The Physical Environment

                                                       
Contents | Glossary | Atlas |  Index | TPE Today | Blog | Podcast | Google Earth | Search

Energy and Radiation

Digging Deeper into Radiation and Selective Absorption

So why is the atmosphere a selective absorber? The answer is found at the atomic level where electrons orbiting the nucleus of an atom are excited when struck by a bundle of energy. Though we describe electromagnetic radiation as invisible waves of energy, at the smallest scale it behaves as a particle, like when light is emitted by a single atom or molecule. When energy is given off, there is a change in the orbital pattern of the electrons that surround the nucleus of an atom. As the orbit changes, a bundle of energy called a "photon" is released. Particles of light differ from particles of matter: they have no mass, occupy no space, and travel at the speed of light, 2.9998 X 108 m s-1. The amount of energy carried by a photon varies inversely with wavelength, the shorter the wavelength, the more energetic the photon.

Electrons orbit the nucleus of an atom at fixed orbital distances called orbital shells. The orbital shell for each atom is different and discrete. That is, for a given atom like hydrogen, its electrons can only orbit at particular distances and are different than those for atoms of neon.  

photons absorption and electron orbitFigure 4-b Effect of photon absorption on electron orbit.

Each orbital shell is associated with a given energy level; the greater the distance from the nucleus the greater the energy level. Electrons jump to a higher shell when excited by the absorption of energy. The photon must have the exact amount of energy to move the electron from, say, shell one to shell two. If the photon doesn't have enough energy to move the electron to shell two, it cannot move the electron half way between shell one and two. The atom does not stay in this excited, unstable state for very long. Energy is given off and the electron returns to a stable state or its "ground state"  (lowest energy level or orbital distance). Recall that the amount of energy carried by a photon depends on the wavelength. Thus the atoms that comprise a gas can only absorb, or emit,  particular wavelengths of energy (i.e. photons of energy). 


Previous | Continue  


Contents |Glossary | Atlas Index  |  Blog | Podcast | Google Earth | Search Updates | Top of page

About TPE | Who's Used TPE |  Earth Online Media

Please contact the author for inquiries, permissions, corrections or other feedback.

For Citation: Ritter, Michael E. The Physical Environment: an Introduction to Physical Geography.
Date visited.  https://www.earthonlinemedia.com/ebooks/tpe_3e/title_page.html

Michael Ritter (tpeauthor@mac.com)
Last revised 6/5/12

Help keep this site available by donating through PayPal.

paypal


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License..