The Pathophysiology of Hemorrhagic Shock

Richard E. Klabunde, Ph.D.

Associate Professor of Physiology

Department of Biomedical Sciences

Ohio University College of Osteopathic Medicine

Learning Objectives

- Describe how acute blood loss leads to hypotension.
- Describe the compensatory mechanisms that operate to restore arterial pressure following hemorrhage.
- Describe the decompensatory mechanisms that lead to irreversible shock.
- Describe the rationale for different medical interventions following hemorrhage.

General Definition of Hemorrhagic Shock

A clinical syndrome resulting from decreased blood and oxygen perfusion of vital organs resulting from a loss of blood volume.

Hemorrhagic Shock

(Initial Uncompensated Responses)

Effects Blood Volume Loss on Arterial Pressure

(adapted from Guyton & Crowell, 1961)

Compensatory Mechanisms

- Baroreceptor reflexes
- Circulating vasoconstrictors
- Chemoreceptor reflexes
- Reabsorption of tissue fluids
- Renal reabsorption of sodium and water
- Activation of thirst mechanisms
- Cerebral ischemia
- Hemapoiesis

Arterial Baroreceptors

Effects of 8% Blood Loss on Aortic Pressure in Anesthetized Dogs (Effects of Baroreceptor Denervation)

Cardiopulmonary Baroreceptors

- Location: Venoatrial Junction
 - Tonically active
 - Receptor firing decreases ADH release leading to diuresis
- Location: Atria and Ventricles
 - Tonically active
 - affect vagal and sympathetic outflow similar to arterial baroreceptors
 - reinforce arterial baroreceptor responses during hypovolemia

Baroreceptor Reflexes (Neural Activation)

Baroreceptor Reflexes Cont.

Redistribution of cardiac output

- Intense vasoconstriction in skin, skeletal muscle, renal (during severe hemorrhage) and splanchnic circulations increases systemic vascular resistance
- Coronary and cerebral circulations spared
- Therefore, cardiac output is shunted to essential organs

Redistribution of blood volume

- Strong venoconstriction in splanchnic and skin circulations
- Partial restoration of central venous blood volume and pressure to counteract loss of filling pressure to the heart

Circulating Vasoconstrictors

Chemoreceptor Reflexes

- Increasingly important when mean arterial pressure falls below 60 mmHg (i.e., when arterial baroreceptor firing rate is at minimum)
- Acidosis resulting from decreased organ perfusion stimulates central and peripheral chemoreceptors
- Stagnant hypoxia in carotid bodies enhances peripheral vasoconstriction
- Respiratory stimulation may enhance venous return (abdominothoracic pump)

Reabsorption of Tissue Fluids

- Capillary pressure falls
 - Reduced arterial and venous pressures
 - Increased precapillary resistance
 - Transcapillary fluid reabsorption (up to 1 liter/hr autoinfused)
- Capillary plasma oncotic pressure can fall from 25 to 15 mmHg due to autoinfusion thereby limiting capillary fluid reabsorption
- Hemodilution causes hematocrit to fall which decreases blood viscosity
- Up to 1 liter/hr can be autoinfused by this mechanism

Renal Compensation

Cerebral Ischemia

- When mean arterial pressure falls below 60 mmHg, cerebral perfusion decreases because the pressure is below the autoregulatory range
- Cerebral ischemia produces very intense sympathetic discharge that is several-fold greater than the maximal sympathetic activation caused by the baroreceptor reflex

Decompensatory Mechanisms

Cardiogenic Shock

 Impaired coronary perfusion causing myocardial hypoxia, systolic and diastolic dysfunction

Sympathetic Escape

- Loss of vascular tone (↓SVR) causing progressive hypotension and organ hypoperfusion
- Increased capillary pressure causing increased fluid filtration and hypovolemia

Cerebral Ischemia

 Loss of autonomic outflow due to severe cerebral hypoxia

Decompensatory Mechanisms (Cardiogenic Shock and Sympathetic Escape)

Decompensatory Mechanisms cont.

Systemic Inflammatory Response

- Endotoxin release into systemic circulation
- Cytokine formation TNF, IL, etc.
- Enhanced nitric oxide formation
- Reactive oxygen-induced cellular damage
- Multiple organ failure
- Microvascular plugging by leukocytes and platelets

Cerebral Ischemia

Loss of autonomic outflow due to severe cerebral hypoxia

Time-Dependent Changes in Cardiac Function

- Dogs hemorrhaged and arterial pressure held at 30 mmHg
- Precipitous fall in cardiac function occurred after 4 hours of severe hypotension

(adapted from Crowell et al., 1962)

Resuscitation Issues (Current Research)

- Reducing reperfusion injury & systemic inflammatory response syndrome (SIRS)
 - Anti-inflammatory drugs
 - NO scavenging and antioxidant drugs
- Resuscitation fluids
 - Crystalloid vs. non-crystalloid solutions
 - Isotonic vs. hypertonic solutions
 - Whole blood vs. packed red cells
 - Hemoglobin-based solutions
 - Perfluorocarbon-based solutions
 - Fluid volume-related issues

Resuscitation Issues cont. (Current Research)

- Efficacy of pressor agents
- Hypothermic vs. normothermic resuscitation
- Tailoring therapy to conditions of shock
 - Uncontrolled vs. controlled hemorrhage
 - Traumatic vs. atraumatic shock