Notes on Modern Physics
Ionizing Radiation

Radioactivity  Data Analysis  Machines  Interactions

Detectors  Damage  Clinical  Microscopy

Preface  Acknowledgements  References

Entropy and Human Activity

Richard D. Piccard
Physics Department
Ohio University

Athens, Ohio

Preliminary Edition


Because of the need for Greek characters and mathematical symbols, these Web pages contain graphic items that are essential to convey the content. Some of the files use the newer HTML tags for subscript and superscript. If your browser displays x2 as x2 instead of as x-squared, then you will need to be especially cautious in reading algebra and numerical items!



I.  Radioactivity and Nuclear Structure

A.  Strong nuclear forces

B.  Coulomb repulsion

C.  Charting the nuclides

D.  QM States and Atomic Energy Levels

  1. Spectroscopic evidence

  2. The Franck-Hertz Experiment

E.  Alpha and beta decay

  1. Nuclear substructure by alphas

  2. Q. M. Tunneling

  3. Alpha Decay Energy

  4. Beta Decay Energy

  5. Electrons, Muons, and Neutrinos

  6. Other Beta Decay Mechanisms

  7. Decay Chains

F.  Electron relaxation and X-rays

G.  Nuclear excitations and gamma rays

H.  Stellar Nucleosynthesis

  1. Abundances of the Elements

  2. Low Mass Elements

  3. Fowler's Teaching

I.  QM Randomness


II .  The Analysis of Experimental Data

A.  Distributions and True Values

B.  Confidence Intervals and Precision

C.  Estimating Uncertainty from Data

D.  Error Estimates in Calculations

  1. Significant Figures

  2. Single Variable Functions

  3. Simple Multi-Variable Functions

  4. Direct ("Single-Step") Approaches

  5. The Two-step Approaches

E.  Graphical Data Analysis

  1. Line Fitting

  2. Setting up the Graph

  3. Drawing the Line

  4. Finding the Slope

  5. Estimating Uncertainties

  6. Non-linear Data

F.  Numerical Data Fitting

  1. Line Fitting

  2. Curve Fitting

G.  Exponential Decays and Semi-Log Plots

H.  Uncertainty in Digitized Measurements

I.  Periodic Measurements



III.  Artificial Radiation Sources

A.  Direct Acceleration of Charged Particles

B.  X-Ray Generation

C.  Neutron sources

D.  Other Secondary Radiation


IV.  Interaction of Radiation with Matter

A.  Neutron Activation

B.  Photons

  1. Exponential Absorption and Scattering

  2. Thomson Scattering

  3. The Photoelectric Effect and the Periodic Table

  4. Compton Scattering

  5. Pair production

  6. Source Strength Determination

C.  Charged-particle radiations

  1. Collisions and pair production

  2. Ramsauer Effect

  3. Secondary Bremsstrahlung

  4. Energy Deposition

  5. Shielding and Scattered Radiation

  6. Annihilation Gammas


V.  Detectors

A.  Primary Detection Mechanisms

  1. Charge

  2. Light

B.  Detector Systems

C.  Light Detectors

  1. Film

  2. Photomultiplier Tubes

  3. Vidicons

  4. Charge Coupled Devices

  5. Image Intensifiers

D.  Area vs Point Sensitivity

E.  Existence vs Energy Signals

F.  Solid Angle Considerations


VI.  Radiation Damage and Dose Measurement

A.  Biochemistry

B.  Physical Dose Measures

C.  Biological Effects

D.  Contamination and Irradiation

E.  Radiation Dosimetry

VII.  Diagnostic and Therapeutic Uses of Radiation

A.  Diagnostic Uses

  1. Film X-rays

  2. Fluoroscopy

  3. Gamma Cameras

  4. Scanners

B.  Therapeutic Uses


VIII.  Diffraction and Microscopy

A.  Wave Scattering By a Point Obstacle

B.  Crystals

C.  The Interference of Scattered Waves

  1. The Bragg Analysis

  2. Fourier Analysis

  3. Crystal Plane Nomenclature

  4. Polycrystalline Diffraction

D.  Wave Radiation Sources

  1. Matter Waves

  2. Synchrotron Radiation and Monochromators

E.  Diffraction Structure Studies

F.  Light Microscopy

  1. Resolution

  2. Contrast

G.  Electron Microscopy

  1. Specimen Damage

  2. Contrast

H.  Scanning Microscopies


Copyright © 2004


Richard Dickson Piccard

All rights reserved

Dick Piccard revised this file ( on December 29, 2004.

Please E-mail comments or suggestions to