The Pathophysiology of Hemorrhagic Shock

Richard E. Klabunde, Ph.D. Associate Professor of Physiology Department of Biomedical Sciences Ohio University College of Osteopathic Medicine

Learning Objectives

- Describe how acute blood loss leads to hypotension.
- Describe the compensatory mechanisms that operate to restore arterial pressure following hemorrhage.
- Describe the decompensatory mechanisms that lead to irreversible shock.
- Describe the rationale for different medical interventions following hemorrhage.

General Definition of Hemorrhagic Shock

A clinical syndrome resulting from decreased blood and oxygen perfusion of vital organs resulting from a loss of blood volume.

Effects Blood Volume Loss on Mean Arterial Pressure

(Adapted from Guyton & Crowell, 1961)

Classes of Hemorrhagic Shock

- Class I hemorrhage (loss of 0-15%)
 - Little tachycardia
 - Usually no significant change in BP, pulse pressure, respiratory rate
- Class II hemorrhage (loss of 15-30%)
 - HR >100 beats per minute, tachypnea, decreased pulse pressure
- Class III hemorrhage (loss of 30-40%)
 - Marked tachycardia and tachypnea, decreased systolic BP, oliguria
- Class IV hemorrhage (loss of >40%)
 - Marked tachycardia and decreased systolic BP, narrowed pulse pressure, markedly decreased (or no) urinary output
 - Immediately life threatening

Compensatory Mechanisms

- Baroreceptor reflexes
- Circulating vasoconstrictors
- Chemoreceptor reflexes
- Reabsorption of tissue fluids
- Renal reabsorption of sodium and water
- Activation of thirst mechanisms
- Cerebral ischemia
- Hemapoiesis

Arterial Baroreceptors

Klabunde, RE, Cardiovascular Physiology Concepts, Lippincott Williams & Wilkins, 2004

Autonomic Responses to Baroreceptor Activity

- Arterial baroreceptor firing inhibits sympathetic outflow and stimulates parasympathetic outflow
- Therefore, reduced firing, which occurs during hemorrhage, leads to sympathetic activation and parasympathetic inhibition

Effects of 8% Blood Loss on Aortic Pressure in Anesthetized Dogs (Effects of Baroreceptor Denervation)

Cardiopulmonary Baroreceptors

Location: Venoatrial Junction

- Tonically active
 - Receptor firing decreases ADH (vasopressin) release leading to diuresis and vasodilation
 - Hemorrhage → increase ADH (reduced urine formation and increased vasoconstriction)
- Location: Atria and Ventricles
 - Tonically active
 - affect vagal and sympathetic outflow similar to arterial baroreceptors
 - reinforce arterial baroreceptor responses during hypovolemia

Baroreceptor Reflexes

Klabunde, RE, Cardiovascular Physiology Concepts, Lippincott Williams & Wilkins, 2004

Baroreceptor Reflexes Cont.

Redistribution of cardiac output

- Intense vasoconstriction in skin, skeletal muscle, renal (during severe hemorrhage) and splanchnic circulations increases systemic vascular resistance, which attenuates the fall in arterial pressure
- Coronary and cerebral circulations spared
- Therefore, cardiac output is shunted to essential organs
- Redistribution of blood volume
 - Strong venoconstriction in GI, hepatic and skin circulations
 - Partial restoration of central venous blood volume and pressure to counteract loss of filling pressure to the heart

Importance of Changes in Venous Tone

15

Central Venous Pressure During Hemorrhage

- Hemorrhage decreases blood volume and decreases CVP (A→B)
- Peripheral venous constriction decreases venous compliance (B→C), which increases CVP and shifts blood volume toward heart
- Increased CVP increases ventricular preload and force of contraction (Frank-Starling mechanism)

Humoral Compensatory Mechanisms

Klabunde, RE, Cardiovascular Physiology Concepts, Lippincott Williams & Wilkins, 2004

Importance of Humoral Compensatory Mechanisms

- Angiotensin II, vasopressin and catecholamines reinforce sympathetic mediated vasoconstriction to help maintain arterial pressure by
 - increasing systemic vascular resistance
 - decreasing venous compliance, which increases ventricular preload and enhances stroke volume
- Angiotensin II, aldosterone and vasopressin act on the kidneys to increase blood volume

Chemoreceptor Reflexes

Peripheral chemoreceptors

- Carotid bodies
- Aortic bodies
- Central chemoreceptors
 - Medulla (associated with cardiovascular control "centers")

Chemoreceptor Reflexes cont.

- Increasingly important when mean arterial pressure falls below 60 mmHg (i.e., when arterial baroreceptor firing rate is at minimum)
- Acidosis resulting from decreased organ perfusion stimulates central and peripheral chemoreceptors → sympathetic activation
- Stagnant hypoxia in carotid bodies enhances peripheral vasoconstriction
- Respiratory stimulation may enhance venous return (abdominothoracic pump)

Reabsorption of Tissue Fluids

Capillary pressure falls

- Reduced arterial and venous pressures
- Increased precapillary resistance
- Transcapillary fluid reabsorption (up to 1 liter/hr autoinfused)
- Capillary plasma oncotic pressure can fall from 25 to 15 mmHg due to autoinfusion thereby limiting capillary fluid reabsorption
- Hemodilution causes hematocrit to fall which decreases blood viscosity

Changes in Starling Forces Following Hemorrhage

A

$$P_{\tau} = 0$$

 $T_{c} = 25$
 $\pi_{c} = 25$
 $\pi_{c} = 25$
Normal
A
 $P_{\tau} = 0$
 $\pi_{\tau} = 6$
 $T_{c} = 10$
 $\pi_{c} = 25$
Hemorrhage (early)
 P_{c} decreases due to:
 $\downarrow P_{A} \& P_{V} \downarrow R_{V}/R_{A}$

Starling Equation for Fluid Balance

$$FM = K \cdot A \left[(P_C - P_T) - (\pi_C - \pi_T) \right]$$

Cerebral Ischemia

- When mean arterial pressure falls below 60 mmHg, cerebral perfusion decreases because the pressure is below the autoregulatory range
- Cerebral ischemia produces very intense sympathetic discharge that is several-fold greater than the maximal sympathetic activation caused by the baroreceptor reflex

Decompensatory Mechanisms "Progressive Shock"

Cardiogenic Shock

 Impaired coronary perfusion causing myocardial hypoxia, systolic and diastolic dysfunction, arrhythmias

Sympathetic Escape

- Loss of vascular tone (↓SVR) causing progressive hypotension and organ hypoperfusion
- Increased capillary pressure causing increased fluid filtration and hypovolemia

Cerebral Ischemia

 Loss of autonomic outflow due to severe cerebral hypoxia

- Metabolic Acidosis
- Rheological
 - Increased microvascular viscosity
 - Microvascular plugging by leukocytes and platelets
 - Intravascular coagulation
- Systemic Inflammatory Response
 - Endotoxin release into systemic circulation
 - Cytokine formation TNF, IL, etc.
 - Enhanced nitric oxide formation
 - Reactive oxygen-induced cellular damage
 - Increased capillary permeability
 - Multiple organ failure

Decompensatory Mechanisms (Cardiogenic Shock and Sympathetic Escape)

Time-Dependent Changes in Cardiac Function

- Dogs hemorrhaged and arterial pressure held at 30 mmHg
- Precipitous fall in cardiac function occurred after 4 hours of severe hypotension

(adapted from Crowell et al., 1962)

Comparison of Different Forms of Shock

	Cardiogenic Shock	Hemorrhagic Shock	Septic Shock
CV Origin	Cardiac	Volume	Vascular
Cardiac Output	\downarrow	\rightarrow	$\uparrow \downarrow$
Vascular Resistance	1	1	\downarrow
Blood Volume	1	\rightarrow	\downarrow
Management	Mechanical Inotropes Vasopressors Vasodilators	IV Fluids/Blood Vasopressors	IV Fluids Antibiotics Vasopressors Inotropes

Resuscitation Issues

- Reducing reperfusion injury & systemic inflammatory response syndrome (SIRS)
 - Anti-inflammatory drugs
 - NO scavenging and antioxidant drugs
- Resuscitation fluids
 - Crystalloid vs. non-crystalloid solutions
 - Isotonic vs. hypertonic solutions
 - Whole blood vs. packed red cells
 - Hemoglobin-based solutions
 - Perfluorocarbon-based solutions
 - Fluid volume-related issues

Resuscitation Issues cont. (Current Research)

- Efficacy of pressor agents
- Hypothermic vs. normothermic resuscitation
- Tailoring therapy to conditions of shock
 - Uncontrolled vs. controlled hemorrhage
 - Traumatic vs. atraumatic shock

Review Learning Objectives

- Describe how acute blood loss leads to hypotension.
- Describe the compensatory mechanisms that operate to restore arterial pressure following hemorrhage.
- Describe the decompensatory mechanisms that lead to irreversible shock.
- Describe the rationale for different medical interventions following hemorrhage.