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Abstract—The ultimate goal of speech enhancement is to
improve speech quality and intelligibility. Integrating human
speech elements into waveform denoising neural networks has
proven to be a simple yet effective strategy for this purpose.
Such integration, however, has mostly been carried out within
supervised learning settings, without taking advantage of the
power of the latest self-supervised learning models, which have
demonstrated remarkable capability of extracting knowledge
from large training sets.

In this paper, we present K-SENet, a knowledge-assisted
waveform framework for speech enhancement. Wave-U-Net is
utilized as the baseline model and the foundation to build our
framework. To achieve enhanced intelligibility, we propose a
perceptual loss function that relies on self-supervised speech
representations pretrained on large datasets, to provide guidance
for the baseline network. Wav2vec and PASE are the choices of
self-supervised models in this work. Our proposed perceptual
loss is calculated upon the perceptual similarities captured by
the speech representations. Minimizing this loss would ensure
the denoised network outputs sound like clean human speeches.
Experiments on the Noisy VCTK and modified TIMIT datasets
demonstrate that our K-SENet can significantly improve the
perceptual quality of network outputs.

Index Terms—Speech enhancement, self-supervised learning,
speech representation, wav2vec, PASE

I. INTRODUCTION

Speech enhancement (SE) aims to reduce additive distur-
bance components from noisy speech signals. Traditional SE
solutions focus on extracting high-level features in the spectral
domain to identify target audio patterns. In recent years, deep
neural networks (DNN) have emerged as a popular paradigm
to solve the SE problem, with early solutions mostly designed
under the frequency domain.

The past three years has seen switched efforts to develop
waveform-based DNN models [1]–[6]. Within this group of
models, fully convolutional networks (FCNs) and their variants
have become especially popular as they produced state-of-
the-art performance on a variety of datasets. FCN models
are built on a certain hierarchical configuration that relies on
convolutional layers to extract discriminative features. Such
setup equips the models with a remarkable capability of
processing input data from multiple spatial or temporal scales.
Many existing FCN models, however, focus on reducing the
noise of generic types, lacking tailored considerations for
speech data and tasks.

As the utmost goal of SE is to improve the quality and
intelligibility of human speeches, efforts have been pushed
forward to integrate speech elements into SE frameworks. The
existing solutions can be generally grouped three categories.
The first strategy uses intelligibility-related metrics (e.g., short-
term objective intelligibility (STOI)) as the objective function
to explicitly boost the quality of network outputs [5], [6].
The second group of solutions are commonly developed under
certain GAN framework [7]–[10], where the discriminator is
designed to differentiate denoised speeches from real clean
signals, which makes it essentially act as an indirect quality
enhancer to the generator’s output. The third group of solu-
tions [11]–[14] rely on the integration of multi-scale feature
maps from certain pretrained network to provide guidance in
boosting the intelligibility of the system output.

Within the third group, most pretrained networks [11]–[13]
are trained for certain supervised learning tasks with rather
limited data. Such supervised representations, specialized or
biased to the considered problem, have relatively limited ex-
portability to other tasks [15]. In recent years, self-supervised
pretrained models have been increasingly utilized in many AI-
related areas. For human speech tasks, self-supervised learning
(SSL) models [15]–[17] have demonstrated remarkable capa-
bilities of extracting massive amount of knowledge from large
unlabeled datasets, where the high-level semantic information
is commonly embedded into compact vectors, called speech
representations. In [13] and [14], speech representations ex-
tracted by SSL models have been taken to guide the training
of frequency-domain SE models.

In this paper, we propose to take advantage of the power
of self-supervised speech models and integrate their represen-
tations to boost the output intelligibility of time-domain SE
networks. Wav2vec [16] and PASE [15], [17], both trained
on LibriSpeech [18], are the choices of SSL models in this
work. A new perceptual loss function is designed to ensure
the phonetic similarities captured by speech representations.
Minimizing this loss would ensure our FCN outputs sound like
clean human speeches, as in the training data of the pretrained
models. We name our framework K-SENet. To the best of our
knowledge, this is the first work that explores and compares
the integration of wav2vec and PASE into time-domain SE
networks.



II. METHOD

Machine learning-based speech enhancement systems con-
vert noisy input signals xn into denoised outputs xd to match
the ground-truth signals xgt. In both traditional and DNN
approaches, training such systems has often been formulated
as an optimization problem, where the differences between
xd and xgt are set as the objectives to be minimized.
Among waveform-based solutions, FCNs have increasingly
become the state-of-the-art solutions, where mean squared
error (MSE) is commonly used as the network objective
functions. In this work, we take Wave-U-Net, an FCN variant
with excellent performance on speech enhancement, as our
baseline models to build our knowledge-assisted SE networks.

A. Baseline model

FCN [19] and its variants, including U-Net [20], were orig-
inally developed to solve 2D image segmentation problems.
Typical FCNs are built with an encoder-decoder architecture.
In the encoding path, input signals are processed through a
number of layers combining convolution and pooling opera-
tions. The generated high-level latent features in the encoder
are then progressively upsampled along the decoding path
to match the target ground-truth. The fundamental goals of
FCNs are to find mappings, with certain desired property,
between paired signal sources; therefore, they are well-suited
for many signal processing tasks, including waveform-based
speech enhancement [1], [3], [6], [21].

Fig. 1. An illustration of the architecture of FCN models.

Our FCN baseline model is the Wave-U-Net [2] developed
by Stoller et al. Wave-U-Net is a one-dimensional variant of U-
Net with a similar encoder-decoder architecture illustrated in
Fig. 1. Two major modifications were made from the original
U-Net. First, decimate operations (keep features in every other
time points) are used for downsampling purposes. Second,
linear interpolation, rather than deconvolution, is adopted in
the decoder to reduce aliasing artifacts in the upsampling pro-
cess. The inputs to Wave-U-Net are fixed-length frames split
from utterances, where the corresponding utterance outputs
are formed through a concatenation of the frame-level outputs
in the original temporal order. In our implementation, there
are 12 down-sampling layers and the filter number for the ith

convolutional layer are F · i with F = 24. The output frame
for the models are approximately 1s (≈ 16000 points).

B. Self-supervised representation learning

In self-supervised learning, models are trained to predict one
part of the data from other parts [22]. SSL models for speech
data and tasks commonly aim to output speech representations
in the form of compact vectors that capture high-level semantic
information of the raw speech data [15]–[17], [23], [24]. In
this paper, we use the speech representations generated from
the following SSL models.

Wav2vec model [16] is trained on LibriSpeech corpus
through the contrastive predictive coding (CPC) loss [25] to
pretrain speech representations for ASR tasks. Experiment
results show that wav2vec can significantly improve the per-
formance over the chosen baseline solutions. Wav2vec model
consists of two networks, an encoder and a context network.
The former is a seven-layer convolutional network, and its
functionality is to extract latent features from the inputs. The
context network combines multiple outputs from the encoder
into a contextualized tensor, which then could be fed into the
downstream tasks.

PASE [15], [17] model consists of a single neural encoder
that encodes each raw speech waveform into a sequence of
latent embeddings, which are then fed into multiple desig-
nated self-supervised tasks in parallel. These tasks include
reconstructions of waveform, mel-frequency cepstrum (MFC),
prosody, Log power spectrum, and other binary discrimination
signals. These tasks are designed to ensure prior knowledge to
be distilled into the encoder, leading to insightful and robust
embeddings.

C. Architecture of our proposed K-SENet

Extensively trained on large datasets, speech representations
out of SSL models are expected to contain certain reliable
insights or knowledge that well characterize the training
samples. As a result, these representations can potentially be
used as informative inputs to train certain downstream task,
where data are limited, or the labels are difficulty or expensive
to obtain. We take advantage of the power of the pretrained
speech representations with a different approach. Our approach
is based on the thought that knowledge embedded in the
representations can potentially be transferred to our task of
interest, speech enhancement, to provide a broad, informative
and robust guidance. More specifically, we design a pair-
wise loss function to ensure valuable information from the
representations to be integrated into the training of our models.
This loss function penalizes the dissimilarities between the
representations of the denoised network outputs and those of
ground-truth speeches.

Fig. 2 shows the architecture of our proposed K-SENet
framework. Noisy inputs are fed into Wave-U-Net, which
seeks to produce denoised outputs xd similar to the clean
ground-truth xgt. In many FCN-based SE models, including
our baseline Wave-U-Net, such similarity is enforced by
minimizing a pointwise MSE loss:

LMSE =
1
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Fig. 2. Architecture of our proposed K-SENet.

where N is the number of training examples and |x| is the
number of elements in x.

1) Perceptual loss: It should be noted that minimization of
MSE, as in Wave-U-Net, is mathematically convenient and can
directly increase the signal-to-noise ratio (SNR) of the inputs.
However, waveform SE networks designed with point-wise
losses, including MSE, often do not have specific mechanism
or components to target speech perception. In addition, mini-
mizing MSE tends to seek point-wise averages, which leads to
overly-smooth outputs [26]. As a result, phonetic information
may be easily distorted along the network, resulted in outputs
with poor intelligibility [27].

As mentioned in a previous section, we intend to rely
on pretrained speech representations to provide a remedy,
boosting the intelligibility of the denoised outputs. In this
work, such remedy is designed as an auxiliary loss to enforce
xd and xgt to be close in terms of phonetic similarity. We call
it perceptual loss, which is calculated based on the L2-norm
of the difference between representations of xd and xgt:

Lperc(xd,xgt) =
∑
j

1

|φj(xd)|
||φj(xd)− φj(xgt)||22

where φj(x) represents the jth vector in the representation of
x.

The combined loss of our K-SENet is formulated as a
weighted summation of the MSE loss and perceptual loss:

L = λ1LMSE + λ2Lperc

where λ1 and λ2 is weighting coefficients, which can be set
manually or empirically in experiments.

III. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to evaluate the
effectiveness of our proposed K-SENet framework. We first
introduce the datasets, preprocessing steps, our training strat-
egy, and evaluation metrics. Then, the results of our model and
the corresponding baseline models are compared and analyzed.
We also conduct experiments to compare our models with SE
models guided by pretrained networks on some supervised
learning tasks [11], [28], [29].

A. Data

Our experiments are conducted on two datasets: Noisy
VCTK and TIMIT with speech-shaped noises (SSNs).

Noisy VCTK dataset [30], [31] consists of around 400
sentences with 30 speakers (28 for training set, 2 for test
set). Ten noise signals, including two artificially generated
noise signals and 8 real noises, are used in training set of
this database. The training set involves 4 SNRs (15, 10, 5,
and 0 dB) for each noise signal, which means that there are
40 noise conditions. For each speaker of the set, around 10
different sentences are available with each noise condition. In
the testing set, there are five real noise signals and 5 SNRs
(17.5 dB, 12.5 dB, 7.5 dB and 2.5 dB). For each test speaker,
there are around 20 sentences. All the recordings are sampled
at 48kHz with 24 bits/sample. In the preprocessing, they are
resampled into 16KHz. During our training, two speakers in
the training set are held out for validation purpose.

TIMIT with SSNs dataset is modified from the TIMIT
dataset [32], which consists of 630 speakers with 8 different
dialects of American English and a total of 6300 utterances.
The noisy data were generated by adding SSNs with 6 SNR
levels (6 dB, 3 dB, 0dB, -3 dB, and 6 dB, respectively) onto
the TIMIT utterances. For training purposes, we split the data
into training set (20790 pairs), validation set (2310 pairs) and
testing set (8400 pairs). All utterances are 16-bit long, 16kHz
single-channel waveforms. Note that SSN, which was designed
to ensure maximum masking effect, is “one common type of
steady noise marker” used by audiologists in the speech-in-
noise tests to evaluate human speech intelligibility in noise
[33]. The average SNR level in this dataset is lower than the
average SNR level in the previous noisy VCTK dataset, and
its noises are randomly generated for each clear utterance.
Compared with the noisy VCTK dataset, this dataset can be
regarded as more challenging for the denoising task.

B. Training and evaluation

All the proposed models are implemented in PyTorch. The
training is performed on an Nvidia GeForce Titan Xp GPU.
Each configuration is trained by an Adam optimizer with a
learning rate 0.0001 for 150 epochs. In the experiments with
wav2vec representations, we set λ1 = 0.8 and λ2 = 0.2 in
the combined loss function; In the PASE experiments, we set
λ1 = 1.00 and λ2 = 0.01 in the combined loss function. We
test and compare multiple SE networks in our experiments.



TABLE I
EXPERIMENTAL RESULTS ON NOISY VCTK DATASET.

Model PESQ CSIG CBAK COVL STOI
Noisy 1.97 3.35 2.44 2.63 0.91

WaveCRN [34] 2.64 3.94 3.37 3.29 -
Attention waveUNet [21] 2.62 3.91 3.35 3.27 -

D+M [35] 2.73 3.94 3.35 3.33 -
UNet [36] 2.90 4.22 3.32 3.58 -

Wave-U-Ne+wave2vec (ours) 2.93 4.22 3.49 3.58 0.945
Wave-U-Net+PASE (ours) 2.95 4.23 3.43 3.60 0.943

TABLE II
EXPERIMENTAL RESULTS ON TIMIT-WITH-SSNS DATASET. BEST PERFORMANCE IN EACH SNR LEVEL IS HIGHLIGHTED WITH BOLD FONT.

SNR FCN Loss PESQ STOI

-6dB

Noisy / 1.052 0.503

Wave-U-Net
MSE 1.351 0.738

MSE+wav2vec 1.387 0.767
MSE+PASE 1.363 0.760

-3dB

Noisy / 1.061 0.578

Wave-U-Net
MSE 1.543 0.821

MSE+wav2vec 1.602 0.840
MSE+PASE 1.568 0.829

0dB

Noisy / 1.090 0.662

Wave-U-Net
MSE 1.775 0.876

MSE+wav2vec 1.860 0.888
MSE+PASE 1.811 0.875

3dB

Noisy / 1.142 0.744

Wave-U-Net
MSE 2.032 0.912

MSE+wav2vec 2.121 0.919
MSE+PASE 2.078 0.908

6dB

Noisy / 1.229 0.816

Wave-U-Net
MSE 2.260 0.934

MSE+wav2vec 2.364 0.938
MSE+PASE 2.326 0.930

For each model, the best-performing network setup in training,
measured by validation PESQ, is loaded in testing.

The implementation of wav2vec is downloaded from the
project GitHub site and the pretrained model is Wav2Vec
large. The outputs of its encoder are taken as the speech
representations in this work. For PASE, we choose PASE+
model [17] and download it from Google Drive. Both models
are trained on the full 960-hour LibriSpeech training set [18].
PESQ and STOI [6] are two widely used metrics for perceptual
evaluation. We utilize them in our experiments to evaluate the
perceptual performances.

In our VCTK experiments, composite scores introduced
in [37], which include MOS predictor of speech distortion
(CSIG), MOS predictor of intrusiveness of background noise
(CBAK), and MOS predictor of overall processed speech
quality (COVL), have also been used to evaluate the competing
models.

C. Results and analysis

Noisy VCTK Table I shows the results of our models (bot-
tom two lines) and those of some state-of-the-art solutions on
the Noisy VCTK dataset. As evident, our models outperform
the state-of- the-art models in all metrics. Comparing our
two models, the model guided by PASE (Wave-U-Net+PASE)
has a better performance measured with PESQ and the com-
posite scores, and the model guided by wave2vec (Wave-U-
Net+wave2vec) produces better results measured with STOI.

TIMIT with SSNs Table II reports the results of the
baseline Wave-U-Net model and those of the two proposed
knowledge-assisted models on the TIMIT-with-SSNs dataset.
Wave-U-Net uses MSE as its objective function. The cor-
responding K-SENets are trained with the combined loss
based on wav2vec and PASE representations, respectively.
It is evident that our MSE+wav2vec model outperforms the
baselines with significant margins, measured by STOI and
PESQ. It is worth noting that the performance improvements
have been demonstrated at every SNR level. Our MSE+PASE

https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://drive.google.com/open?id=1xwlZMGnEt9bGKCVcqDeNrruLFQW5zUEW
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Fig. 3. Denoised outputs of a sample utterance from Wave-U-Net (MSE-only) network (top two rows) and our MSE+wav2vec model (bottom two rows).

TABLE III
COMPARISONS OF PERCEPTUAL LOSS AND DEEP FEATURE LOSS.

Dataset Model PESQ CSIG CBAK COVL STOI

VCTK

Noisy 1.97 3.35 2.44 2.63 0.91
Deep Feature Loss [11] - 3.86 3.33 3.22 -

Deep Feature Loss (our run) 2.59 3.85 3.32 3.22 0.931
Speaker Embedding 2.60 3.95 3.23 3.27 0.936

Acoustic Event Classification 2.82 3.68 3.38 3.25 0.942
Wave-U-Net + wave2vec 2.93 4.22 3.49 3.58 0.945

Wave-U-Net + PASE 2.95 4.23 3.43 3.60 0.943

TIMIT

Noisy 1.11 1.99 1.43 1.47 0.66
Deep Feature Loss (our run) 1.54 2.69 2.17 2.05 0.84

Wave-U-Net + wave2vec 1.87 2.91 2.14 2.31 0.87
Wave-U-Net + PASE 1.83 3.16 2.30 2.46 0.86

model performs better than the baseline model in PESQ at
every SNR level and STOI in low SNR levels (-3 and -
6 dB). Overall, these results provide a strong evidence that
the proposed perceptual loss can indeed substantially and
consistently enhance the perceptual properties of the denoised
utterances.

Fig. 3 shows the comparison of the models on a particular
audio clip. Blue lines show the ground-truth waveform and
red lines are the denoised network outputs. The top two rows
show the ground-truth and denoised output obtained from the
baseline Wave-U-Net (with MSE loss). The bottom two rows
show the corresponding waveform output generated from our
MSE+wav2vec network. The second row and the fourth row
are the amplified views of the highlighted segments in the first
and third rows, respectively. The clip produced by the baseline
model, as shown in the top two rows, has fewer spikes and
smaller amplitudes, which might be due to the tendency of
MSE loss in producing overly-smooth results [26]. In contrast,

the result generated by our K-SENet matches the ground-truth
rather well, thanks to the speech information brought by the
speech representations.

D. Perceptual loss vs. deep feature loss
In [11], a supervised network is trained jointly on scene

classification and audio tagging targets. A loss named deep
feature loss based on a multitude of features at different scales
of the network is proposed to provide a speech guidance
for the SE tasks. Comparing with [11], our framework has
an advantage that the adopted speech representations were
both trained on large speech datasets with the self-supervised
learning paradigm. This combination greatly enhanced the
knowledge to be distilled into the representations. Table III
illustrates the comparison of our combined loss based on
the perceptual loss and the deep feature loss on the Noisy
VCTK dataset and the TIMIT-with-SSNs dataset. Note that
the model marked as our run are trained by us with the
original code provided by [11]. In [13], deep feature loss



functions based on the speaker embedding model [28] and
the acoustic event classification model [29] are proposed to
train frequency-domain SE networks. We also design models
with these two deep feature loss functions to replace the
perceptual loss in our setup and trained them on the noisy
VCTK dataset. As shown in table III, our models guided by
the speech representations, whether it is wav2vec or PASE,
achieve much better performances than models based on deep
feature loss functions in almost each metrics listed in the table.

IV. CONCLUSION

In this paper, we propose a knowledge-assisted framework
to enhance the perceptual properties of the denoised outputs
of waveform SE networks. Our approach relies on speech
representations trained on large speech datasets to provide
valuable insights and guidance regarding what clean speeches
sound like. Experiments on both Noisy VCTK and TIMIT
with SSNs datasets show that our models achieve significant
perceptual performance gains to both the baseline and state-
of-the-art models. The take-home message is that pretrained
speech representation models, if properly integrated, do pro-
vide great help for SE. To explore integration of pretrained
models with more speech enhancement networks, as well
as their applications to other speech tasks, are our ongoing
efforts.
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