Imaging the Musculoskeletal System

The Extremities

Richard L. Sulek, D.O.

Objectives

Discuss:

commonly used imaging modalities in the musculoskeletal system
 normal imaging anatomy in the extremities
 fracture description

Imaging Techniques

- Plain x-rays
- CT
- **MRI**
- Ultrasound
- Nuclear Medicine (bone scan)

Plain x-rays

For joints like the ankle, elbow or wrist we always take 3 views:

AP, lateral and oblique

Advantages of plain x-rays

Quick
Not expensive
Relatively low radiation

Disadvantages of plain x-rays

- Not 3 dimensional
- Can miss pathology
- May still require other imaging studies

CT scanner

This is a CT scan: a longitudinal cross section

This CT shows a fracture through the medial cunieform

Advantages of CT scanning of the musculoskeletal system

- Excellent anatomic detail
- Will detect almost all pathology related to cortical bone injury
- Great for showing displacement or joint involvement
- Now multiplanar

Disadvantages of CT

- Expensive (x-ray \$100, CT \$1000)
- More radiation
- Often not necessary

MRI scanner

Looks more like a tunnel, must be very careful of metal

This is an MRI of the knee

There is no radiation used

Circled is a normal posterior cruciate ligament

Advantages of MRI

- No radiation
- We can slice through the body using any imaging plane
- Looks "inside" bone. Marrow evaluation.
- MRI is very good for looking at the soft tissues (muscles, ligaments, tendons and cartilage)
 MRI is very sensitive in detecting water

MRI shows water (fluid) behind the patella

Do you see fluid anywhere else?

Disadvantages of MRI

Very expensive (x-ray \$100, CT \$1000, MRI \$2000)
Not as good as CT for cortical bone

This long black line Is the cortex or cortical bone

3 things are always black on MRI:

- 1. Air
- 2. Cortical bone/tendons/ligaments
- 3. Flowing blood

Posterior cruciate ligament

anterior and posterior horns "bow tie"

Normal Imaging Anatomy in the Extremities

What are the parts of a long bone?

Terms you will need to know:
Cortex
Medullary cavity (marrow)
Diaphysis
Metaphysis
Epiphysis

medullary cavity

corocoid

acromion

greater tuberosity

clavicle

lesser tuberosity

glenoid fossa

CAPITELLUM ----

-MEDIAL EPICONDYLE

TROCHLEA

RADIAL HEAD -

Child or adult?

a. Growth plate

2

3

- b. Diaphysis
- c. Metaphysis
- d. Epiphysis

symphysis pubis

Patella

condyle

Patella

intercondylar spines fibula

Top View of Foot Bones

lateral maleous

medial maleolus

Talus

Finding a Fracture on X-Ray

- Start with soft tissue, look for swelling or fat pad displacement
- Examine the cortex along the entire length of the bone
- Look for cortical irregularities, buckling, or evidence of impaction

Fracture Terminology

Direction of fracture line:

- Transverse
- Oblique
- Spiral
- Longitudinal
- Alignment of fracture: Displacement
- Angulation
- Comminution
- Articular Involvement

Fracture Terminolgy

Open vs Closed: fracture is open when exposed to air (laceration or gross exposure)

 Pathologic fracture: implies fracture through weakened bone

Stress fracture: implies misuse or overuse

Path of the Fracture

Normal

Transverse Fracture

Oblique Fracture

Spiral Fracture

Longitudinal Fracture

Simple vs Comminuted

Simple-2 bone fragmentsComminuted-greater then 2 fragments

Avulsion Fracture

 A bony fragment produced by the pull of ligamentous or tendinous attachment

Torus Fractures

Axial forces cause cortex to buckle
Occurs most commonly in the metaphysis

Greenstick fracture

 Cortex broken on one side of the bone and only bent or buckled on the other side

Points to take home

There are distinct advantages and disadvantages to plain x-rays, CT and MRI.
Become familiar with terminology: epiphysis, metaphysis, diaphysis, cortex, medullary cavity
Fracture description requires specific vocabulary