(all are N x 1 vectors). 
 
 b)  Inverse Dynamics (control) – given the desired motion, calculate the actuator forces and 
torques (this linear algebraic solution is much more straight-forward than Forward Dynamics):  Given   

     , ,    , calculate {} (all N x 1 vectors). 

 
Both problems require the N dynamic equations of motion, one for each link, which are highly coupled 
and nonlinear.  There are two basic methods for deriving the dynamic equations of motion. 

 Newton-Euler recursion (force balance, including inertial forces with D'Alembert's principle). 
 Lagrange-Euler formulation (energy method). 

 
Kinetics 
 Translational  Newton's Second Law 
 
     Inertial force at center of mass  

 
 
 Rotational  Euler's Equation 
 
     Inertial moment anywhere on body 

 
 

 The kinematics terms      , ,Ci i ia    must be moving with respect to an inertially-fixed frame.  

The frame of expression {k} needn't be an inertially-fixed frame. 
 
Assumptions 

 serial robot 
 rigid links 
 ignore actuator dynamics 
 no friction 
 no joint or link flexibility 
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Tables 4 and 5 present the joint torque capacities of the 5 sizes of motors use throughout the URe-
Series Cobots.  Table 10 presents the remaining data required for dynamics analysis of each link 
throughout the URe-Series Cobots (mass and center-of-mass (COM) for each link). 
 
 

Table 10:  Universal Robot Ure-series Dynamics Data 
 

 

link 

 

UR3e UR5e UR10e 

mass (kg) COM (m) mass (kg) COM (m) mass (kg) COM (m) 

Link 1 1.98 [0,–0.02,0] 3.76 [0,–0.02,0] 7.37 [0.021,0,0.027] 

Link 2 3.44 [0.13,0,0.112] 8.06 [0.212,0,0.113] 13.05 [0.38,0,0.158] 

Link 3 1.44 [0.05,0,0.024] 2.85 [0.15,0,0.027] 3.99 [0.24,0,0.068] 

Link 4 0.87 [0,0,0.01] 1.37 [0,0,0.016] 2.10 [0,0.007,0.018] 

Link 5 0.81 [0,0,0.01] 1.30 [0,0.002,0.016] 1.98 [0,0.007,0.018] 

Link 6 0.26 [0,0,–0.02] 0.37 [0,0,–0.001] 0.62 [0,0,–0.026] 

 
 
 The mass-moments-of-inertia for each link (units: kg-m2) are required for the following Newton-
Euler numerical inverse dynamics simulation.  These could not be found published on the Universal 
Robots website.  The principal mass-moments-of-inertia for each link about its own center-of-mass 
(COM) may easily be estimated by assuming the material and using the formulae for a cylindrical 
distribution of the mass. 
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Newton-Euler Recursive Algorithm Summary 
This method can be used to find the robot dynamics equations of motion.  It can also be used to 

directly solve the inverse dynamics problem numerically.  The summary of equations below, from Craig 
(2005), assume an all revolute-joint manipulator (prismatic joint dynamics have different equations). 

 
Outward iteration for kinematics : 0 1i N   
 (without regard for frames of expression, for clarity) 
 
  Velocities and accelerations (kinematics) 
 

     
         
              
              

1 1 1

1 1 1 1 1

1 1 1

1 1
1 1 1 1 1 1 1

ˆ

ˆ ˆ

i i i i

i i i i i i i

i i
i i i i i i i

i i
Ci i i Ci i i Ci

Z

Z Z

a a P P

a a P P

  

    

  

  

  

    

  

 
      

 

   

     

     



 
 

 
 

  Inertial loading (kinetics) 
 

   
       

1 1 1

1 1 1 1

i i Ci

C C
i i i i

F m a

N I I  
  

   



        
 

 
 
Inward iteration for kinetics : 1i N   
 (without regard for frames of expression, for clarity) 
 
  Internal forces and moments 
 

     
             

1

1 1 1

i i i

i i
i i Ci i i i i

f f F

n n P F P f N



  

 

     
 

 
 

  Externally applied joint torques 
 

   i i in Z    

 
 

Inclusion of gravity forces 

   0
0a g  

 
 This is equivalent to a fictitious upward acceleration of 1g of the robot base, which accounts for 
the downward acceleration due to gravity (i.e. this conveniently includes the weight of all links). 
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 If the dynamics equations-of-motion (EOM) were derived analytically in closed-form, the 
structure of the resulting equations is given below.  These are the configuration space matrix/vector 
dynamics equations. 
 

            2( ) ( ) ( ) ( )M B C G                

 
 

   ( )M   N N  mass matrix; symmetric and positive definite 

 

   ( )B   
 1

2

N N
N


  Coriolis matrix 

 

       
 1

1
2

N N 
    1 2 1 3 1

T

N N     
       

 

   ( )C   N N  centripetal matrix 

 
   2   1N        2 2 2

1 2

T

N      

 

   ( )G   1N   vector of gravity terms 
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9.  Conclusion 
 

This paper has presented detailed kinematic and dynamic analysis for the Universal Robots 6-dof 
URe-Series Cobot serial arms.  The Craig (modified) Denavit-Hartenberg Parameters for each serial chain, 
specific length parameters, and joint angle limits were given.  The general 6-dof forward pose kinematics 
(FPK) solutions were developed analytically.  The analytical inverse pose kinematics (IPK) solution was 
given.  The Jacobian matrix was presented, along with singularity analysis, and resolved-rate control 
simulations.  MATLAB Examples were given for all kinematics developments. 
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